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Data Clustering for Fitting Parameters of a
Markov Chain Model of Multi-Game Playoff
Series

Christopher M. Rump

Abstract

We propose a Markov chain model of a best-of-7 game playoff series that involves game-to-
game dependence on the current status of the series. To create a relatively parsimonious model, we
seek to group transition probabilities of the Markov chain into clusters of similar game-winning
frequency. To do so, we formulate a binary optimization problem to minimize several measures of
cluster dissimilarity. We apply these techniques on Major League Baseball (MLB) data and test
the goodness of fit to historical playoff outcomes. These state-dependent Markov models improve
significantly on probability models based solely on home-away game dependence. It turns out that
a better two-parameter model ignores where the games are played and instead focuses simply on,
for each possible series status, whether or not the team with home-field advantage in the series has
been the historical favorite - the more likely winner - in the next game of the series.

KEYWORDS: baseball, statistics, probability, set partitioning
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1 Introduction

This article examines best-of-7 game playoff series in which two teams play
a series of games that ends as soon as one of the teams has earned 4 wins.
Following Mosteller’s (1952) seminal analysis of the World Series of baseball,
most analysis of playoff series in sport employ a simple binomial model (trun-
cated as in a negative binomial distribution as soon as a team has 4 wins)
in which the favored team has a probability p of winning each game of the
series. Noticing a preponderance of full 7-game World Series, Groeneveld and
Meeden (1975) extended Mosteller’s work to include the fairly high conditional
probability that the trailing team after five games — whether favored or not
— wins the next game, forcing a seventh game.

Bassett and Hurley (1998) extended the simple binomial model to a two-
parameter model incorporating home and away winning probabilities p, and
P4, respectively, for the team favored with home advantage, i.e., the team who
plays host to four of the seven games in the series. Each game played at home
is an independent Bernoulli trial with probability p, for a win by the favored
team. Likewise, each game played away is an independent Bernoulli trial with
probability p, for a win by the favored team.

Compared to the binomial model, this home-away model provides a very
good fit for best-of-7 game playoffs in the National Basketball Association
(NBA) (Rump, 2006b). In the National Hockey League (NHL), however,
neither the binomial model nor the home-away model has any explanatory
power. Slight modifications to the two-parameter home-away model into a
state-dependent Markov chain that captures a few of the series-ending “sur-
render” effects makes all the difference (Rump, 2006a).

The application of a Markov chain model to sports competition is not
novel. Earlier work included single Bernoulli-parameter models of best-of-7
game playoff series (Brunner, 1987), tennis matches (Kemeny and Snell, 1960;
Sadovskil and Sadovskii, 1993), as well as a home-away model of a squash
match (Broadie and Joneja, 1993), where in this case “home” and “away”
indicate who is serving. However, these Markov chain implementations are a
bit of “window dressing” for what are essentially simple random walks with
homogeneous transition probabilities (Stewart, 1989).

Whereas identification of state dependencies in multi-game playoff series
was done on an ad hoc basis in Groeneveld and Meeden (1975) and Rump
(2006a), this paper proposes an efficient optimization routine for partitioning
the state space into clusters of similar game-winning transition probabilities.
We apply these techniques to Major League Baseball (MLB) playoff data.

Published by The Berkeley Electronic Press, 2008 1



Journal of Quantitative Analysisin Sports, Vol. 4[2008], Iss. 1, Art. 2

2 Partitioning the Markov Chain State Space

Following Rump (2006a), we model game-to-game dependence in a playoff
series via a Markov chain. In a best-of-(2m — 1) game series whereby the
series ends when a team first wins m games, we denote the status of the
series as (a-3) for a, 3 = 0,...,m (excluding the case & = = m). Here «
and [ represent the number of games currently won by the favored team and
their opponent, respectively. The transient states that indicate a series still
in progress are the subset S = {(a-f) : o, = 0,...,m — 1}. The number
of such transient states is M = m?; the number of series-ending absorbing
states (where either « = m or § = m) is 2m. For a best-of-7 game series, for
example, a team must win m = 4 games, yielding M = 16 transient and 8
series-ending absorbing states.

To simplify the notation, we index these transient states with a scalar
parameter s, s = 1,..., M. Let ng be the number of games played in state s
and w, be the number of those games won by the favored team. A maximum
likelihood estimate (MLE) of the probability that the favored team wins in
state s is thus given by the relative frequency of wins, p, = w,/n, (Bhat and
Miller, 2002).

Our goal is to partition the states into sequential clusters or strings (Vinod,
1969) of states sharing similar game-winning frequency. To facilitate this pro-
cess, we assume these states are sorted in decreasing order of p,, so that j > ¢
implies p; < p;. We desire to limit the number of clusters used, K, in order to
avoid over-fitting the Markov model with too many parameters. For a given

number of clusters, K < M, there are (%:11) possible partitions of the M

states. Since there are 8 multinomial absorbing state outcomes of our best-
of-7 game playoft series, we will impose an upper limit of K < 6 parameter
estimates and thereby retain at least one degree of freedom in our statistical

fitting process. Hence, we intend to explore the set of all 37_, (1;) = 4944

possible partitions containing 6 or fewer clusters of the M = 16 states.

Letting ¢;; denote a measure of dissimilarity within a cluster consisting of
consecutive states ¢ through j > 4, Rao (1971) provided a dynamic program-
ming formulation of the clustering problem. We instead create an integer linear
programming version of the problem by defining binary decision variables z;;
that indicate whether (= 1) or not (= 0) a cluster consisting of consecutive
states ¢ through j is formed, ¢ = 1,..., M, 7 =14,..., M. This entails a total of
only M (M + 1)/2 = 137 decision variables. For a desired number of clusters,
K, the set partitioning problem can then be formulated as a binary integer
programming (BIP) problem:

http://www.bepress.com/jgas/vol 4/issl/2 2
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M M
min > cijt

M M
subject to ZZ%] =K

=1 j=1
s M
inj 1 S:]_7 ,M
=1 j=s
xijE{O,l} Z:L,M,]:Z,,M

The objective minimizes the dissimilarity within clusters for within-cluster
homogeneity. The first constraint sums all M (M + 1)/2 decision variables
to ensure that exactly K clusters are selected. The main set of structural
constraints that follows ensures that each state s is assigned to exactly one
selected cluster.

The first constraint creates an obstacle to total unimodularity of the con-
straint coefficient matrix. If this constraint were not needed, the problem could
be solved as a linear program by relaxing the binary integrality constraints
to simple non-negativity conditions z;; > 0, ¢ = 1,..., M, j = 4,..., M
(Nemhauser and Wolsey, 1988).

Joseph and Bryson (1997) point out that this continuous relaxation still
can be used to identify so-called w-inefficient partitions, i.e., a cluster count
K that does not offer an attractive rate (per cluster) of improvement in the
chosen clustering criterion. They show that a cluster size is w-efficient if and
only if the relaxation yields an integral solution. Thus, an optimal solution to
the relaxation that is non-integer is w-inefficient, creating a so-called “fuzzy”
partitioning consisting of partial cluster assignments (Gan et al., 2007).

To identify possible clustering criteria, we first define

J J
Zs:i NsPs o s=i Ws o Wi

pij =
J J ..
s=1 ns s=1 ns nl]

as the winning frequency for the aggregated group of states ¢ through j. As a
measure of disparity for this cluster of states, Rao (1971) proposed using the
within group

o sum of squares (SS), c;; = 322 _;ns(ps — pij)*
A related measure is the within group

e sum of absolutes (SA), cij = S0_; ny |ps — pijl.
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Other proposed metrics (Hansen and Jaumard, 1997) include the within group

e clique or sum of dissimilarities, ¢;; = >.7_; Y7 ns [ps — prl,

e star or minisum dissimilarity, ¢;; = min/_; >7_; n, |ps — ps,

e radius or minimax dissimilarity, ¢;; = min/_;, max’_; ng [ps — p|,

e diameter or maximax dissimilarity, ¢;; = max!_; max’_; n, |[ps — pr|.
For completeness, we also investigate another criterion, which we call the
e sun or maxisum dissimilarity, ¢;; = max’_; Y7 _; ng [ps — p;|.

Whereas the star criterion sums the radii eminating from a central node of a
cluster, the sun criterion sums the rays eminating from a node on the periphery.
We intend to use all these measures to find and compare the performance of
various clustering alternatives for MLB best-of-7 game playoff data.

3 MLB Playoff Data

World Series competition dates back over a century. The first fall classic
was played in 1903, pitting the champions of the two major baseball leagues,
the National League (NL) and the American League (AL). The series has
been played every year since, except for 1904 (due to the reluctance of John
McGraw, manager of the NL champion New York Giants) and 1994 (due to a
labor strike).

For the first twenty World Series (through 1923), MLB organizers tinkered
with a variety of home-away playoff formats of various lengths (either seven
or nine games). They eventually settled on a best-of-7 game playoff series,
played under a so-called 2-3 format (HHAAAHH) in which the first two and
(if necessary) last two games are played on the favored team’s home field. The
three intermediate games are played away from the favored team’s home on
their opponent’s field.

Although MLB was first to establish a best-of-7 game championship series,
it has been slow to do so in earlier rounds of the playoffs where a best-of-5 game
series is standard. In 1985, a switch from best-of-5 game series to best-of-7
game series was adopted for the League Championship Series. This semi-final
round identifies the NL and AL champions who will meet in the World Series
final round. In contrast, the NBA and NHL employ the longer best-of-7 game

http://www.bepress.com/jgas/vol 4/issl/2 4
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series for all four rounds of their playoffs. This limits the comparative amount
of MLB playoff data available.

There have been 83 World Series played between 1924 and 2007. In addi-
tion, since 1985 there have been 22 years in which two League Championship
Series were played. This yields a total of 127 best-of-7 game playoff series in
the history of MLB. We collected game-by-game data on these playoff series
from MLB historical records (Major League Baseball, 1996). We supplemented
these records with the results of more recent play (through year 2007) as doc-
umented at the league web site: mlb. com.

There have been 736 games played in these 127 series, for an average se-
ries length of just over 5.795 games. This is slightly less than the maximum
expected length of 5.8125 games between two evenly matched teams under a
binomial model as shown by Groeneveld and Meeden (1975), Brunner (1987),
Woodside (1989), Nahin (2000) and Ross (2004).

Of these 736 games, the favored team won 378, for a winning percentage
of about 51.4%. Thus, a straight-forward MLE of the Bernoulli success prob-
ability p is p = 378/736 ~ 0.514. For the home-away model of Bassett and
Hurley (1998), we compute similar estimates based on whether the favored
team was at home or away. These estimates are p, = 213/377 ~ 0.565 and
Pa = 165/359 ~ 0.460.

Table 1 further breaks down these game outcomes based on the status of
the series when the game was played. The top row shows that, leading (3-0),
the favored team wins game 4 — on the road no less — in a large majority
(about 78.6%) of those cases. Thus, the trailing team seems to “surrender”
the series, resulting in a fair amount of series “sweeps” by the favored team.

Psychological effects also seem to be at work in game 6, as the team trailing
in the series three games to two faces a “do-or-die” situation. When trailing
2 games to 3 the favored team is particularly strong, winning nearly 64.3% of
the time, which is the second-largest winning percentage (state 2). In contrast,
when leading the series 3 games to 2 the favored team is not nearly as effective,
winning only 45.7% of the time (state 11).

These strong “back-to-the-wall” performances on part of the trailing team
in game 6 lead to many more 7-game series outcomes than would be otherwise
expected, an anomaly first noticed by Groeneveld and Meeden (1975) and
Simon (1977) in World Series play. This “back-to-the-wall” effort is in sharp
contrast to the opposite behavior in the NHL playoffs, where the favored team,
trailing 2-3 to start game 6, surrenders the series more often than not (Rump,
2006a). Groeneveld and Meeden (1975) create a so-called “do-or-die” model
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’ State, s ‘ Status ‘ Games, n, | Wins, w, | Percent, p,

1 (3-0) 14 11 0.786
2 (2-3) 42 27 0.643
3 (0-0) 127 75 0.591
1 (0-1) 52 30 0.577
5 (3-3) 46 26 0.565
6 (1-3) 26 14 0.538
7 (1-0) 75 39 0.520
8 (2-1) 54 28 0.519
9 (3-1) 31 16 0.516
10 (1-2) 46 22 0.478
11| (3-2) 35 16 0.457
12 (1-1) 66 29 0.439
13 (2-2) 48 20 0.417
14 (0-2) 22 9 0.409
15 (2-0) 39 14 0.359
16 (0-3) 13 2 0.154

Total 736 378 0.514

Table 1: MLB Game-to-Game Transition Data (home games in bold).

that incorporates an extra “surrender” parameter
A=Pr{N=6|N>5}=1—Pr{N="7|N >5},

where the random variable N indicates the number of games played in the
series. This parameter reflects the conditional probability, given the series is
not over after 5 games, that the trailing team will lose the sixth game and
thus the series, making a seventh game unnecessary.

Of the 77 such game 6 instances in the data shown in Table 1 — 42 from
a (2-3) and 35 from a (3-2) playoff status — there were 46 series that went
to a decisive seventh game knotted (3-3). Thus, we estimate the “surrender”

parameter as A\ = (77 — 46)/77 ~ 0.403. For the “do-or-die” model, \ serves
as an estimate for the game-winning probability when the series status is (3-2)
and for the complement when the series status is (2-3). Thus, we estimate

the game-winning probability when the series status is (2-3) as 1 — X ~ 0.597.

http://www.bepress.com/jgas/vol 4/issl/2 6
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Removing the 27+16 = 43 wins by the favored team in these 77 games from
the totals of Table 1, we revise the Bernoulli probability estimate for all other
states in the “do-or-die” model as p = 335/659 ~ 0.508.

4 Clustering MLB Playoff Data

The data in Table 1 was clustered by solving the set-partitioning problem of
Section 2 under each of the clustering criteria outlined therein. The optimiza-
tion model was implemented in a computer spreadsheet that contains a table
of size M(M + 1)/2 by M, with one row for each of the clustering decision
variables z;; and a column for each state s, s =1,..., M. The table contains
binary data indicating whether (1) or not (0) state s is contained in the clus-
ter x;j, i.e., whether or not i < s < j. For each state s, a sum-product of its
column of indicators with a column of binary decision variables is constrained
to equal 1, ensuring that each state is assigned to exactly one cluster. We
also constrain the column of binary decision variables to sum to K. Each
of the decision variables has pre-defined within-cluster dissimilarity measures,
so a sum-product of a particular choice of clustering metric column with the
column of decision variables forms the objective function.

Table 2 reports the optimal value of each clustering metric for each choice
of cluster total K, K = 1,...,6. Most of the optimal partitions were found
by solving the LP relaxation. Those w-inefficient partitions — limited to the
radius and diameter metrics — for which the relaxation failed to yield a binary
solution were found instead by solving the full BIP.! The inefficiency (italicized
in Table 2) is apparent when examining the rate of decrease in the criterion
metric as a function of K. For example, under the diameter metric, the second-
order decrease at K = 3 is (29.410 —24.786) — (24.786 — 14.939) = —5.222 < 0,
indicating that the drop in the diameter metric from K = 2 to K = 3 clusters
was not as much as the drop from K = 3 to K = 4 clusters. Thus, a choice
of K = 3 clusters is relatively inefficient in terms of minimizing within-cluster
diameters.

Since there is only one single clustering (K = 1) of the data, it is obviously
optimal for any and all clustering metrics. For a choice of K = 2 to 6 clusters,
Tables 3 through 7 respectively list the non-dominated partitions, i.e., optimal
partitions found under each individual clustering metric. For each row of a
table, a comparison is made between that partition’s performance on each
clustering metric and the performance of the optimal partition (as reported in

!'Even the full BIP usually can be solved in about 1 sec. using commercial optimization
software such as Frontline Systems Premium Solver v7.1 in Excel as done here.
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Clustering Metric

Clusters, K | SS SA Clique Star Sun Radius | Diam

1 6.681 | 52.310 | 1445.065 | 51.440 | 264.769 | 7.000 | 55.462

2.673 | 29.912 | 444.786 | 29.284 | 90.182 | 6.709 | 29.410

1.732 | 21.046 | 217.671 | 18.109 | 51.130 | 6.000 | 24.786

0.953 | 16.795 | 129.063 | 14.316 | 33.654 | 5.091 | 14.939

0.453 | 12.834 | 62.179 | 11.387 | 24.763 | 4.167 | 12.077

DO = | W DN

0.280 | 9.506 | 37.970 | 8.721 | 16.156 | 3.934 | 9.077

Table 2: Best Partition Performance on MLB Data (w-inefficiencies in italics).

Table 2) on that metric. Reported is the percentage difference in performance
relative to the optimal partition. Of course, this so-called relative error is 0 for
the optimal partition itself, which have been highlighted in bold. On the other
hand, a relative error of 1, for example, reflects a partition that has twice as
much (100% more) disparity on that clustering metric.

For K = 2 desired clusters (see Table 3), partition 9/7 (a grouping of the
first 9 states with a shared game-winning frequency p; 9 = 0.570 and the last
7 states with game-winning frequency pio16 = 0.416) optimizes all but the sun
and diameter metrics, which have respective values of 108.83 and 43.632 that
are nearly 20.7% and 48.4% larger than the optimal values of 90.182 and 29.41
(reported in Table 2) achieved by partitions 14/2 and 15/1, respectively.

Clustering Metric
’ Partition SS ‘ SA ‘ Cliq ‘ Star ‘ Sun ‘ Rad ‘Diam Sum ‘ Max ‘

9/7 0 0 0 0 0.207 0 0.484 | 0.690 | 0.484
14/2 0.612 | 0.506 | 1.042 | 0.471 0 0.383 | 0.115 | 3.129 | 1.042
15/1 0.859 | 0.561 | 1.493 | 0.594 | 0.291 | 0.043 0 3.841 | 1.493

Table 3: Relative Error for X = 2 Clusters of MLB Data.

The partition 9/7 is also the minisum and minimax solution across all
clustering metrics in that it provides (highlighted in bold) the minimal sum
(or average) of the relative errors as well as the smallest maximum error. For
K = 3 (see Table 4), the minimax partition does not actually optimize any one
of the individual objectives. It is, however, Pareto optimal (non-dominated) in

http://www.bepress.com/jgas/vol 4/issl/2 8
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that no other partition simultaneously scores at least as well on all clustering
objectives. A similar situation arises for K = 4 and K = 6 desired clusters
and for the minisum solution for K = 4.

Clustering Metric

‘ Partition SS ‘ SA ‘ Cligq ‘ Star ‘ Sun ‘ Rad ‘ Diam | Sum ‘ Max
9/6/1 0 0.234 | 0.621 | 0.412 | 0.101 | 0.037 | 0.221 | 1.627 | 0.621
6/3/7 0.180 0 0.282 | 0.069 | 0.748 | 0.027 | 0.772 | 2.079 | 0.772
5/6/5 0.034 | 0.116 0 0.040 | 0.441 | 0.352 | 0.951 | 1.934 | 0.951
5/5/6 0.048 | 0.036 | 0.031 0 0.552 | 0.299 | 0.887 | 1.853 | 0.887
6/8/2 0.051 | 0.312 | 0.269 | 0.385 0 0.422 | 0.658 | 2.097 | 0.658
11/4/1 0.296 | 0.446 | 1.258 | 0.657 | 0.226 0 0.214 | 3.096 1.258
14/1/1 1.251 | 0.950 | 3.123 | 1.231 | 0.607 | 0.103 0 7.266 3.123
9/5/2 0.104 | 0.265 | 0.514 | 0.386 | 0.056 | 0.308 | 0.451 | 2.085 | 0.514

Table 4: Relative Error for K = 3 Clusters of MLB Data.
Clustering Metric

’ Partition SS ‘ SA ‘ Cliq ‘ Star ‘ Sun ‘ Rad ‘ Diam | Sum Max
5/5/5/1 0 0.023 | 0.175 | 0.026 | 0.079 | 0.272 | 1.224 | 1.799 1.224
1/4/4)7 0.529 0 0.483 | 0.101 | 1.597 | 0.178 | 0.799 | 3.687 | 1.597
4/5/5/2 0.254 | 0.181 0 0.064 | 0.069 | 0.684 | 1.635 | 2.886 | 1.635
5/4/5/2 0.255 | 0.063 | 0.076 0 0.028 | 0.506 | 1.500 | 2.428 1.500
2/7/5/2 0.213 | 0.411 | 0.137 | 0.452 0 0.934 | 0.783 | 2.930 | 0.934
11/3/1/1 1.209 | 0.664 | 2.680 | 0.939 | 0.660 0 0.793 | 6.944 | 2.680
1/8/6/1 0.109 | 0.374 | 0.755 | 0.573 | 0.614 | 0.223 0 2.648 | 0.755
5/4/6/1 0.066 | 0.024 | 0.256 | 0.033 | 0.096 | 0.188 | 1.119 | 1.782 | 1.119
1/4/8/3 0.436 | 0.395 | 0.492 | 0.547 | 0.560 | 0.570 | 0.499 | 3.499 | 0.570

Table 5: Relative Error for KX = 4 Clusters of MLB Data.

Since each measure of cluster dissimilarity almost always suggests a differ-
ent solution, in Section 5 we focus on the minisum solutions that minimize the
average percentage deviation across all metrics. One could also consider the
minimax partitions for those cases (K = 3, 4 and 6) where this solution dif-
fered from the identified minisum solution. In general, however, we found that
the minisum solution slightly outperforms its minimax counterpart (omitted

here for brevity) in a goodness-of-fit test to the actual series outcomes.
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Clustering Metric

’ Partition SS ‘ SA ‘ Cliq ‘ Star ‘ Sun ‘ Rad ‘ Diam | Sum ‘ Max ‘
1/4/5/5 /1 0 0 0.434 | 0.050 | 0.385 | 0.425 | 0.249 | 1.544 | 0.434
2/3/5/4 /2 0.710 | 0.160 0 0.008 | 0.052 | 1.080 | 0.850 | 2.859 | 1.080
2/3/4/5 /2 0.723 | 0.116 | 0.004 0 0 0.944 | 0.804 | 2.591 | 0.944

11/1/2/1/1 | 3.601 | 1.062 | 6.555 | 1.306 | 1.175 | 0 | 1.082 | 14.780 | 6.555
1/1/1/12/1 | 3.695 | 1.288 | 6.518 | 1.507 | 1.793 | 0.231 | 0 | 15.032 | 6.518

Table 6: Relative Error for K = 5 Clusters of MLLB Data.

Clustering Metric
‘ Partition SS ‘ SA ‘ Cliq ‘ Star ‘ Sun ‘ Rad ‘ Diam | Sum ‘ Max ‘
1/4/5/ 4 /1/1 0 0.059 | 0.722 | 0.033 | 0.600 | 0.278 | 0.297 | 1.990 | 0.722
1/4/4/5 /1/1 | 0.022 0 0.728 | 0.023 | 0.521 | 0.135 | 0.235 | 1.664 | 0.728
2/3/4/3/3/1 | 0.304 | 0.150 0 0.034 0 0.721 | 0.756 | 1.965 | 0.756
2/3/4/5/1/1 | 0.322 | 0.087 | 0.363 0 0.038 | 0.381 | 0.519 | 1.709 | 0.519
6/3/1/4 /1/1 | 1.846 | 0.263 | 2.601 | 0.229 | 0.420 0 1.983 | 7.343 | 2.601
1/1/1/11/1/1 | 4.131 | 1.493 | 7.963 | 1.569 | 1.726 | 0.287 | 0 | 17.170 | 7.963
1/4/4/3/3/1 | 0.004 | 0.063 | 0.365 | 0.056 | 0.484 | 0.475 | 0.472 | 1.920 | 0.484

Table 7: Relative Error for K = 6 Clusters of MLLB Data.

5 Goodness of Fit

The game-winning percentages suggested by each minisum partition are found
in Table 8. Notice that, save for a small abberation for K = 5, the minisum
partitions are nested (or hierarchical), i.e., a subsequent partition of K + 1
clusters is formed by splitting one of the K clusters in two.

We now compare how well these minisum partitions do at predicting the
outcomes of the 127 playoff series. Table 9 presents the Pearson (x?) goodness
of fit of these partition assignments to the actual MLB series outcomes (a-(3),
where either « or (3 is equal to 4 (cf., e.g., Sec. 14.2 of Devore (2004)). Here
again, o and [ represent the number of games won by the favored team and
their opponent, respectively, in a series that lasted o + 3 games.

The first row of Table 9 indicates the actual observed frequencies of such
outcomes to compare against the expected number as predicted by the various
models. These predictions are found by feeding the game-to-game transition
probabilities of Table 8 as input into a Markov chain model of a best-of-7 game
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Assigned Game-Winning Percentages
State | Status | Actual | K =1 | K=2 | K=3 | K=4|K=5|K=6
1 (3-0) | 0.786 | 0.514 | 0.570 | 0.570 | 0.601 | 0.786 | 0.786
2 (2-3) | 0.643 | 0.514 | 0.570 | 0.570 | 0.601 | 0.592 | 0.592
3 (0-0) | 0.591 | 0.514 | 0.570 | 0.570 | 0.601 | 0.592 | 0.592
4 (0-1) | 0.577 | 0.514 | 0.570 | 0.570 | 0.601 | 0.592 | 0.592
5 (3-3) | 0.565 | 0.514 | 0.570 | 0.570 | 0.601 | 0.592 | 0.592
6 (1-3) | 0.538 | 0.514 | 0.570 | 0.570 | 0.522 | 0.513 | 0.522
7 (1-0) | 0.520 | 0.514 | 0.570 | 0.570 | 0.522 | 0.513 | 0.522
8 (2-1) | 0.519 | 0.514 | 0.570 | 0.570 | 0.522 | 0.513 | 0.522
9 (3-1) | 0.516 | 0.514 | 0.570 | 0.570 | 0.522 | 0.513 | 0.522
10 (1-2) | 0478 | 0.514 | 0.416 | 0.430 | 0.430 | 0.513 | 0.442
11 (3-2) | 0.457 | 0.514 | 0.416 | 0.430 | 0.430 | 0.419 | 0.442
12 (1-1) | 0.439 | 0.514 | 0.416 | 0.430 | 0.430 | 0.419 | 0.442
13 (2-2) | 0.417 | 0.514 | 0.416 | 0.430 | 0.430 | 0.419 | 0.442
14 (0-2) | 0.409 | 0.514 | 0.416 | 0.430 | 0.430 | 0.419 | 0.442
15 (2-0) | 0.359 | 0.514 | 0.416 | 0.430 | 0.430 | 0.419
16 (0-3) | 0.154 | 0.514 | 0.416 | 0.154 | 0.154 | 0.154 | 0.154

Table 8: MLB Transition Probabilities Assigned by Minisum Partitions.

playoff (Kemeny and Snell, 1960; Brunner, 1987). The computed absorption
probabilities for the 8 series-ending states are then multiplied by the total
number of series played (127) to give an expectation of the number of such
outcomes. Also computed are the predictions made by both the home-away
model (Bassett and Hurley, 1998) and the “do-or-die” model (Groeneveld and
Meeden, 1975) using the parameter estimates obtained in Section 3.

The models are listed in Table 9 (and plotted in Figure 1) in decreasing
order of raw fit, ignoring the number of parameters needed to obtain that fit.
It is interesting to note that the binomial model (K = 1) provides a better fit
than the home-away model, even though the latter model includes two fitted
parameters rather than one. This lack of fit is at least partially explained
by fact that, unlike in the NBA and NHL where the home-field advantage is
granted to the team with a stronger record, MLB World Series have historically
alternated the home-field advantage from year to year between the two leagues.
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Series Outcome
Model 40) | (1) | (42) | (43) | 34) [ (29) [ (1-9) | (0-4) || p-value
Actual 11 16 16 26 20 15 12 11
6-Minisum || 11.05 | 16.42 | 15.81 | 25.98 | 17.92 | 16.54 | 13.28 | 9.99 || 0.429
5-Minisum || 12.69 | 15.09 | 14.65 | 26.57 | 18.33 | 16.97 | 12.30 | 10.40 || 0.657
A-Minisum || 10.29 | 17.56 | 15.19 | 26.74 | 17.72 | 16.11 | 13.64 | 9.74 || 0.806
3-Minisum || 10.08 | 20.65 | 14.32 | 23.64 | 17.87 | 17.01 | 12.09 | 11.35 || 0.724
2 Minisum 9.77 | 20.42 | 13.48 | 24.51 | 18.52 | 18.23 | 14.05 | 8.01 | 0.582
Do/Die 8.48 | 16.68 | 16.24 | 24.09 | 23.30 | 15.70 | 15.09 | 7.42 || 0.580
1-Binomial | 8.84 | 17.19 | 20.91 | 20.34 | 19.26 | 18.75 | 14.60 | 7.11 | 0.348
Home/Away || 8.56 | 15.32 | 22.62 | 22.53 | 17.35 | 17.30 | 16.30 | 7.02 || 0.199

Table 9: Goodness of Fit to 127 MLB Best-of-7 Game Playoff Outcomes by
Minisum Partitions.

In the past few years MLB began awarding this advantage to the league that
wins the mid-season All-Star game.

These differences are accentuated once we remove the advantage of addi-
tional parameters by factoring in the degrees of statistical freedom, the number
of freely determined cells (in this case 8 — 1 = 7) less the number of parame-
ters estimated. The goodness-of-fit calculation that incorporates these degrees
of freedom appears in the last column of Table 9 as the so-called p-value or
significance probability. For each model, this p-value represents the probabil-
ity that we would observe outcome numbers that deviate at least as much as
the actual observed figures given that the model perfectly characterizes the
randomness of the series outcome. Therefore, small p-values near 0 indicate a
poor model (that we reject as a good fit for the data), whereas large p-values
near 1 indicate a good model.

As might be expected, the “do-or-die” model of Groeneveld and Meeden
(1975) provides the closest fit on 6-game outcomes (4-2) and (2-4), in which
the trailing team “surrenders” the series less frequently than predicted by the
binomial or home-away models. The minisum partitions all over-correct here,
under-estimating the number of (4-2) series outcomes due to the inclusion of a
(3-2) series status in a cluster containing lower game-winning frequency states.

The partition 9/7 involving K = 2 clusters and the two-parameter “do-
or-die” model both provide vast improvements on the relatively poor-fitting
home-away model, which also requires two parameters. The partition 9/7 does
an admirable job at predicting (4-0) sweeps by the favored team, but seriously
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Figure 1: Predicted Outcomes of 127 MLB Best-of-7 Game Playoff Series.

over-estimates the number of (4-1) series outcomes due to the inclusion of a
(3-1) status as the last member of the first cluster of higher game-winning
frequency states. The weakness in the “do-or-die” model lies with its serious
over-prediction of (3-4) series outcomes due to the relatively small probability
p afforded the favored team in game 7.

Overall, the 9/7 partition and the “do-or-die” model provide nearly iden-
tical fit. The slight edge afforded by the 9/7 partition may be deemed more
significant when one considers its simplicity. We need only segregate the data
into two categories: those games for which the favored team historically holds
an edge (wins more than half the time) and those games for which they do
not. As seen in Table 8, the favored team holds an edge in the first 9 of the 16
possible states (i) in all games played at home, except when leading the series
3-2, (ii) in games played on the road when leading the series 3-0, 3-1, 2-1, and
(iii) even when trailing on the road 1-3, when the series is on the line.

An even better statistical fit can be obtained by K = 3 and K = 4 parti-
tions of the data, where a singleton cluster is formed for a (0-3) series status.
This helps the 9/6/1 minisum partition of K = 3 clusters provide the best fit
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to (0-4) and (1-4) series outcomes. However, this partition suffers the same
malady as the 9/7 partition on (4-1) series outcomes. This problem is reme-
died by the 5/4/6/1 minisum partition of K = 4 clusters, as it separates a
(3-1) status from the first cluster of higher game-winning frequency states.

As one would expect, adding more partitions of the data increases the
raw fit, but not the p-value. The minisum solution with K = 6 clusters
is only a little better in terms of statistical fit than binomial model with
K = 1. Indeed, a model using K = 16 parameter estimates from Table 1 —
one for each transient state — would yield a perfect “curve fitting” to the 8
absorbing outcomes. However, we value a more parsimonious model with a
limited number of uncertain parameters.

6 Conclusions

We found that a home-away model (Bassett and Hurley, 1998) of best-of-7
game playoffs does not provide a very good fit to historical playoff outcomes
in Major League Baseball (MLB). Even a simple (truncated) binomial model
(e.g., Mosteller (1952)) with a single game-winning probability parameter per-
forms much better.

To improve on both these models, we formulated a Markov probability
model that incorporates game-to-game dependence on the current status of the
series. To create relatively parsimonious models, we proposed grouping tran-
sition probabilities of the Markov chain into clusters of similar game-winning
frequency by solving a binary optimization problem. Most instances of these
problems were efficiently solved as continuous linear programs, revealing so-
called w-efficient solutions (Joseph and Bryson, 1997).

To capture the dissimilarity within a cluster of states, we computed both
the sum of squared deviations and the sum of absolute deviations from the
cluster mean, as well as complete pair-wise clique, star, radius, and diameter
measures (Hansen and Jaumard, 1997) and a similar but new sun measure.

Each measure of cluster dissimilarity almost always suggested a different
solution. Therefore, we chose to focus on minimax and minisum solutions that
minimize the worst and average percentage deviation of any one metric, re-
spectively. The minisum and minimax solutions are non-dominated or Pareto
optimal, meaning that no other solution simultaneously scores at least as well
on all clustering objectives.

The minisum/minimax solution involving only K = 2 clusters simply par-
titions the states of the series into two categories: those games for which the
team favored with the home-field advantage in the series has an edge (wins
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more frequently than not) and those games for which their opponent holds the
edge. This model fit slightly better than a 2-parameter model that incorpo-
rates a strong “come-back” performance for a team trailing in the series after
5 games (Groeneveld and Meeden, 1975).

Better statistical fits were obtained with K = 3 to 5 partitions of the data,
with the minisum partition involving K = 4 clusters the best among them.
Adding more partitions of the data increases the raw fit at the expense of lost
parsimony.

It is not clear how robust these models will be in light of future playoff
series, an avenue for future exploration. Further work could also explore fitting
probability models to best-of-5 game playoff series, which MLB still uses for
the first-round (divisional) playoffs. These shorter series may be a dying breed,
however, as they are now extinct in both the NBA and the NHL.
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