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Polychlorinated biphenyl exposure alters
oxytocin receptor gene expression and maternal
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Polychlorinated biphenyl (PCB) is a persistent organic pollutant known to induce diverse molecular and behavioral
alterations. Effects of PCB exposure could be transmitted to future generations via changes in behavior and gene
expression. Previous work has shown that PCB-exposure can alter social behavior. The present study extends this work
by examining a possible molecular mechanism for these changes. Pregnant rats (Sprague-Dawley) were exposed
through diet to a combination of non-coplanar (PCB 47 - 2,20,4,40-tetrachlorobiphenyl) and coplanar (PCB 77 - 3,30,4,40-
tetrachlorobiphenyl) congeners. Maternal care behaviors were examined by evaluating the rate and quality of nest
building on the last 4 d of gestation and dam/pup interactions on postnatal days 1, 2, 4 and 6. On postnatal day 17,
dams were euthanized and hypothalamic tissue was removed for expression analyses of the oxytocin receptor (OXTR)
and cytochrome P450 1a1 (Cyp1a1). PCB altered nest building and maternal care behaviors. Specifically, there was a
significant increase in time spent in low crouch and high crouch nursing posture on PND 4 and PND 6 respectively.
Molecular analysis revealed that PCB exposure upregulated OXTR expression in the hypothalamus of dams. These
results provide a possible molecular mechanism for PCB-induced changes in social interactions during early
development.

Introduction

Persistent organic pollutants, such as polychlorinated biphen-
yls (PCBs) are pervasive in the environment and pose a threat to
health and the ecosystem.1,2 Exposure in human populations is
likely to occur through absorption, inhalation, or ingestion, with
the ingestion most prevalent in populations with high fish con-
sumption.3-5 Although PCB production in the United States was
discontinued in 1976, significant amounts remain in the environ-
ment resulting from the long half-life of the toxicant.6-8 There
are 2 main classifications of PCB molecules, coplanar (non-ortho
substituted), which bind to the aryl hydrocarbon receptor and
non-coplanar (ortho-substituted), which can alter hormone
homeostasis as well as binding to the gamma amino butyric acid
receptor.9,10 Exposure to a combination of these PCB congeners
can alter physiological processes including reproductive develop-
ment, immune function, growth, and brain function.9-12If PCB
exposure occurs during gestation, alteration of these physiological
processes can manifest as altered psychological and behavioral
development.13,14

One route of PCB exposure is from mother to offspring,
which can occur throughout gestation and in the mother’s milk
during nursing.15-19 In animal models, the level of PCB in off-
spring is correlated with the amount of maternal PCB expo-
sure.20-22 Recently, connections have been made between early
exposure to endocrine disrupting compounds (EDCs) and devel-
opmental disorders.23-25 EDC exposure, especially from PCBs,
can alter gene expression profiles that could lead to harmful
effects on social behavior, development, and health.26 Previous
work has shown that PCB exposure during the perinatal period
can impact many interactions in rats including reproductive
behaviors and other social behaviors.27-30 Exposure to a simple
mixture of 2 PCB congeners (non-coplanar 47 and coplanar 77)
through diet diminished pup conditioned preferences for mater-
nally associated cues, which supports the hypothesis that low
dose exposure during early development can be harmful to com-
plex psychological processes.30,31 In addition to maternal cue
alterations, PCB administration led to reduced social recognition
in juvenile rat pups indicating that early PCB exposure can pro-
duce long-term behavioral modifications.32 These studies
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highlight the importance of examining early exposure to PCB
and other environmental contaminants, but do not highlight the
behavioral changes that can manifest from altered maternal
behavior.

Maternal care is critically important to the social development
of offspring, as reduced maternal care quality can manifest as
increased anxiousness and fearfulness even through adulthood.33

The quality of maternal care in rats is determined by 2 distinct
behaviors including licking/grooming and arched back nursing.34

Dependent on the amount of time spent in these behaviors dams
are classified as high or low licking/grooming and arched back
nursing (LG-ABN) with high LG-ABN dams reported as the
more effective mothers because of increased milk letdown during
this nursing posture.34-36 Studies have shown that the initial 6 d
postnatal were sufficient in order to characterize maternal care
groups into different categories (for example37). High and low
LG-ABN nursing dams in different experimental groups
remained distinct and recognizable from each other during most
of the observation time periods, specifically during PND 2–4;
however, after 6 d of observations, observed maternal care behav-
iors were no longer significantly different between the 2 groups.
This strongly suggests that the first week postpartum is crucial in
terms monitoring maternal care and then generalizing to other
care/social behaviors and long-term influences on behavior, phys-
iology and gene expression regulation.

Interestingly, a cross-fostering study with PCB 77 exposure
demonstrated that maternal behavior is altered by pup PCB
exposure with increased attentiveness of the mothers, character-
ized by increased nursing.38 Other maternal behaviors, such as
amount of time on the nest, were correlated to maternal PCB
exposure.38 The cross-fostering paradigm is essential to under-
standing this mechanism as it enables a dissociation between
maternal and pup PCB exposure, and allows a glimpse into the
complex interactions that occur between mother and pup to pro-
duce maternal care behaviors.39,40

While behavioral examination is an indicator of harmful PCB
exposure, it is necessary to understand the molecular mechanism
behind behavioral modification, which can include both endo-
crine and neural systems. Given the permissive nature of euthy-
roid status on developmental processes, our research group has
focused on PCB-related changes in thyroid hormones and has
shown that early exposure reduces thyroxine levels in rat pups,
which is alleviated by thyroxine replacement.41-44 The interaction
between PCB and thyroid function is complex with both antago-
nistic and agonistic effects, thus PCB-thyroid interaction could
contribute to diverse behavioral and psychological changes after
exposure to PCB.45 A potential genetic candidate for this interac-
tion is Cyp1a1 because it is a known target gene that is upregu-
lated in endothelial cells46 and hepoatocytes,47 but this effect has

not been observed in nervous tissue. Thus, a more promising can-
didate for PCB altered behavior is oxytocin, which is known to
be involved in mediating social behavior, with an emphasis on
maternal care.48-52 Not surprisingly, PCB 77 exposure is known
to increase oxytocin secretion and expression in luteal cells in dif-
ferent animal models.53-55 However, no study has analyzed the
link between PCB mediated alteration in oxytocin function and
changes in maternal care behaviors.

The alteration of oxytocin function by PCB could occur
through changes in oxytocin secretion and expression or through
changes in the expression of the receptor. Environmental con-
taminants, toxins, and EDCs can influence gene expression,
which could be the molecular mechanism of PCB effect on oxy-
tocin function as it has been previously shown to alter gene
expression.56-60 Maternal care behaviors are also strong mediators
of gene expression61,62 and the differences in maternal care in
typical circumstances are associated with expression of oxytocin
receptor genes.63 The present study extends previous behavioral
work by examining possible molecular mechanisms involved in
altering early social behavior. A thorough monitoring of maternal
care by rat dams was completed prior to the molecular investiga-
tion. For the molecular portion of the study, we focused on gene
expression of the oxytocin receptor gene in the hypothalamus
because this particular gene in this brain region has been found
to be important in the production of typical maternal care behav-
iors.64-66 PCB congeners 47 and 77 were chosen to use in the
present study because a mixture of those 2 allows exposure to
both coplanar and non-coplanar congeners and advances our pre-
vious work using those 2 congeners.

Results

Maternal weight and PCB consumption
In order to determine the effect of PCB on maternal body

weight and food consumption, these measures were evaluated
throughout the gestational period. Maternal weight gain during
the first week of gestation was depressed in the PCB treatment
group (F(1,17) D 4.55, p < 0.05) compared to the controls
(Table 1). The weight of the dams was not significantly altered
by dietary group in subsequent weeks (Table 1). PCB consump-
tion was measured as micrograms consumed per gram of body
weight and did not vary significantly across the 3 weeks of gesta-
tion (Table 1). Litter weight and size were not significantly
altered by PCB exposure (data not shown).

Nest building
Nest building was examined as a measure of maternal instinct

and care behavior in the PCB (n D 6) and control (n D 5) groups
for each gestational day. There was a significant main effect for

Table 1. Basic measures of food intake over time in PCB and Control Groups

Group Litter Size (pups) Gestational weight (grams) Pre-weaning weight change Rat pup weight Dam food intake Litter food intake

Controls 14 § 3 .0 129 § 6 .0 g 29 § 6 .5 g 19 § 0 .1 g 25.5 § 2 .5 g 60 § 3 .0 g
PCB12.5 13.8 § 1 .2 128 § 2 .0 g 34 § 9 .1 g 16 § 1 .7 g 24 § 0 .4 g 57 § 2 .8 g
PCB25 10.3 § 2 .3 102 § 9 .3 g 33 § 8 .1 g 16 § 3 .1 g 23.3 § 0 .8 g 44 § 5 .5 g
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day of observation (F(3,27) D 11.7, p < 0.001). This reflects the
increase in the nesting strip number used by animals in both
groups from gestational day (GD) 20 to 23 (Fig. 1A). There was
a significant day x diet interaction (F(3,27) D 3.29, p < 0.05).
We examined this interaction effect in more detail with pairwise
comparisons and found a significant increase in the number of
nesting strips used on GD20 in the PCB-exposed dams com-
pared to controls (t(9) D 2.40, p < 0.05). The quality of the nest
was also assessed and there was a significant main effect for day
of observation that the nest was scored (F(3,27) D 81.03,
p < 0.001). This finding is related to the increase in nest quality
rating over the course of gestational days (Fig. 1B) but was not
modified by PCB exposure. The mean quality of nests built by
PCB fed dams was lower than that of controls on each gestational
day (Fig. 1B), but these differences did not reach significance.

Maternal care: Nursing behaviors
Dietary consumption of PCB during gestation led to altera-

tions in maternal care behaviors thought to be crucial for rat pup
development. We examined each maternal care variable (Fig. 2A,

B) and found that PCB exposure significantly altered 2 nursing
behaviors. The other behaviors including time-off-nest appeared
to be the same in the 2 groups. In addition, we did not find a sig-
nificant difference related to cross-fostering. The amount of time
spent in low crouch nursing was significantly different between
PCB-exposed and control dams (F(1,12) D 8.55, p < 0.05). We
found a 140.7% increase in low crouch nursing in PCB-exposed
dams compared to controls on post-natal day 4 (see Fig. 3A; t
(11) D 6.34, p < 0.01). We also found a difference for high
crouch nursing between groups (F(1,12) D 3.43, p < 0.05). Spe-
cifically, on post-natal day 6, PCB-exposed animals showed a
greater proportion of time in high crouch nursing behavior com-
pared to control dams (Fig. 3B; t(11) D 2.01, p < 0.05).

Quantitative real time RT-PCR analysis
Expression of the Cyp1a1 and OXTR genes in the hypothala-

mus was examined in the dams by qRT-PCR in order to assess
the molecular mechanisms underpinning maternal care behavior.
Results were normalized to b-actin and relative fold change was
obtained from the normalized Ct values between PCB treatment
and mock. While Cyp1a1 expression within the hypothalamus
was not effected by diet or foster status and revealed no signifi-
cant difference (data not shown), a significant increase in OXTR
expression in the hypothalamus was observed in the PCB treat-
ment groups compared to the controls (U D 5.50, p � 0.05)
(Fig. 4A). There was an increase in the expression of maternal
hypothalamic OXTR gene regardless of whether pups were fos-
tered or non-fostered (Fig. 4B).

Discussion

The results of the present study did not follow our expecta-
tions for how this PCB mixture would alter maternal behavior.
Instead of a clear decrement in maternal care, we obtained a mix-
ture of decreased and elevated maternal care. There could be a
possible influence of the soy content of diet used in the present
study, since this commercial diet has been used in previous stud-
ies to illustrate that high soy intake can influence behavior.67

However, the behavioral modifications have been developmental
ones, rather than occurring in adult animals. Additionally, this
potential confound was addressed in the present study by feeding
it both as control diet and diet containing PCB. Rat dams con-
suming PCB weighed less during the first week of gestation, but
then gained more weight than controls and this has been docu-
mented in previous work using the same administration proce-
dure and PCB congener mixture.30 Prior to birth, the pregnant
rats exposed to PCB prepared for the birth by utilizing a greater
number of nesting strips in the cage but after parturition gener-
ally built nests of lesser quality. Surprisingly, the rat dams
exposed to PCB expressed longer periods of nursing behavior
during the first 6 postnatal days and this included the higher
quality care of high crouch nursing on postnatal day 6. Amounts
of high crouch and low crouch nursing vary dependent upon the
procedures to acquire the behavioral data. Previous studies have
found similar proportions of HCN and LCN that range from

Figure 1. Nest building measures. (A) Average number of strips taken into
the maternal cage by PCB and control treatment groups over gestational
range, GD 20-23 (mean § SEM; n � 5). Significant day effect revealed by
pairwise day comparison on GD 20 in both groups (* p < 0.05). (B) Aver-
age nest quality score per gestational day (mean § SEM) for the PCB and
control treatment groups (n � 5).

www.tandfonline.com e979681-3Endocrine Disruptors
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0.05 to 0.1 for HCN and 0.25 to 0.3 for LCN.68,69 Procedural
changes in the way maternal care is measured can dramatically
shift the levels sampled. Cummings and colleagues38 had a signif-
icantly greater proportion of HCN (0.25 for oil-injected con-
trols) but measured the behavior 2 hours before lights turned off
on a 12:12 light:dark cycle. The work done on gene expression
effects related to maternal care has typically measured the nursing
using different sampling intervals during the day and night peri-
ods (3-6 time windows) with very short periods of behavioral
measurement (2-5 minutes).37 These procedural differences
could influence the proportions of the behaviors acquired. High
crouch nursing is a high energy cost behavior and is thought to
be the most effective at providing milk letdown and cannot be
maintained for an extended period of time. Finally, we found a
robust and consistent elevation of OXTR gene expression in the
hypothalamus in these same rat dams, although the expression of
Cyp1a1, a gene known to be altered by PCB in other tissues,46,47

was not different from controls in this area of the brain. Elevated
levels of OXTR gene expression have been found in previous
work to be related to enhanced maternal care70,71 so this result
could be expected given the behavioral findings of this study.

Additional work has shown that oxytocin receptor concentrations
are high within specific hypothalamic subregions such as the
medial preoptic area and the ventromedial nucleus.72 Oxytocin
receptor levels increase typically after parturition73 and infusion
of the neurohormone into the medial preoptic area facilitates
maternal care expressed by the dam.74-76 More recent work has
shown that variations in maternal care are related to oxytocin
receptor levels in hypothalamus (MPOA) as well as other brain
regions such as the lateral septum and bed nucleus of the stria ter-
minalis.77,78 The results have shown that higher levels of mater-
nal care coincide with greater amounts of oxytocin receptor.

The present results differ from previous work examining mater-
nal care changes following PCB exposure.33,38 This could arise
from several methodological differences in the previous work
including the use of a single congener (PCB 77) and administra-
tion by way of injection. Despite this previous work finding a
reduction in nursing in the PCB-exposed group, those investiga-
tors did find an elevation in other maternal behaviors (e.g., licking

Figure 2. Comparison of PCB effects on maternal behavior over the first
six postnatal days; (A) mean § SEM for days PND 1, 2 combined; (B)
mean § SEM for PND 4, 6 combined. AN: active nursing; PL: pup licking;
AG: autogrooming; TON: time off nest; HCN: high crouch nursing; LCN:
low crouch nursing; RN – resting nursing. ** p � 0.01.

Figure 3. Effect of gestational PCB exposure on Low and High Crouch
Nursing behavior as a proportion of all other maternal behaviors. (A)
Low crouch nursing (LCN) behavior on postnatal days 1, 2, 4, and 6
(PND1, PND2, PND4, and PND6). One-way ANOVA revealed a significant
effect on PND 4 (*p £ 0.05). (B) High crouch nursing (HCN) behavior on
PND1, PND2, PND4, and PND6. Mann-Whitney non-parametric analysis
revealed a significant effect on PND 6 (*p < 0.05).

e979681-4 Volume 3 Issue 1Endocrine Disruptors
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and grooming) leading to a similar general notion that PCB-expo-
sure can increase early social interactions in the rat model.

One way that animals can respond to toxin exposure is via
compensatory behaviors that work to reduce harmful effects.
This type of ‘wild health’ or ‘animal medicine’ is well known in
behavioral ecology or physiological psychology79-81 but not well
studied in behavioral toxicology. Most of the work in this area
focuses on detoxification through shifts in diet after experiencing
a toxic or poisonous substance.82-84 A related area is the shift in
behavior to combat infections from parasites or other patho-
gen.85 Animals exposed to harmful environments make adjust-
ments in diverse ways including reactions to urban stress or
crowding.86 Exposure to endocrine disruptors could trigger
behavioral compensation in animals, and enhancements of
maternal care actions might be one form of compensatory act
used to reduce harmful effects of exposure. Future work must
address the sequence of PCB-OXTR-maternal care effects in
order to understand more fully the causal relationship between
these levels of PCB influence. Since we did not find a main effect
or interaction for the cross-fostering, it is likely that direct expo-
sure to PCB is involved in producing the behavioral changes.

Control females combined with PCB-exposed rat pups did not
express the same type of behavioral or molecular changes. Our
previous work has focused on pup social motivation87,88 and
emphasized the important dynamic between care-seeker and
care-giver.89 The present set of results supports the idea that
direct PCB exposure that leads to hormonal and neural changes
in the care-giver is paramount and that alterations in rat pup
behavior alone do not lead to the same effect. Another important
issue to explore is the order of effects between OXTR gene
expression upregulation and shifts in behavior. Direct manipula-
tion of OXTR levels can dramatically shift early behavioral
responses of rats and specifically alter social behavior in different
context.90 There is recent work supporting this relationship in
human clinical research.51 Despite this strong directional evi-
dence, it is known that shifts in behavior can act as strong media-
tors of hormone gene expression as well.52 Overall, attempting to
determine an initial role for either PCB-related gene expression
or behavioral changes may not be fruitful because the 2 processes
are clearly intimately intertwined.91

The means by which PCB disrupts endocrine function is
becoming ever clearer. Modification of OXTR gene regulation in
the hypothalamus is one of many molecular/endocrine alterations
following PCB exposure. We examined Cyp1a1 gene expression
in the hypothalamus and found no differences between the
exposed and unexposed animals. This is contrary to other studies,
which have found that exposure to coplanar PCB molecules, like
PCB 77, can and does induce Cyp1a1 gene expression after expo-
sure.46 However, in the present study, PCB 47/77 administration
was discontinued after parturition. This means that during the 17
subsequent postnatal days through the testing period, the expres-
sion of Cyp1a1 might have been restored to normal levels in the
hypothalamus of exposed dams. So far, no studies have consid-
ered the length of time post-PCB exposure Cyp1a1 remains ele-
vated, especially in brain regions. It is possible that PCB is still
inducing Cyp1a1 expression in other areas of the body, such as
the liver, that are critically important in eliminating the toxicant
from the body. Alterations in these enzymes provide a possible
biomarker for toxicity of the compound and absence of effect in
the present study indicates a relatively lower general toxicity of
the PCB exposure.47 Other work that has found alterations in
these enzymatic pathways has examined exposure at greater doses
of PCB or mixtures of PCB with other halogenated organic
compounds.60,92,93

PCB-related modifications of other hormone systems could be
involved in alteration of social behaviors during early develop-
ment. PCB exposure significantly alters estrogen, progesterone
and glucocorticoid function.93-95 Each of these steroid hormones
has been shown to be important in regulating maternal care in
the rat.35,96 PCB has been shown to have both estrogenic and
antiestrogenic properties.97-99 For example, PCB has led to an
increase in estrogen receptors in the hippocampus100 and can act
as an estrogen hormone agonist as well.101 PCB exposure has
been shown to alter stress hormone responses.102 Exposure to
gestational stress alters maternal care and in a few studies stress
exposure has been shown to increase certain maternal care
actions.36,48,103,104 PCB-related shifts in glucocorticoids such as

Figure 4. qRT-PCR analysis of OXTR expression in the hypothalamus. (A)
Significant increase in expression of OXTR mRNA was observed in
response to PCB regardless of pup foster status (p < 0.05). (B) Increase in
expression of OXTR was observed when examining both maternal PCB
treatment and pup fostering treatment but no significant differences were
observed among groups. NF D non-cross foster and CF D cross foster.
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corticosterone could be an important influence in shifts in early
social behavior, and future work is required to understand better
the mechanisms by which PCB alters both maternal and pup hor-
mone levels in relationship to behavioral changes.

In conclusion, our data add an important finding to the grow-
ing literature on PCB related social behavior changes. We dem-
onstrate that certain key actions are altered as part of the early
maternal care behavior sequence and that these same female rats
have a robust upregulation in OXTR gene expression. This link
focuses on hypothalamic levels of oxytocin because of previous
work showing that oxytocin in the hypothalamus is critical to
maternal behavior prior to and following parturition. The results
add to our understanding of possible epigenetic influences of
PCB with implications that PCB exposure can have lasting effects
on critical behaviors over multiple generations.

Materials and Methods

Animals and PCB exposure
Care and use of animals were performed in accordance with the

Bowling Green State University Institutional Animal Care and
Use Committee (Protocol # 09-008). Female Sprague-Dawley rats
weighing 200-250 g (10-12 weeks of age, virgin) (Harlan
Sprague-Dawley Indianapolis, IN) were mated to males of similar
age. Pregnancy was confirmed by a sperm positive vaginal smear,
with that day designated gestational day 0 (GD 0). Following the
positive smear, females were placed in individual cages and fed
either control (Harlan Teklad Rodent Diet 8604, mash form,
Madison, WI) or the same diet with PCB added. The PCB diet
contained equal parts of 2 moderately chlorinated PCB congeners
obtained from AccuStandard Inc.. (New Haven, CT) 47 (2, 20, 4,
40-tetrachlorobiphenyl, non-coplanar) and 77 (3, 30, 4, 40-tetra-
chlorobiphneyl, coplanar). The rationale for choosing these 2 PCB
congeners was to provide a simple mixture, but one that contained
both non-dioxin-like (PCB 47) and dioxin-like (PCB 77) toxicant
exposure. The 2 congeners were dissolved in ethanol and thor-
oughly mixed with 1000 g of rat chow mash for a final concentra-
tion of 25 ppm (25 mg/kg w/w). The control diet consisted of rat
chow mash mixed with ethanol (the vehicle for added PCB) that
was allowed to evaporate entirely. Water and diet (control or
PCB) were provided ad libitum. Rat dams were provided with
100 g of diet daily in a spill deterrent feeding container, and daily
consumption was monitored by weighing remaining food each
morning. All rats were weighed daily at the time of feeding.

Cross-Fostering
On PND 0, PCB diet was removed from the PCB exposed

dams, and they were continued on standard diet without PCB.
On that same day litters were culled to 8 pups (4 males, 4 females)
and assorted in accordance with the following schematic: control
non-fostered, control pups with PCB exposed dams, PCB non-fos-
tered, and PCB exposed pups with control dams. Litters were
coded (A or B) in terms of diet exposure so that the individuals
collecting the data or scoring the behavior were blind to the actual
group membership of the animals until the end of the project.

Maternal behavior analysis

Nest building
Nest building behavior was analyzed beginning on gestational

day 20. Thirty brown paper towel strips, measuring 3 cm wide
by 20 cm long were placed atop the wire metal cages on gesta-
tional day 20 at 3:00 p.m. The nest building behavior was ana-
lyzed at 6:00 p.m. on GD 20. The basis of nest analysis consisted
of the latency to begin pulling strips into the cage, the total num-
ber of strips the dam used per day, and the quality of the nest
built. Then, the nest quality in maternal cages was scored daily at
8:00 am, 12:00 pm, and 6:00 p.m. until the birth of the pups.
The quality of the nest was scored based on the schematic set
forth by Beach105 using the following categories for nest score: 0
Point Nest: Paper strips remain on the top of the cage, no nest
construction, and any paper strips that are moved into the cage
are scattered; 1 Point Nest: No sides, no flooring, serves no prac-
tical purpose, and offers no protection ; 2 Point Nest: No sides,
hardly any flooring, and only a small number of the 16 paper
strips are utilized ; 3 Point Nest: Lacks sides, relatively thin floor-
ing, and all paper strips are utilized ; 4 Point Nest: Lacks the high
sides of a 5 point nest, has relatively thick flooring, and all paper
strips are utilized; 5 Point Nest: Approximately 5 inches deep,
floor composed of several thicknesses of paper, is compactly con-
structed in a cage corner, and all of the paper strips are utilized.
The nest remained in the cage until postnatal day 6 so that the
dam would not be disturbed by nest removal during filming.

Maternal care evaluation
Maternal care behaviors were investigated on postnatal days

one, 2, 4, and 6. Video recordings began one hour before lights
out, and continued for 2 hours total. The following behaviors
were scored from these video recordings using OD Log Software
(Macropad Software Inc..): time off nest, pup licking, auto-
grooming, active nursing, low crouch nursing, high crouch nurs-
ing, and supine (resting) nursing. These behaviors were hand
scored using a maternal behavior check list by an investigator
blind to the experimental condition of the animal being scored.
Time spent in each category as well as the proportion of total
time spent in each behavior was recorded. High crouch nursing
was evaluated as the proportion of time spent in this behavior
over all the other nursing behaviors.

Maternal hypothalamic gene expression
Sprague-Dawley dams were euthanized by a sub-lethal dose

of sodium pentobarbital based solution and decapitated on
PND 17. Hypothlamic tissue consisted of a square punch
through the median eminence at the base of the brain, using
the mammillary bodies as the posterior marker and the optic
chiasma as the anterior marker. Dimensions of the punch were
approximately 4 mm by 4 mm at the surface, and extended
5 mm into the brain. Tissues were collected from the hypothal-
amus and flash-frozen with liquid nitrogen. Total RNA was
extracted using Qiagen RNeasy kit (Qiagen, CA) and overall
quantity and quality of RNA was determined using a Nanodrop
Spectrophotometer (NanoDrop Technologies, DE) and 2%
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agarose gel electrophoresis. cDNA was made using random non-
amer and SuperScriptII reverse transcriptase (Invitrogen, CA)
according to manufacturer’s specifications. Quantitative real
time RT-PCR analysis was performed on the MiniOpticon
(BioRad, CA) using Dynamo SYBR qPCR (Thermo Scientific,
PA). Forward and reverse primers for OXTR gene were
50-gtcaatgcgcccaaggaag -30 and 50- gtcaatctacccccgaagcagct
-30, respectively. Forward and reverse primers for Cyp1a1 gene
were 50- CAAAGCCCATGTTCCTGTTT-30 and 50-
GCGGTCATGACTGTACCCT-30, respectively. Beta actin
gene was used as reference with forward primer, 50-caaccttcttg-
cagctcctc-30; reverse primer, 50-ttctgacccatacccaccat-30. The PCR
cycle included initial denaturation (10 min, 95�C), followed by
35 cycles of denaturation (94�C, 10s), annealing (58�C, 30s
[OXTR], 52�C, 30s [B-actin] and 52�C, 30s {Cyp1a1]), exten-
sion (72�C, 30s). Melt curve analysis was performed from
68�C–90�C, 3s hold, 0.5�C interval. The expression quantifica-
tion was analyzed with the DC(t) method. Each data represents
the average of 3 PCR with 3 replications per PCR.

Statistical analysis
Statistical analysis was performed on behavioral observations

and gene expression using the SPSS statistical analysis software

(SPSS Inc., Chicago, IL). ANOVA and multifactorial ANOVA
tests were performed with significance having a p value < 0.05.
If significant main effects or interactions were obtained, pairwise
comparisons for each developmental day were completed
(t-tests). Significance was represented by having a p value <

0.05. If data showed a violation of normal distribution,
Friedman’s ANOVA coupled with Mann-Whitney non-paramet-
ric statistical analysis was used and significance was noted as
having a p < 0.05.
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