Bowling Green State University

ScholarWorks@BGSU

Master of Technology Management Plan II Graduate Projects

College of Technology, Architecture and Applied Engineering

Spring 2012

A Carbon Dioxide Comparison of Open Cut and Pipe Bursting

Akshay Joshi Bowling Green State University

Follow this and additional works at: https://scholarworks.bgsu.edu/ms_tech_mngmt

Part of the Civil and Environmental Engineering Commons, and the Construction Engineering Commons

Recommended Citation

Joshi, Akshay, "A Carbon Dioxide Comparison of Open Cut and Pipe Bursting" (2012). *Master of Technology Management Plan II Graduate Projects*. 7. https://scholarworks.bgsu.edu/ms_tech_mngmt/7

This Dissertation/Thesis is brought to you for free and open access by the College of Technology, Architecture and Applied Engineering at ScholarWorks@BGSU. It has been accepted for inclusion in Master of Technology Management Plan II Graduate Projects by an authorized administrator of ScholarWorks@BGSU.

A Carbon Dioxide comparison of open-cut and pipe bursting

Project

Prepared by:

Akshay Joshi

Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of Masters of Technology Management- Construction Management

2012

Committee:

Dr. Alan Atalah, Chair

Dr. Wilfred Roudebush

Mr. Travis Chapin

ABSTRACT

This study focuses on the environmental aspect of the underground utility construction methods namely open-cut and pipe-bursting. The research is aimed at determining the CO_2 emission due to the use of construction machinery as well as the excess CO_2 emission due to the obstruction to traffic during the construction process.

A Gravity sewer project in Bowling Green, OH was used as a case study. Open-cut method was implemented on this project and for the purpose of this research the pipe-bursting method was simulated. A 5100 feet long, 8 inches diameter pipeline was considered at a depth of 10 feet and all the calculations were based on these measurements for both these methods. All the real life data was collected from the construction project and the site & management factors as well as the load factors were applied in order to come up with practical CO_2 emission calculations for construction machinery. Various traffic control plans were taken into consideration and pre-established formulas were applied to the traffic data in order to derive the excess CO_2 emission for the traffic.

The outcome of this study indicated that pipe-bursting results in 68% less CO_2 emission due to traffic disruption and 73.4% less CO_2 emission due to use of construction machinery as compared to the open-cut method. The total reduced CO_2 by implementation of pipe-bursting method was found to be 72.6%. Thus, it was concluded that this drastic reduction in the CO_2 emission due to pipe-bursting method was mainly because of lesser excavation, shorter job duration and lesser traffic disruption.

i

ACKNOWLEDGEMENT

I would like to thank my advisor, Dr. Alan Atalah, College of Technology, Bowling Green State University, for his untiring guidance and for providing me with an opportunity to do this research project. I am also thankful to Dr. Wilfred Roudebush and Construction Management Department Chair Mr. Travis Chapin for their precious suggestions and patience. I sincerely appreciate their time, perseverance and confidence in me during the period of my Graduate study. It would not be possible to complete my thesis without their support and the invaluable experience.

My special thanks to all the field personals and ODOT officials to help me obtain the field readings and giving me an opportunity to learn about their ongoing project.

I sincerely thank my family members and friends for their faith, encouragement and help in all possible ways to give me a boost in my work.

Regards,

Akshay Vivek Joshi

Abstract	i
Acknowledgement	ii
List of Figures	v
CHAPTER 1	1
INTRODUCTION	1
Context of the Problem	1
Problem Statement	
Objectives of Study	
Significance of Study	5
Assumptions	
Limitations	
CHAPTER 2	
REVIEW OF LITERATURE	
Research Boundary	
CHAPTER 3	
METHODOLOGY	
Problem Restatement	
Objectives	
To determine fuel consumption due to traffic disruption	
To determine the CO2 emission caused by construction machinery	
CHAPTER 4	
RESULTS/FINDINGS	
Determining the impact of traffic disruption on fuel consumption	
Determining construction machinery fuel consumption	
Calculating the increased fuel consumption due to traffic disruption	
Results obtained from calculating the machinery fuel consumption	
Total CO ₂ emission comparison for open-cut and pipe-bursting	
Chapter 5	
SUMMARY, CONCLUSION AND RECOMMENDATIONS	
Conclusion	
Recommendations for Future Studies	
References	
Appendix A	

TABLE OF CONTENTS

Appendix B	
Appendix C	
Appendix D	
Appendix E	
Appendix F	
11	

LIST OF FIGURES

#	Caption	Page
1	Various traffic control plans	17
2	The relation between fuel consumption and speed	18
3	Span of the pipeline project - start and the end points	20
4	Timeline spreadsheet for open-cut	24
5	Timeline spreadsheet for pipe-bursting	25
6	Timeline spreadsheet of asphalt restoration for pipe-bursting	26
7	Timeline spreadsheet of asphalt restoration for open-cut	27
8	The fuel consumption comparison for open cut and pipe-bursting due to traffic disruption (in gallons)	29
9	Construction Machinery fuel consumption comparison between open-cut and pipe-bursting	29
10	Total CO ₂ emission comparison for open-cut and pipe-bursting	30
11	The CO2 emission comparison for machinery and traffic	31
12	Typical traffic control plan 4 for open cut where 2 lanes are closed for traffic	38
13	Typical traffic control plan 4 for pipe-bursting with one lane closed for traffic	38
14	Spreadsheet calculations for the machinery fuel consumption during the pipe-bursting process	39
15	Fuel consumption during the entry pit preparation for pipe-bursting	40
16	The fuel consumption during the bursting and finishing process for pipe- bursting	41
17	Fuel consumption during the construction of lateral trenches for pipe- bursting	42
18	Fuel consumption for moving the material and equipment for pipe-bursting	43
19	Fuel consumption for moving the machinery and material on the site	44
20	Fuel Consumption during asphalt restoration for pipe-bursting	45
21	Fuel consumption calculations for open-cut for the non-intersection area	46
22	Fuel Consumption for open-cut at the road intersection area	48
23	Fuel consumption during placing the manholes for open-cut method	49
24	Fuel Consumption during connection of the laterals to the main line during the open-cut	50

25	Fuel consumption from moving the machinery from factory to site	51
26	Fuel consumption during the asphalt restoration and total CO ₂ for open-cut	52
27	The traffic density measured during the day time from 8am-6pm	53
28	Excess fuel consumption by traffic during the set-up, excavation and backfilling processes for the pipe-bursting	54
29	Excess fuel consumption by traffic during the bursting process for pipe- bursting	55
30	Excess fuel consumption by traffic during the asphalt restoration process for pipe-bursting	57
31	Total excess CO ₂ emission by traffic during the pipe-bursting process	58
32	Excess fuel consumption by traffic during the open-cut process at the non- intersection zone	59
33	Excess fuel consumption by traffic during the open-cut process for the intersection zone	60
34	Excess fuel consumption by traffic during the asphalt restoration process for open-cut at no intersection zone	61
35	Total excess CO ₂ emission by traffic during the open-cut process	62

CHAPTER 1

INTRODUCTION

Context of the Problem

There are a large number of underground Infrastructure projects undertaken in America since the service life of these utilities is rapidly approaching its end. The underground Infrastructure which exists in the America was installed by digging trenches during the postworld-war era and thus most of these utilities are nearing their design life and some have even exceeded it. There is an urgent need to replace, rehabilitate and renew this underground infrastructure. The traditional open-cut method includes direct installation of utility systems into trenches. Advancements in technology and improvements in obtaining geotechnical data and development of new equipment led to improvements in utility pipe installation work (Gangavarapu, Najafi, & Salem, 2004). Although open cut may appear economical in terms of direct cost it can have high social and environmental costs when the construction work is executed in densely populated urban areas (Rashid & Knight, 2007). Since trenchless construction methods typically require only minimal excavation (entrance and/or exit pits) or no excavation to install a pipeline they are considered have lower direct costs and significantly lower social and environmental costs than open cut (Rashid & Knight, 2007). The costs associated with open cut sewer construction, especially in the densely populated urban areas are, direct cost, indirect cost (social and environmental impacts), operation and maintenance cost.

Direct costs are those which can be quantified and can be accounted for in the Tenders. These costs are mainly the operation cost, material cost and labor costs.

Allouche & Gilchrist (2004) describes Social cost as "The monetary equivalent of the resources consumed by the parties not engaged in the contractual agreement solely due to a

construction process". Social costs can take many forms including loss of revenue (customers avoiding area due to poor accessibility), productivity losses (reduction of ability of people to perform their work), loss of time (due to traffic delays), consumption of resources (gasoline) and accelerated deterioration (secondary roads) (Allouche & Gilchrist, 2004). McKim (1997) defined social as "costs of construction to society which are not included in the construction bid." Apeldoorn (2008) describes the social cost as "the costs associated with the construction works that are paid for by the community at large, and not realized as a cost that is included in the tendered contract price."

Indirect costs associated with traditional methods are:

- Traffic delays caused by restricted roads and detours.
- Reduction of life of the repaired road, resulting in Transportation of additional quantities of asphalt and concrete and trench restoration material, during repair and maintenance of road.
- Environmental impact (The excess CO₂ emission through the machinery and the delay caused to the traffic).
- Risk to public due to the obstruction to the movement of traffic.
- Lost revenue to business along the utility line.

All the above factors contributed to the excess emission of greenhouse gas. The more time the vehicles will spend due to the traffic obstruction the more CO_2 they will emit; also the vehicles will travel at lower speeds which will cause the efficiency of the vehicles to drop causing more consumption of fuel and in turn more CO_2 emission.

"UNFCCC" (United Nations Formwork Convention for Climate Change) has proposed the "International Environment Treaty" which binds all the nations against excess pollution. While we wait for industry and governments to sign on to binding international agreements that will fix limits on air pollution, one possible solution is good to go right now: *'carbon trading'*.

'Carbon Trading' allows person or a company to benefit from the reduced GHG emission or pay charges for the excess GHG (Green House Gas) emission. One Carbon Credit equals to one ton of Carbon. Based on the number of carbon credits earned or lost by the company the company will be benefited or it will be charged per carbon credit respectively.

Trenchless technology is defined by North American Society for Trenchless Technology (NASTT) as "techniques for utility line installation, replacement, rehabilitation, renovation, repair, inspection, location and leak detection with minimum excavation from the ground surface."

Trenchless technology requires minimal or no trench excavation they are considered as lower direct cost and significantly lower social and environmental impacts. The difficulty of excavating around existing utilities and the societal impacts (traffic congestion, loss of business, noise, etc.) of open-cut work in busy streets are fueling the interest in trenchless alternatives (Allouche & Gilchrist, 2005). Thus, the advantages of trenchless technology are:

- Shorter job duration, which results in lower energy and power consumption.
- Using less construction equipment's resulting in less CO₂ emission.
- limited or no disruption to traffic flow, which will result in more efficient performance of vehicles and eventually less fuel consumption resulting in less CO₂ emission.

This paper is particularly focusing on the climate change and the resulting environmental impacts, which are mainly because of the fuel used by the construction equipment's as well as the excess fuel used by the vehicles due to traffic delay.

This study is focusing on pipe-bursting method, which like other trenchless construction methods requires least excavation and can be carried out with minimal or no disruption to the ongoing traffic. We compare the CO_2 emission from pipe-bursting method to the traditional open-cut pipe utility construction. We take into account the excess CO_2 emitted from the traffic delays resulting in reduced speeds. Also, the emission from the use of construction machinery and the hauling of excavated material is taken into account.

PROBLEM STATEMENT

This study aims towards estimating a total CO_2 emission for open-cut and pipe-bursting methods for underground utility sewer construction. It will give the statistical data for the amount of CO_2 emitted and will enable us to determine the magnitude of environmental impact of both these methods. Thus this study will assist the construction industry to implement a more environmental friendly method.

OBJECTIVES OF STUDY

The main objective of the study is to make a quantitative analysis of the CO₂ emissions from the pipe-bursting and open cut methods. This study will help us determine the social and environmental benefits of the using pipe-bursting method over open-cut. The study signifies further research on what was the first step taken by NASTT-BC towards an environment friendly underground utility construction method. O'Sullivan (2007) after the successful implementation of the carbon calculator said that "Public works projects using trenchless construction will now enhance the efforts of many cities striving for increased sustainability for their operations." The amount of money paid for installation or renewal of water and wastewater pipelines by local authorities does not represent the total cost to society; broader consideration of all costs, project and social cost, should be given when selecting the best method for construction or renewing piped infrastructure (Apeldoorn, 2008). As More Work has being undertaken and more industry players have become involved, unit cost have generally decreased and proven track records have been established with a wider embrace of trenchless technologies (Apeldoorn, 2008). This study will help us quantitatively determine the advantages of pipe-bursting method and thus increasing the awareness towards trenchless technology. The objectives of this study are as follows.

- In order to determine the increased CO₂ emission because of the time delay caused to the traffic.
- 2. In order to determine the CO₂ emission of construction equipment.
- In order to compare the open-cut with the pipe-bursting method on basis of excess CO₂ emission.

SIGNIFICANCE OF STUDY

This study will help us to determine the significance and importance of the use pipe bursting technology in installation and rehabilitation of underground infrastructure. Further it will help us to get an estimate of net CO_2 emission reduction caused by the implementation of this trenchless technology as compared to the traditional open-cut method. This study will help us know the social and environmental advantages of using trenchless technology and why is it such a widely implemented concept now. This will be achieved by applying some analytical tools to the findings and the data collected from the site.

Climate has changed on all time scales throughout Earth's history. Some aspects of the current climate change are not unusual, but others are such as the rapid increase of CO_2 level in the atmosphere (IPCC, 2007). The concentration of CO_2 in the atmosphere has reached a record high relative to more than the past half-million years, and has done so at an exceptionally fast rate (IPCC, 2007).

While many factors continue to influence climate, scientists have determined that human activities have become a dominant force, and are responsible for most of the warming observed over the past 50 years. Human-caused climate change has resulted primarily from changes in the amounts of greenhouse gases in the atmosphere (IPCC, 2007).

Energy reaching the Earth from the Sun has been measured precisely by satellites. These measurements indicate that the Sun's output has not increased since 1978, so the warming during the past 30 years cannot be attributed to an increase in solar energy reaching the Earth (The National Academics, 2008). Additional evidence for a human influence on climate can be seen in the geographical pattern of observed warming, with greater temperature increases over land and in Polar Regions than over the oceans (The National Academics, 2008).

An increase (0.35°C) occurred in the global average temperature from the 1910s to the 1940s, followed by a slight cooling (0.1°C), and then a rapid warming (0.55°C) up to the end of 2006. The warmest years of the series are 1998 and 2005 (which are statistically indistinguishable), and 11 of the 12 warmest years have occurred in the last 12 years (1995 to 2006) (IPCC, 2007). Within the past 30 years, the rate of warming across the globe has been approximately three times greater than the rate over the last 100 years (EPA, 2005).

The Earth's greenhouse effect is a natural occurrence that helps regulate the temperature of our planet. When the Sun heats the Earth, some of this heat escapes back to space. The rest of the heat, also known as infrared radiation, is trapped in the atmosphere by clouds and greenhouse gases, such as water vapor and carbon dioxide. If all of these greenhouse gases were to suddenly disappear, our planet would be 60°F colder and would not support life as we know it (EPA, 2005). However, human activities, primarily the burning of fossil fuels and clearing of forests, have greatly intensified the natural greenhouse effect, causing global warming (IPCC, 2007).

Water Vapor is the most important greenhouse gas, and CO₂ is the second most important one (IPCC, 2007).

If humans continue to emit greenhouse gases at or above the current pace, we will probably see an average global temperature increase of 3 to 7°F by 2100, and greater warming after that. Even if we were to drastically reduce greenhouse gas emissions, returning them to year 2000 levels and holding them constant, the Earth would still warm about 1°F over the next 100 years (EPA, 2005).

Carbon dioxide has increased from fossil fuel use in transportation, building heating and cooling and the manufacture of cement and other goods. Deforestation releases CO_2 and reduces its uptake by plants (IPCC, 2007). Plants reduce the carbon content in the atmosphere by using CO_2 for photosynthesis which helps maintain the ecological balance of the earth system. Since deforestation had occurred at such a rapid rate along with the intensive combustion fossil fuel through various human activities the ecological balance of the earth is disturbed resulting in global warming. Because of slow removal processes, atmospheric CO_2 will continue to increase in the long term even if its emission is substantially reduced from present levels (IPCC, 2007).

More rapid climate change makes adapting to change more difficult and costly. This is especially true for vulnerable groups (such as the poor, the very young and older adults) and fragile ecosystems which may struggle to adapt to even small changes. IPCC (2007) suggests that temperature increases above the range of 3.5 to 5.5°F over the next 100 years would dramatically increase the negative impacts of climate change. This climate change will affect our health, agriculture, forests, water resources, energy, coasts, wildlife and recreational opportunities (EPA, 2005).

7

Since 1950, the number of heat waves has increased and widespread increases have occurred in the numbers of warm nights. Tropical storm and hurricane frequencies vary considerably from year to year, but evidence suggests substantial increases in intensity and duration since the 1970s (IPCC, 2007).

Important coastal regions of the ice sheets on Greenland and West Antarctica, and the glaciers of the Antarctic Peninsula, are thinning and contributing to sea level rise. The total contribution of glacier, ice cap and ice sheet melt to sea level rise is estimated as 1.2 ± 0.4 mm yr–1 for the period 1993 to 2003 (IPCC, 2007).

The United Nations Framework Convention on Climate Change (UNFCCC), in its Article 1, defines climate change as: 'a change of climate which is attributed directly or indirectly to human activity that alters the composition of the global atmosphere and which is in addition to natural climate variability observed over comparable time periods (Baede, Alfons, Linden, & Verbruggen, 2008). The UNFCCC Convention was adopted on 9 May 1992 in New York and signed at the 1992 Earth Summit in Rio de Janeiro by more than 150 countries and the European Community. Its ultimate objective is the "stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system" (Baede *et al.*, 2008).

The first addition to the treaty, the Kyoto Protocol, was adopted in 1997 and entered into force in February 2005. As of February 2007, 168 states and the European Economic Community have ratified the Protocol. The first addition to the treaty, the Kyoto Protocol, was adopted in 1997 and entered into force in February 2005. As of February 2007, 168 states and the European Economic Community have ratified the Protocol (IPCC, 2007).

Fully trenchless or partially trenchless (where some excavation is required) technologies offer many benefits as a methodology for rehabilitating or renewing pipelines that mitigate some of the social and environmental impacts and often some of the cost of open cut excavations. Competition for space in service corridors, the intensification of urban and residential developments, the risk to the public and contractors, and the impact on property owners and the community environment in a growing number of cases limit the options for open excavation (Apeldoorn, 2009).

Traffic delay costs are due to increased time spent traveling and they are based the value of time to users (driver and passengers) and can account for more than 50% of the social cost (Matthews, 2010). Traffic congestion accounts for 6.8 billion gallons of fuel consumption and 4.5 billion hours of travel time, costing the nation \$78 billion dollars (Gangavarapu *et al.*, 2004).

Therefore a key advantage of trenchless construction methods is the ability to install new and rehabilitate existing underground assets with limited disruption to traffic and business activities, reduced damage to existing paved surfaces, fewer adverse environmental impacts and less disruption to normal life patterns of the people living, working and shopping around the construction zone (Apeldoorn, 2009). Approximately 70% of the cost of open excavation construction is simply excavating and replacing the ground dug up during the process (Mohammed, Najafi, Hashemi, 2008).

Trenchless technology projects have a far smaller impact on the project zone, not only reducing the disruption that may be caused but also the stress and effect on the lifestyle of the inhabiting community particularly during large and long duration projects (Apeldoorn, 2009). Currently, approximately one-third of the North American businesses operate on a just-in-time delivery basis. If deliveries are disrupted due to travel delays, those businesses and thus the economy could be significantly affected (Allouche & Gilchrist, 2004).

ASSUMPTIONS

- 1. All the trenchless methods were assumed to have the same site conditions and the recordings were based on the observations from the site.
- The calculation of CO₂ emission from various machineries and traffic flow were based on the fuel consumed by the machines during the process.
- 3. The calculations for amount of excess fuel used and the CO₂ emitted were based on previously proven techniques and methods.
- 4. Other aspect involved in a construction project such as the site conditions, weather, personnel, construction material, construction management were consider to have insignificant effect on the CO₂ emission from the process. Moreover whatever effect they do have was considered to be same irrespective of any construction method used.

LIMITATIONS

- 1. The utilities were considered to be installed at the depth of 10 feet from the ground surface and the size of the pipeline considered for this study is 8 inches for equal comparison between these methods.
- 2. Traffic control plan-4 was considered for finding the excess CO₂ emission from traffic.
- 3. No instruments were used for measuring the actual CO₂ emission from the construction machinery and the vehicles and this study is just an estimate of the CO₂ emission.
- The Fuel to CO₂ conversion rate as given by the U.S Environmental Protection Agency (EPA) may cause slight difference to the actual CO₂ emission.

CHAPTER 2

REVIEW OF LITERATURE

Studies were conducted previously on the cost resulting from the two methods considering the traffic delay, direct cost, indirect cost as well as social and environmental impacts (which only included the noise pollution aspect of it).

Before NASTT-BC in 2007 started conducting their research on the CO_2 emission caused by the open cut and trenchless methods, there was no significant research on the greenhouse gas emission resulting from these two construction methods. O'sullivan (2008) said in his paper that "By linking the energy reduction with carbon output, we were able to come up with the carbon reduction by using trenchless technology." A student at University of British Columbia then developed a carbon calculator, which estimates the reduction of CO_2 emission when trenchless technologies are used as compared to the traditional open-cut method.

Apeldoorn in 2009 in his paper tried to answer the question "What is the cost of trenchless construction or renewal projects related to conventional open-cut methods?" The cost of both open-cut and trenchless methodologies are affected by many factors, such as the location of the pipeline, its depth, size and also the local availability of the various trenchless technology methodologies (Apeldoorn, 2009).

A recently published case study by Hashemi (2008) comparing the potential cost of open excavation versus pipe bursting to replace the sewer network in the City of Troy, Michigan in the United States concluded that the trenchless method of renewal if implemented would be 25% less expensive than open excavation (Apeldoorn, 2009).

The Social Cost Calculator (SCC) was developed by Matthers, J. C. and Allouche E.N in a study they conducted in 2010. The SCC guides the user through an interactive interface to yield a more complete cost forecast taking into account the project specific parameters, calculating user travel delay costs, increased vehicle operating costs, pavement repair costs, decreased property values due to noise pollution, and loss of parking space (Matthews &Allouche, 2010).

Boyce and Bried (1994), developed detail equation for estimating trenchless construction social cost saving, which included, traffic and pedestrian disruption cost, loss of productivity in terms of public awareness and lost revenue from parking meters and tickets.

McKim (1997) built on this Boyce and Bried study and put forward an estimating method based on the average social cost from 14 construction projects. Using this generalized estimate method McKim demonstrated the need for including social costs in selection process of municipal bids.

Tighe (1999), analyzed cost associated with traffic disruption using various construction durations and typical traffic control plans. In their analysis, equations were developed that relate costs to annual average daily traffic (AADT) under various traffic control plans. Costs are determined based on user delays arising from speed, queuing and detour delays. Open cut excavation for pipe installations were also shown to result in premature pavement deterioration.

Gangavarapu *et al.*, (2004) compared open cut and auger boring (one of the trenchless technologies) in terms of total costs arising from the project which also included traffic disruption. The paper presented a summary of the costs of traffic disruption due to the method of pipe installation chosen for the utility construction. It was found that the cost of fuel and the cost of time delay are the major contributors in estimating the cost of traffic disruption. In this paper there are two case studies show which based on different scenarios and the project location differ in cost out comes when the two technologies are compared. In first case study the auger boring technology cost much less when the cost of traffic disruption is considered. But, in the second case study the auger boring costs significantly more as compared to the traditional open-cut method.

Jung and Sinha (2004), studied the economic productivity, safety and structure issue associated with underground pipeline construction and introduces trenchless as an alternative.

Jung and Sinha (2007), Considered direct costs, social costs (Which included traffic delay cost, loss of revenue and business and environmental impact (which included only noise cost). Furthermore, they discussed but did not quantify productivity, workers' safety, and structural costs.

Davis and Diegel (2007) came up with the graph which shows the effect of speed on the efficiency of a vehicle. Thus the variation in consumption of fuel due to the variation in its speed can be computed from this graph.

Knight (2007), in his report Do Trenchless Pipeline Construction Methods Reduce Greenhouse Gas Emission applied these concept and analytical data from the above mention studies and developed a fairly accurate estimate of the CO₂ emission and compared the open cut and the trenchless methods. He did this study for Center for the Advancement of Trenchless Technology (CATT). This was a preliminary estimate that does not include greenhouse gas emissions resulting from: the production and transportation of additional quantities of asphalt concrete and trench restoration materials; loss of pavement life; and/or pavement maintenance and rehabilitation. Thus, it was a conservative preliminary estimate.

Since 2007, NASTT-BC (North American Society for Trenchless Technology- British Columbia) has offered project designers a simple online Carbon Calculator to highlight the CO₂ reduction potential of trenchless technology. A study was done in order to evaluate the CO2 emission reduction potential of the trenchless technology. This study has plenty of scope for improvement.

In 2011 a graduate student from Bowling Green State University compared the CO₂ emission resulting from implementation of horizontal directional drill and open cut methods for

an underground utility project located in Bowling Green, Ohio. This project focused on the CO₂ emission resulting from the traffic disruption as well as the construction machineries involved in the project. This study was based on the actual data gathered from the workplace. This data was applied to the previously developed analytical equations for the amount of fuel additional fuel consumed by the vehicles due to traffic disruption as well as fuel consumed by the construction machinery. This amount of fuel consumed was then converted to the resulting CO₂ emission by applying the conversions given by Environment Protection Agency (EPA). The current project is an extension of the this project and it is different in a way that it in this paper we are comparing open-cut, pipe bursting, and CIPP methods whereas the earlier study compared open-cut with HDD. The results revealed that HDD construction produced 53.1% less CO2 than the open-cut method.

RESEARCH BOUNDARY

The data for the research was collected from the actual field by observations and by talking to the site personnel. For comparing open-cut and pipe bursting methods, an pipe length of 5100 feet and diameter of 8 inches was be consider to be laid at 10 feet from the ground surface.

The construction site which was used for the data collection for the study is located in Bowling Green, OH at the Intersection of N. Main and E. Poe Road. Careful readings were taken in order to have real data which can be used for this study. Traffic movement along the construction area was observed and the Annual Average Daily Traffic (AADT) was found. The obstruction caused to the traffic due to the construction activities was also recorded. The make and model of machinery used on the field was noted and the time for which each machine operates was recorded through observation. All this data was then applied to the various equations and methods described in chapter 3.

CHAPTER 3

METHODOLOGY

Problem Restatement

This study aims towards estimating a total CO_2 emission for open-cut and pipe-bursting methods for underground utility sewer construction. It will give the statistical data for the amount of CO_2 emitted and will enable us to determine the magnitude of environmental impact of both these methods. Thus this study will assist the construction industry to implement a more environmental friendly method.

Objectives

- In order to determine the excess CO₂ emission due to the time delay caused to the traffic;
 this will be done by applying the analytical methodology derived earlier by (Tighe, 1999)
- 2. In order to determine the CO2 emission by construction equipment's; this will be done by applying the methodology discussed in the (NASTT-BC, 2007).
- 3. Further the net CO2 emissions will be calculated by summing up the CO2 emission quantities obtained in first two steps.

Figure 1 show typical traffic controls plans. Plans 1, 2, and 3 were implemented in the research by Tighe (1999). Traffic control Plan 1 refers to a situation in which construction work warrants closure of one lane of the road for a certain length. Traffic from the two directions is controlled by a flag person who alternately opens and closes the other lane to the two directional streams of traffic. In traffic control Plan 2, one lane is closed to the traffic but enough shoulder width is available so that the traffic of closed lane could be diverted onto the shoulder for the length of the construction zone. Traffic Plan 3 depicts a situation in which requires complete closure of all the lanes to traffic. For instance, when a pipeline has to be constructed across the

road width, Plan 3 would be implemented. Traffic on the closed road would be diverted onto alternate routes where after it will re-merge onto the closed road (Knight, 2007). In Plan 4 one or two lanes are closed on a multi-lane road and thus the traffic can flow both the ways with needing to stop or take a detour. Plan 4 was used in this study since the N. Main road is multilane and there is no need to stop or divert the traffic.

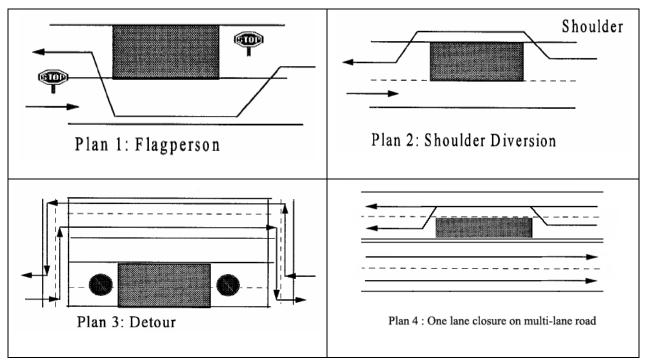


Figure 1. Various traffic control plans

Depending upon the layout of the construction zone on a road, various traffic control plans can be implemented. These traffic control plans will alter the geometric conditions of road and hence influence the traffic operating speeds (Knight, 2007).

Figure 2 shows the relationship between speed and fuel consumption for vehicles. Data for average fuel economy for a mix of various vehicle types under varying operating speeds has been reported in Davis and Diegel, 2007 (Knight, 2007). The fuel economy, provided as miles per gallon, was converted gallons per kilometer and speed was converted from miles per hour into kilometers per hour (Knight, 2007).

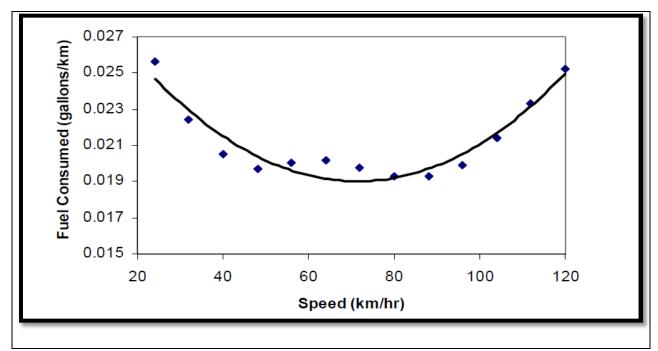


Figure 2. The relation between fuel consumption and speed. (Knight, 2007)

To determine fuel consumption due to traffic disruption

The Code of Federal Regulations (40 CFR 600.113) provides values for carbon content per gallon of gasoline and diesel fuel which EPA uses in calculating the fuel economy of vehicles:

- Gasoline carbon content per gallon: 2,421 grams (EPA, 2005)
- Diesel carbon content per gallon: 2,778 grams (EPA, 2005)

Finally, to calculate the CO_2 emissions from a gallon of fuel, the carbon emissions are multiplied by the ratio of the molecular weight of CO_2 (m.w.44) to the molecular weight of carbon (m.w.12) 44/12.

 $CO_2 \text{ emissions from a gallon of gasoline} = 2,421 \text{ grams x } 0.99 \text{ x } (44/12) = 8,788 \text{ grams} = 8.8 \text{ kg/gallon} = 19.4 \text{ pounds/gallon (EPA, 2005)} \dots \dots \text{ Equ. 1}$

To determine the CO2 emission caused by construction machinery

To determine the heavy construction equipment CO2 emissions, the time duration for which any piece of equipment is operated has to be determined and the associated fuel consumption. Data reported in RS Means (2006) was used to estimate the time for various construction activities to be completed (Knight, 2007). Similarly different CO2 emissions by heavy construction machinery can be calculate by using RS means 2011.

The equation for calculating the fuel consumed by the construction machinery is:

The total fuel consumption can be calculated by adding the Equations 1, 2 and 3.

CHAPTER 4

RESULTS/FINDINGS

This chapter gives a detailed analysis of all the results derived from the data collected for determining the CO_2 emission from open-cut as well as pipe-bursting methods for installation of a gravity sewer line. All the results were based on the field observations made during the course of the project.

This gravity sewer line runs 5100 feet in N-S direction along N. Main Street. The project starts 350 feet south of the intersection of Poe road and N. Main Street and proceeds north to end near Woodland mall on N. Main Street. This gravity sewer line is considered to be installed at a depth of 10 feet from the ground surface and is 8 inches in diameter for both methods. The manholes are assumed to be located at a distance of 300 feet and three lateral connections

Figure 3. Span of the pipeline project - start and the end points

are assumed to be present between each two manholes on average. For open-cut, a new pipeline was considered to be installed instead of replacing an old line and for pipe-bursting an old pipeline was replaced by new pipeline. High density polyethylene (HDPE) pipe was used in the pipe-bursting method and Polyvinyl chloride (PVC) pipe was used in the open-cut method. For this study, it was assumed that the different pipe materials did not have any direct bearing on the CO_2 emission for the project.

For open-cut it was considered that a new pipeline was installed parallel to the old pipeline. Thus, the project consisted of installation of pipeline, installation of new manholes and 10 feet extension of lateral lines joining the new line. For pipe-bursting, the old pipe line was replaced by a new line and thus this project consisted of set-up, pipe bursting, and finishing. It was also considered that all the excavated material is suitable for backfilling.

Determining the impact of traffic disruption on fuel consumption

The data collected from the field was used to determine the volume of traffic, type of traffic control plans, the length and duration of traffic control plans and amount of speed reduced. All these calculations are shown in detail in the spreadsheets attached in the appendices B, C, D, E & F.

The traffic volumes (number of vehicles between 8:00 am and 6:00 pm) on N. Main Street were divided into four parts according to the locations. It was observed that the volumes differ for different locations along the main street. The first part considered, was south of the intersection between Poe and N. Main; second part spanned 1750 feet towards north starting at the intersection; third part spanned 1500 feet and continued north and the fourth part was 1500 feet as well that ended at the Woodland mall area. The traffic volumes for the period between 8:00 am and 6:00 pm for all these areas are 16810, 18870, 13680 and 8580 respectively. The traffic volume for Poe road was also calculated and was found out to be 10575. These traffic volumes are the number of vehicles moving in both the directions along the N. Main Street. These volumes were considered when two lanes were closed for traffic. It was assumed that there are equal numbers of cars moving in both directions. Thus, when one lane was closed during pipe-bursting the traffic in only one direction was affected and this volume was exactly half of the volume of traffic in both directions.

The speed reductions caused due to the presence of cold batches, steel plates and signs after the construction hours were also considered. A 24 hour traffic volume of 18,100 vehicles/day was found from the (ODOT, 2009). The average of all the traffic volumes on N. Main Street from 8:00 am to 6:00 pm given above was 13,710 Vehicles and was subtracted from the 24 hour traffic volume to get the traffic volume from 8:00 am to 6:00 pm as 4,390 vehicles. Speed reduction of 10 MHP and 5 MPH was considered for open-cut and pipe-bursting methods respectively. In this case no lane is closed and the speed reduction is purely due to uneven surface and minor obstructions caused by the signs. Knowing the traffic volume, duration and the reduced speed the additional fuel consumption was calculated.

The traffic control plan 4 was used in each of the calculations; since N. Main Street is a 4 lane street either 2 lanes or 1 lane was closed every time during both the methods. For pipebursting, two lanes were needed to be closed during the excavation, set-up and backfilling phases. While during the bursting phase only one lane was considered to be closed, since there is no moving machinery and material during actually bursting phase. For open-cut two lanes were considered to be closed the whole time.

A timeline was formulated for both methods taking into consideration all the detailed construction activities and the time required for each one of them. This enabled the researcher to have a clear idea about the length of the traffic control zones and their durations, both of which are critical components in determining the increased fuel consumption due to traffic disruption. Figures 4, 5, 6 & 7 show the timeline worksheets for open-cut, pipe-bursting and the asphalt restoration process for both methods. The timeline depicts the real work conditions and accounts

for time delays due to site and management factors. Asphalt restoration process is considered to be separate since it begins after the pipeline construction is over and is completed all at once.

Days	Monday		Tuesday				Wednesd	ay		
Time										
	Placing	Placing	Placing	Placing	Placing	Placing	Placing	Placing	Placing	Placing
8:00-8:30	cones and	cones	cones	cones	cones and	cones	Cones	Cones	Cones	Cones
			Backfillin	Putting			Backfillin	Putting		
8:30-9:00	Making cut		g and	aggregat			g and	aggregat		
	into		Cold				Cold		Exploring	
9:00 - 9:30	asphats (1)		batch (1)				batch		for the	
9:30 - 10:00	Exploring			Backfillin				Compacti	utilities	
	for the			g and	Exploring			ng and	and	
10:00 - 10:30	utilities			Compacti	for utlities			Backfillin	Excavatin	
10:30 - 11:00	and			ng (3)	and			g (3)	g (3)	
	Excavating			Cold	Excavating			Cold	Laying	
11:00 - 11:30	(3)			batch (1)	(2)			batch (1)	the	
	Lunch	Lunch	Lunch	Lunch	Lunch	Lunch	Lunch	Lunch	Lunch	Lunch
11:30 - 12:00		Break	Break	Break	Break	Break	Break	Break	Break	Break
	Laying the				Laying the				Placing	
	bedding				bedding				the pipe	
12:00 - 12:30		Exploring			material	Exploring			and	Exploring
12:30 - 1:00	Placing the	for the			Placing the	for the			fitting	for the
	pipe and	utilities			pipe and	utilities			Putting	utilities
1:00 - 1:30	fitting (2)	and			fitting (2)	and			aggregat	and
	putting	Excavatin			Putting	Excavatin				excavatin
1:30 - 2:00	aggregate	g (2)			aggregate	g (3)				g
		Laying				Laying				Laying
2:00 - 2:30		bedding				the				the
	Backfilling	Placing			Backfilling	Placing			Backfillin	
2:30 - 3:00	and	the pipe			and	the pipe			g and	the pipe
	Compactin	and			Compactin	and			Compacti	and
3:00 - 3:30	g (3)	fitting (2)			g (3)	fitting			ng	fitting
	Site	Site	Site	Site	Site	Site	Site	Site	Site	Site
3:30 - 4:00	clearing	clearing	clearing	clearing	clearing	clearing	clearing	clearing	clearing	clearing

Figure 4. Timeline spreadsheet for open-cut

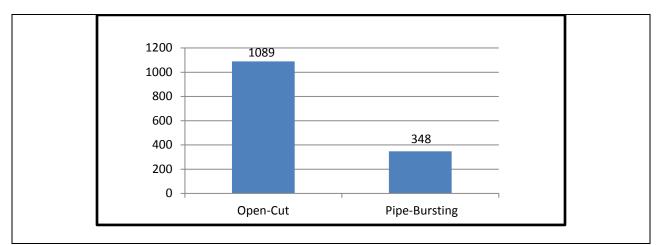
Time	Monday		Tuesday		Wednesday		Thrusday	
	Placing cones	Placing	Placing cones	Placing cones	Placing cones	Placing cones	Placing cones	Placing cones
8:00 - 8:30	and preparing	cones	and preparing	and preparing	and preparing	and preparing	and preparing	and preparing
8:30 - 9:00	Marking out		Excavating for					Excavating for
	the areas to		laterals and	Bring pipe on	Placing the	Lowering		laterals and
9:00 - 9:30	be cut Asphalt		shoring (3)	the site (1)	pluggs and	bursting head	Backfilling	shoring (3)
9:30 - 10:00		Making	Getting the air				and	
9.50 - 10.00	entry pit (1	the	hose through		inflating (2)	(2)	compacting	Bring pipe on
10:00 - 10:30	Exploring the	fusion	the pipe (2)	Enlargement of	Run pump and	Exploring for	(3)	the site (1)
	utilities,	joints for	Joining the	pipe dia inside	disconnect	utilities and		
10:30 - 11:00	Excavating	300' long	bursting head to	manhole and	laterals (2)	Excavating for		Getting the air
	the entry pit	pipe (2	the hose and	removing the		the entry pit		hose through
11:00 - 11:30	(3 persons)	persons)	pipe (3)	benching (2)	Lunch Break	(3)	Cold Batch (2)	the pipe (2)
		Lunch						
11:30 - 12:00	Lunch Break	Break	Lunch Break	Lunch Break		Lunch Break	Lunch Break	Lunch Break
			Joining the		Pipe bursting			Enlargement
12:00 - 12:30			bursting head to		(3)			of pipe dia
			the hose and					inside
12:30 - 1:00	exploring the		pipe (3)	Bypass Excav. (1)	Letting the	Exploring for	Joining the	manhole and
1:00 - 1:30	utilities and	Making			pipe shrink &	utilities and	bursting head	removing the
1:30 - 2:00	excavating	the			Doing the	Excavating for	to the hose	benching (2)
	and	fusion	Layin out the		benching for	the entry pit	and pipe (3)	
2:00 - 2:30	shoring(3)	joints for	bypass line (2)		manhole	and shoring (3)		
		next 300'		Threading the				Threading the
2:30 - 3:00	Exacavating	long pipe		cable through			Setting up the	cable through
	the laterals	(2	winch in place	the old pipeline	Connect	Ŭ	winch in place	the old
3:00 - 3:30	(3persons)	persons)	(3)	(2)	laterals and	laterals (3)	(3)	pipeline (2)
	Clearing the	Clearing			remove the	Clearing the		
3:30 - 4:00	site	the site	Clearing the site	Clearing the site	plugs (2)	site	Site clearing	Site clearing

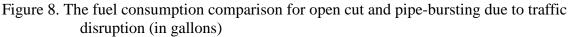
Figure 5. Timeline spreadsheet for pipe-bursting

Day 1	1st 300'	2nd 300'	3rd 300'	4th 300'	5th 300'	6th 300'
8:00 - 8:15	Placing cones					
8:15 - 8:30	and Preparing					
8:30 - 8:45	Cutting asphalt					
8:45 - 9:00	for Entry pit and					
9:00 -9:15	laterals (1)					
9:15 - 9:30		Cutting asphalt for				
9:30 - 9:45	Excavating (2)	Entry pit and				
	Base course (2)	laterals (1)				
10:00 - 10:15 10:15 - 10:30	Compacting (2)	Excavating (2)				
10:30 - 10:45	Tack Coat (1)	Base Course (2)				
10:45 - 11:00						
11:00 - 11:15	Laying asphalt (2)	Compacting(2)				
11:15 - 11:30	Rolling (1)	Tack coat (1)	Cutting asphalt			
11:30 - 12:00	Lunch Break	Lunch Break	Lunch Break	Lunch Break		
12:00 - 12:15	Rolling (1)		Cutting asphalt			
12:15 - 12:30		Laying asphalt (2)		Cutting asphalt for		
12:30 - 12:45			Excavating (2)	Entry pit and		
12:45 - 1:00		Rolling (1)	Base course (2)	laterals (1)		
1:15 - 1:30			Compacting (2)	Excavating (2)	Cutting asphalt for	
1:30 - 1:45			Tack coat (1)	Base course (2)	Entry pit and	
1:45 - 2:00					laterals (1)	
2:00 - 2:15			Laying asphalt (2)	Compacting (2)		
2:15 - 2:30				Tack coat (1)	Excavating (2)	Cutting asphalt
2:30 - 2:45			Rolling (1)	Louing conholt (2)	Base course (2)	for Entry pit and
2:45 - 3:00				Laying asphalt (2)	$C_{\text{composition}}(2)$	laterals (1)
3:00 - 3:15 3:15 - 3:30				Dolling (1)	Compacting (2)	Excovating (2)
				Rolling (1)	Tack coat (1)	Excavating (2)
3:30 - 3:45 3:45 - 4:00					Clearing the site	Clearing the site

Figure 6. Timeline spreadsheet of asphalt restoration for pipe-bursting. The number is parenthesis shows the number of persons required to do the job.

	Placing cones and					
8:00-8:30	Preparing					
	Cutting asphalt for					
8:30-9:00	Entry pit and					
	laterals (1)					
9:00 -9:30	-	Cutting asphalt for				
	Excavating (2)	Entry pit and				
9:30 - 10:00	Base course (2)	laterals (1)				
10:00 - 10:30	Compacting (2)	Excavating (2)				
10:30 - 11:00	Tack Coat (1)	Base Course (2)				
11:00 - 11:30	Rolling (1)	Tack coat (1)	Cutting asphalt			
44.00 40.00						
11:30 - 12:00	Lunch Break	Lunch Break	Lunch Break	Lunch Break		
42.00 42.00	Rolling (1)		Cutting asphalt			
12:00 - 12:30		Laying asphalt (2)		Cutting asphalt for		
12:30 - 1:00		Rolling (1)	Excavating (2) Base course (2)	Entry pit and laterals (1)		
12.30 - 1.00		KOIIIIg (1)	base course (2)			
1:00 - 1:30			Compacting (2)	Excavating (2)	Cutting asphalt for	
			Tack coat (1)	Base course (2)	Entry pit and laterals	
1:30 - 2:00					(1)	
			Laying asphalt (2)	Compacting (2)		
2:00 - 2:30				Tack coat (1)	Excavating (2)	Cutting asphalt
			Rolling (1)		Base course (2)	for Entry pit and
2:30 - 3:00				Laying asphalt (2)	Compacting (2)	laterals (1)
3:00 - 3:30				Rolling (1)	Tack coat (1)	Excavating (2)
					Site Clearing	Site Clearing


Figure 7. Timeline spreadsheet of asphalt restoration for open-cut


Determining construction machinery fuel consumption

As explained in the methodology chapter, all the machinery fuel consumption was calculated by multiplying the duration for which the machinery was working and its fuel consumption rate at full load. The fuel consumption rates were derived from the company literature and by talking to the machine manufacturers. Load factors were applied to these estimates to adjust for fact that the machine does not work at full capacity all the time. The fuel consumed by the transportation vehicle in transporting the material from the factory to site was also considered. It was calculated simply by multiplying the distance travelled by the mileage of these vehicles. The production rates of the machines were estimated from RS Means Heavy Construction Cost Data (1996) while taking into consideration the site and Management factors which will affect the production rates.

Calculating the increased fuel consumption due to traffic disruption

The increased fuel consumption due to traffic disruption was calculated to be 1089 gallons and 348 gallons for open-cut and pipe-bursting respectively as shown in Figure 8. This gives us the CO_2 emission of 21,447.86 pounds for open-cut and 6,849.11 pounds for pipe-bursting. Thus there is a reduction of 68.0 percent in traffic disruption increased fuel consumption during pipe-bursting as compared to open-cut method. This reduction is mainly due to shorter job duration as well as lesser obstruction to traffic during pipe-bursting process. It should be noted that all this increased fuel consumption is due to speed reduction caused due to disruption to traffic. It was assumed that 10 percent of the vehicles on the road worked on diesel powered engine and remaining 90 percent worked on gasoline powered engine. Using these factors the CO_2 emitted by 1 gallons of fuel was determined.

Results obtained from calculating the machinery fuel consumption

The fuel consumption due to construction machinery was calculated to be 5716 Gallons and 1518 gallons for open-cut and pipe-bursting respectively as shown in Figure 9. This gives the CO_2 emission is 126829.2 for open cut and 33715.1 for pipe-bursting. Thus there is a reduction of 73.4 percent in the CO_2 during pipe-bursting as compared to open-cut method. This reduction is mainly due to lesser excavation, lesser asphalt restoration and shorter job duration.

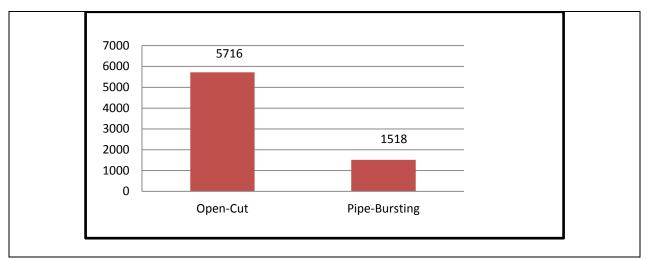


Figure 9. Construction Machinery fuel consumption comparison between open-cut and pipebursting

Total CO₂ emission comparison for open-cut and pipe-bursting

The CO_2 emitted during the open-cut process from machinery and traffic is much more in comparison to pipe-bursting. The total CO_2 was calculated to be 148,227.05 pounds for open-cut and 40,564.22 pounds for pipe-bursting as shown in Figure 10, which is 72.6 percent less as compared to open-cut. This is a drastic reduction achieved mainly due to lesser excavation, shorter job duration and lesser traffic disruption.

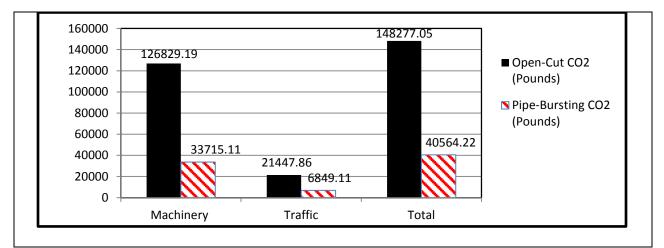


Figure 10. Total CO₂ emission comparison for open-cut and pipe-bursting

The Total CO₂emission from construction machinery and due to traffic disruption for open-cut was calculated to be 126,829.19 pounds and 21,447.86 pounds respectively. For opencut as shown in Figure 11, the CO₂ emission from construction machinery constitutes of 83.0 percent of total CO₂ emission. Similarly, for pipe-bursting the CO₂ emission from machinery constitutes of 79.6 percent of the total CO₂ emission.

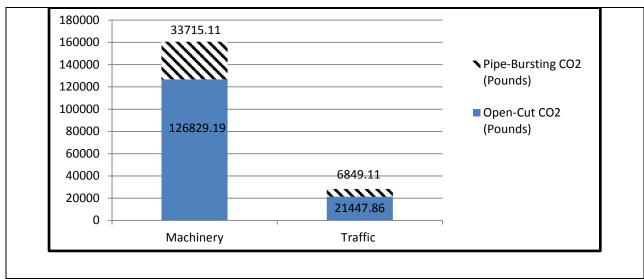


Figure 11. The CO2 emission comparison for machinery and traffic

CHAPTER 5

SUMMARY, CONCLUSION AND RECOMMENDATIONS

This study aimed towards finding the CO_2 emission caused due to open-cut and pipebursting methods. The CO_2 emission calculation was divided into two parts.

- 1. CO₂ emitted by the construction machinery.
- 2. Excess CO_2 emitted due to disruption to traffic.

The study was based on actual site observations recorded from an underground utility project located along N. Main Street in Bowling Green, OH. For the purpose of study, a sewer pipeline 5100 feet long, 10 feet deep and 8 inches in diameter was considered.

For calculating the machinery fuel consumption, the fuel consumption rates for each machine was found from manufacturer's literature and interviews. The duration was calculated by determining the volume of work and the production rate of the machines. The fuel consumed was then converted to CO_2 emission by using the conversion formulas discussed in Chapter 3.

For traffic fuel consumption various traffic control plans were established and the volume of traffic disturbed was calculated. The excess fuel consumed was calculated by using the formulas for speed reduction fuel consumption discussed in Chapter 3.

Conclusion

There were various objectives for which the above study was performed. After the results were derived the following objectives were achieved:

1. To determine the excess CO₂ emission due to traffic delay:

The traffic data was collected from the field observations as well as referring to the ODOT manuals. The traffic control plans were determined for both methods and the durations were determined from the timeline worksheet discussed in Chapter 4

- The increased fuel consumption due to traffic disruption was calculated to be 1089 gallons and 348 gallons for open-cut and pipe-bursting respectively. This gives us the CO₂ emission of 21,447.86 pounds for open-cut and 6,849.11 pounds for pipe-bursting.
- Thus there is a reduction of 68.0 percent in traffic disruption increased fuel consumption during pipe-bursting as compared to open-cut method.
- This reduction is mainly due to shorter job duration as well as lesser obstruction to traffic during pipe-bursting process.
- 2. To determine the CO2 emission by construction Machinery:

The above objective was met by collecting the data such as duration of work, production rate and fuel consumption. This fuel consumption was converted to CO_2 in pounds by using the conversion given in EPA (2005) and following results were obtained

- The fuel consumed was calculated to be 5716 Gallons and 1518 gallons for open-cut and pipe-bursting respectively. This gives the CO₂ emission is 126829.2 for open cut and 33715.1 for pipe-bursting.
- Thus there is a reduction of 73.4 percent in the CO₂ during pipe-bursting as compared to open-cut method.
- This reduction is mainly due to lesser excavation, lesser asphalt restoration and shorter job duration.
- 3. Net CO2 emission for both the methods and calculating the percentage CO₂ reduced by pipe-bursting:

This was found by simply adding up the result from the first two objectives to get the total CO_2 emission for both methods and deriving the percentage CO_2 reduced by pipe-bursting method

- The total CO₂ was calculated to be 148,227.05 pounds for open-cut and 40,564.22 pounds for pipe-bursting.
- This means 72.6 percent of CO₂ emission is reduced using pipe-bursting as compared to open-cut.
- The construction machinery constitutes of 83.0 percent of total CO₂ emission from opencut method. Similarly, for pipe-bursting the machinery CO₂ emission constitutes of 79.6 percent of the total CO₂ emission. Thus machinery CO₂ is the major contributor towards the total CO₂.

Recommendations for Future Studies

- This study was limited to gravity sever line of 5100 feet long, 10 feet deep and 8 inches in diameter. Thus, future study is recommended on pipeline of various lengths, depths and sizes.
- 2. There is need to study the CO_2 during the production of various pipe materials. This will have an impact since different methods use different pipe materials.
- Fuel consumption rate for machinery needs to be measure in field since this correlation of fuel consumption rate and the type of machinery along with the site conditions is very complex.

REFERENCES

- Allouche, E. N. & Gilchrist, A. (2004). Quantifying construction related social costs.
 Proceedings from NASTT 2004's: North American Society Trenchless Technology (NASTT) No-Dig Show 2004. New Orleans, Louisiana.
- Apeldoorn, S. (2008). Comparing the costs-trenchless versus traditional methods. Retrieved from

 http://docs.google.com/viewer?a=v&q=cache:CP96R11K2uMJ:www.projectmax.co.nz/_

 literature 43902/Comparing the Costs %25E2%2580%2593 Trenchless Versus Tradit

 ional_Methods+COMPARING+THE+COSTS+%E2%80%93+TRENCHLESS+VERSU

 S+TRADITIONAL+METHODS&hl=en&gl=us&pid=bl&srcid=ADGEEShgODJmPpvQ

 HBV29R5wjDnGl3vm30O6nz8KEhAudNlztwmjNQEdAmAr3o304IDW5MXGrjakO3A

 zjjpv_A6m_T

 ZHlig8EIFKegaqlSqoGB_7YwJBMzyNUyVRDOpDVzoNzfh2RS5&sig=AHIEtbS6MA
 - 68k3vY9Lf04N5tMst-qwKKQg
- Baede, Alfons, Linden, P., &Verbruggen, A. (2008). IPCC AR4 SYR Appendix Glossary. Retrieved from http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_appendix.pdf.
- Davis, S. C., &Diegel, S. W. (2007). Transportation energy data book (27th ed.). Oak Ridge, Tennessee: Oak Ridge National Laboratory. Retrieved February 25, 2008, from <u>http://www.cleanenergycouncil.org/files/Edition27_Full_Doc.pdf</u>

Gangavarapu, B. S., Najafi, M., & Salem, O. (2004). Quantitative analysis and comparison of traffic disruption using open-cut and trenchless methods of pipe installation.
 Proceedings of the ASCE International Conference on Pipeline Engineering and Construction, 2,1714-1724.

- Hashemi, S. B. (2008). *Construction cost of underground infrastructure renewal: a comparison of traditional open-cut and pipe bursting technology*. University of Texas, Arlington.
- Jung, J. Y. &Sinha, S.K. (2004). Trenchless technology: an efficient and environmentally sound approach for underground municipal pipeline and infrastructure systems. Proceedings from NASTT 2004's: North American Society Trenchless Technology (NASTT) No-Dig Show 2004. New Orleans, Louisiana.
- Jung, Y. J., &Sinha, S. K. (2007). Evaluation of trenchless technology methods for municipal infrastructure system. *Journal of Infrastructure Systems*, *13*(2), 144-156.
- Matthews, J. C. (2010). A social cost calculator for utility construction projects. Retrieved November 28, 2011, from

http://ttworld.latech.edu/publications/(file%207)%20nastt%202010.pdf

- McKim, R. A. (1997). Bidding strategies for conventional and trenchless technologies considering social costs. *Canadian Journal of Civil Engineering*, 24(5), 819-827.
- Najafi, M., &Gokhale, S. B. (2005). *Trenchless technology : Pipeline and utility design, construction, and renewal*. New York: McGraw-Hill.
- ODOT (2009). Traffic Survey Report. Average 24-Hr Traffic Volume. Retrieved December 27, 2011, From

http://www.odotonline.org/techservapps/traffmonit/countinformation/default.htm

- O'Sullivan, D. (2008, April). The Carbon Footprint: A new Way to Sell Trenchless. Trenchless Technology, 66.
- O'Sullivan, D. (2009, January). Reducing emissions with trenchless technology. Retrieved November 9, 2010, from <u>http://trenchlessinternational.com/news/reducing_emissions_with_trenchless_technology/</u>001483/#
- Rashid, R., Knight, M. (2007). Do trenchless pipeline construction Methods Reduce GreenhouseGas Emission? University of Waterloo, Ontario.: Preliminary Report, Center for theAdvancement of Trenchless Technology (CATT).

RS Means (2006). Site work & landscape cost data - Site work & landscape cost data, v. 25.

- Solomon, S. (2007). Climate Change 2007: The Physical Science Basis. Retrieved from http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-spm.pdf
- Tighe, S., Lee, T., McKim, R., & Haas, R. (1999). Traffic delay cost savings associated with trenchless technology. *Journal of Infrastructure Systems*, *5*(2), 45-52.
- The National Academies. (2008). Understanding and responding to climate change. Retrieved from http://dels.nas.edu/resources/static-assets/materials-based-on-reports/booklets/climate_change_2008_final.pdf
- U.S. Environment Protection Agency. (2005). Average carbon dioxide emission resulting from gasoline and diesel fuel. Retrieved from <u>http://www.carbonsolutions.com/Resources/Average_Carbon_Dioxide_Emissions_Result</u> <u>ing_from_Gasoline_and_Diesel_Fuel.pdf</u>

APPENDIX A

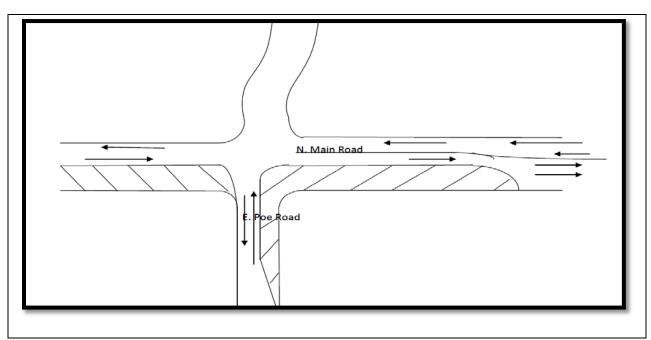


Figure 12. Shows a typical traffic control plan 4 for open cut where 2 lanes are closed for traffic

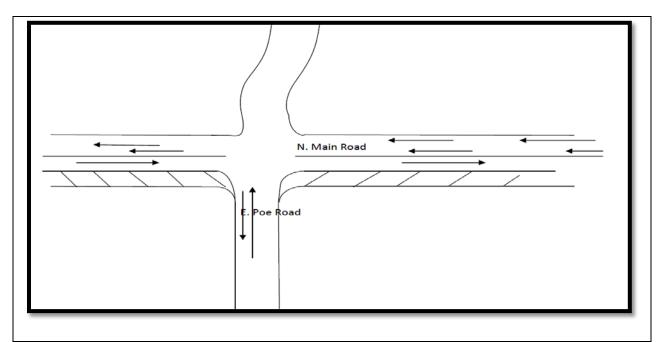


Figure 13. Typical traffic control plan 4 for pipe-bursting with one lane closed for traffic

APPENDIX B

	No. of bursti	МН	Size of	Length of	Bucket	length of	Length of the ent	ry pit (Ft.)	Width	at intersec	tion Ft.
		Spacing	dewaterin	pipeline (ft)	volume of	pipe (ft)	Sloping part	10' deep	Poe	parkview	Mall
	17	300	900	5100	2.5	40	25	12	50	25	
	Speed of loa	Dist 1 trip	Depth	Cap. truck	Dia pipe	no. of MH	No. of Laterals	Total	industrial	Kroger	
	5	1	10	20	0.66	18	44	37	25	30	
	Process	Quantities	Unit	Prod Rate/hr.	Unit	Time (hours)	Machine	cons.	factor	Cons.	Remark
1	Set up										
1.1	Placing the	34	Plugs	4	Hr.	8.5	PC 228 LC Komats	4.2	0.75	26.775	Time
	Pluggs										Quanti
1.2	Inflating the	34	Plugs	6	Plugs/Hr.	5.666666667	Small Compresso	0.5	0.9	2.55	/Produ
	Pluggs										on rat
1.3	Lowering	17	Lowerings	4	Lowerings	4.25	WA 320 Komatsu	3.8	0.58	9.367	
	the pump				/Hr						
	Cutting the						Vermeer CC135				
1.5	asphalt at	160	Feet	100	Feet/Hr.	1.6	A	2.5	0.9	3.6	
	intersection										
	Excavating	5.92592593	CY	5	CY/Hr.	1.185185185	Trencher	1.5	0.78	1.386667	Tota
	trenches for										Consur
1.7	Cold patch	1.18518519	Trips	5	Trips/Hr.	0.237037037	WA 320 Komatsu	3.8	0.7	0.630519	
1.8	Running the	9	Hrs.			153	2" Dewatering	0.46	0.9	63.342	
	dewatering						Pump				el
1.9	Getting the	17	Trips	3	Trips/Hr.	5.666666667	WA 320 Komatsu	3.8	0.7	15.07333	Cons.*
	HDPE pipes										ad Fact
1.10	Fusing the	7	Joints	4	Joints/Hr.	29.75	Butt fusion	1.38	0.7	28.7385	
	HDPE pipes						machine				
	Total									151.463	

Figure 14. Spreadsheet calculations for the machinery fuel consumption during the pipe-bursting process

	Process	Quantities	Unit	Prod Rate/hr.	Unit	Time (hours)		Fuel cons.	Load factor	Total Cons.	Remarks
	Entry Pit	Quantities		Entry Pit	Length of	Time (nours)	Machine	cons.	Tactor		gth of the
2			widtho	for 10'	the entry					entry pit	•
			For slope	deep	pit (Feet)					sloping p	
			1		37					10 feet de	
2.1	Making Cut into	1446.7			Feet/Hr.	14.467	Vermeer CC 135 A	2.5	0.84		
	the asphalt										
2.2		305.3703704	CY	20	CY/Hr.	15.26851852	PC 228 LC Komatsu	4.2	0.81	51.9435	Time
	Excavating										Quantity oducti
2.3	Hauling the material from	311.2903704	СҮ	5	Trips/Hr.	24.90322963	WA 320 Komatsu	3.8	0.7	66.24259	
	the site	124.5161481	Trips								
2.4	Place and	17	Placings	3	Place/Hr	5.666666667	PC 228 LC Komatsı	4.2	0.84	19.992	
	remove the										Tota
	Joining the								a		Consum
2.5	bursting head to	1/	Joints	1	Joint/Hr.	17	PC 228 LC Komatsu	4.2	0.75	53.55	
	the pipe and compressor										Time*F Cons.*L
	Placing the										Facto
2.6	bursting head in	17	Placings	2	Times/Hr.	8.5	PC 228 LC Komatsu	4.2	0.75	26.775	
	the pit										
2.7	Placing and	24	Dlasings	C			DC 200 LC Kerneter	4.2	0.75	17.05	
2.7	removin the steel plates	34	Placings	6	Times/Hr	5.000000007	PC 200 LC Komatsu	4.2	0.75	17.85	
	steer plates										
	Total									266.7338	

Figure 15. Fuel consumption during the entry pit preparation for pipe-bursting

				Prod				Fuel	Load	Total	
	Process	Quantities	Unit	Rate/hr.	Unit	Time (hours)	Machine	cons.	factor	Cons.	Remark
3	Bursting Proce	ss									
3.1		17	Bursting	1.5	Hrs./Burst	25.5	Compressor 400 CF	5.8	0.9	133.11	The th
	Bursting						Groundowich RW 1	2.12	0.9	48.654	stepi
3.2	Taking the	17	Times	12	Times/Hr	1.416666667	PC 200 LC Komatsu	4.2	0.78	4.641	bursting
	expander out										shown
3.3	Reversing	17	Reverse	4	Pulls/Hr.	4.25	PC 228 LC Komatsu	4.2	0.66	11.781	the sa
	the Bursting		Pulls								equati
											are use
	Total									198.186	calculat
4	Finishing										
4.1	Removing	34	Plugs	4	Plugs/Hr.	8.5	PC 228 LC Komatsu	4.2	0.78	27.846	
	the Blocks										
4.2	Backfilling	305.37		5	Trips/Hr.	24.4296	WA 320 Komatsu	3.8	0.7	64.98274	
	for entry Pit	122.148	Trips								
4.3	lowering the	34	Lowering	6	Lowering/H	5.666666667	PC 228 LC Komatsu	4.2	0.78	18.564	
	Compactpor				r.						
4.4		305.37	CY	7	CY/Hr.	43.62428571	LP8500 DYNAPAC	0.85	0.84	31.14774	
	Compacting										
4.5		1	Trip	5	Trips/Hr.	3.4	WA 320 Komatsu	3.8		9.044	
	Cold Patch	17	Number	2	Hrs.	8.5	PC 228 LC Komatsu	4.2	0.75	26.775	
	Total									178.3595	

Figure 16. The fuel consumption during the bursting and finishing process for pipe-bursting

				Prod				Fuel		Total	
	Process	Quantities	Unit	Rate/hr.	Unit	Time (hours)	Machine	cons.	factor	Cons.	Remarks
	Lateral										
5	trenches	Length	Width	Depth							
		4	3	10							
5.1	Cutting the	8	Feet	100	Feet/Hr.	3.52	Vermeer CC 135A	2.5	0.84	7.392	The
	asphalt										dimensi
5.2	Excavating	195.5555556	CY	20	CY/Hr.	9.77777778	PC 228 LC Komatsu	4.2	0.81	33.264	of later
	lateral										trenche
5.3	Hauling the	195.5555556	CY	5	Trips/Hr.	15.64444444	WA 320 Komatsu	3.8	0.7	41.61422	are
	material from	78.2222222	Trips								decide
5.4						15.64444444	624E John Deere	3.8	0.7	41.61422	
	Backfilling										used in t
5.5		195.5555556	CY			48.88888889	Multiquip	0.31	0.84	12.73067	
	Compaction	4	CY/Hr.				Mvc82Vhw				process
5.6		1	Trip	5	Trips/Hr.	3.4	WA 320 Komatsu	3.8	0.7	9.044	latera
	Cold Patch	17	Number	2	Hrs.	8.5	PC 228 LC Komatsu	4.2	0.75	26.775	connect
	Placing -				Placing/H						S
5.7	removing the	44	Placings	6	r	7.333333333	PC 200 LC Komatsu	4.2	0.75	23.1	
	steel plates										
	Total									195.5341	

Figure 17. Fuel consumption during the construction of lateral trenches for pipe-bursting

6	material and		loads for	loads for	Loads for			No. of load	ding required
	equipments	No. of pipes	base	asphalt	pipe			for pipe, ba	se and aspha
	from store to	128	6	2	2			were de	etermined
		Milage	Unit		Hours	Vehicles	Distance	Total Cons	Remarks
6.1	cold patch	5	MPG			Sterline	40	8	
	pipes (40 feet								Consumptio
6.2	long)	4.77	MPG			Flat bed truck	70	14.6750524	=
63	base material	5	MPG			Sterling	300	60	Distance/M
	Asphalt		MPG			Sterling	120		age
0									
сг	plates and	A 77	MPG			Flat bed truck -	40	8.38574423	
	Boxes (2)						40	8.38574423	
6.6	PC 200 LC	4.77	MPG			Flat bed truck -	70	14.6750524	
6.7	PC 228 LC	4.77	MPG			Flat bed truck -	70	14.6750524	
6.8	Groundwinch	16	MPG			GMC Sierra 2500	50	3.125	
	Comp. & Burst								
6.9	Head	16	MPG			GMC Sierra 2500	50	3.125	
6.10	Compactor	16	MPG			GMC Sierra 2500	60	3.75	
	Dewatering								
6.11	pump	16	MPG			GMC Sierra 2500	60	3.75	
6.12	Machine	16	MPG			GMC Sierra 2500	50	3.125	
	Concrete								
6.13	machine	16	MPH			GMC Sierra 2501	40	2.5	
	road signs &								
6.14	cones	5	MPG			Utility Truck	40	8	
6.15	Loading/unloa		12	Pipes/Hr.	10.66666667	WA 320 Komatsu	3.8	40.5333333	
	ding Pipes						GPH		
	Tatal							212 210225	
	Total							212.319235	

Figure 18. Fuel consumption for moving the material and equipment for pipe-bursting

7	Taking machinery to site and back	-		Total distance 52					
				Time		Fuel	Load	Total	
		Milage	Unit	(Hrs.)	Vehicles	cons.	Factor	Cons	Remark
									52/16 =
7.1	Compressor	16	MPH		GMC Sierra 2500 HD			3.25	3.25
7.2	Groundowinch	16	MPH		GMC Sierra 2500 HD			3.25	
7.3	Bursting Head			10.4	WA 320 Komatsu	3.8	0.85	33.592	
7.4	Compactor			10.4	WA 320 Komatsu	3.8	0.85	33.592	
7.5	Cones and Signs	10	MPH		Utility truck			5.2	
7.6	Trench Boxes			10.4	PC 228 LC Komatsu	4.2	0.75	32.76	
7.7	Placing the metal sheet and			10.4	PC 228 LC Komatsu	4.2	0.81	35.3808	
	Total							111.644	

Figure 19. Fuel consumption for moving the machinery and material on the site

8		Entry Pit (F	or asphalt	cutting)			Laterals (A	Asphalt cut	ting)	Area of	Area
	Asphalt Restoration	Length(Ft)	Width (Ft)	Depth (Ft.)	Depth of asphalt	Depth of Base Ft.	Length (Feet)	Width	Depth (Ft.)	concrete (Sft)	restora Sqft
		25	3	1.33	0.33	1	4	5	1.33	12.75625	-
		12	5	1.33							
	Process	Quantities	Unit	Rate/hr.	Unit	Time (hours)	Machine	cons.	factor	Cons.	Remarks
8.1	Making Cut into the Asphalt	1610	Feet	100	Feet/Hr.	16.1	Vermeer CC 135A	2.5	0.84	33.81	
8.2	Excavating the top 2 feet	156.3981481	CY	40	CY/Hr.	3.909953704	PC 228 PC Komatsu	3.8	0.81	14.85782	The top shows
8.3	Hauling the excavated material	20 7.819907407	CY Trips	0.75	Loads/Hr.	10.42654321	Sterling	7	0.75	54.73935	umens
8.4	Indendi	117.5925926		5	Trips/Hr.	9.407407407	WA 320 Komats	3.8	0.7	25.0237	, used in calculat
	Laying the Base course	47.03703704	Trips	30	CY/Hr.	3.919753086	416 E CAT Backhoe	4	0.75	11.75926	Follow formula
8.5	Compacting	117.5925926	CY	15	CY/Hr.	7.839506173	Compactor	1.25	0.84	8.231481	used
8.6	Tack coat	3175 1.5	sqft. Hrs.	1000	sqft./Hr.	4.675	Truck	4.5	0.75	15.77813	Time Quantity
8.7	Asphalt restoration	38.80555556	CY	15	CY/Hr.	2.587037037	Backhoe	4	0.75	7.761111	duction Tota
8.8	Rolling the asphalt	3175	sqft. Iayers 2"	500	sqft./Hr.	12.7	Dynapac CA25PD road roller	3	0.84	32.004	Consum n =
8.9	Concreting around the	2.806375		8.88	CY/Hr.	0.316033221	concrete mixer	2	0.78	0.493012	Time*F Cons.*L Facto
	Total									204.4579	
	Gross Total (Gal	lons)								1518.69	
	CO2 emission (P	ounds)								33715.11	

Figure 20. Fuel Consumption during asphalt restoration for pipe-bursting

APPENDIX C

	Length of line (Ft 4940		1 trip (Mile)	Depth of trench	Width of trench	Speed WA 320 (Miles/H	Speed of Hauling truck (Miles/hr.) 35	Site factor 0.9	Volume (Cft) 148200	Volume of excav. (CY) 5488.889	loader bucket 2.5
Sr. No.	Process	Quantities		Prod Rate		Time (Hrs)		Fuel Cons.	Load	Diesel Cons	Remarks
1	No intersection:	: The lengtl 160 = 494		ne = 5100-							calculations are for the
1	Making cut into asphalt	10200	Feet	100	Feet/Hr.	102	Vermeer CC135 A	2.5	0.84	214.2	portion of road
2	Moving pipes from Inventory	123.5	Trips	5	Trips/Hr.	24.7	WA 320 Komatsu	5	0.75	92.625	without any intersection
3	Excavating the trench	5488.889	СҮ	25	CY/Hr.	219.5556	PC 228 LC Komatsu	4.2	0.81	746.928	S
4	Placing the trench box and	247	Placings	4	Placing/Hr.	61.75	PC 228 LC Komatsu	4.2	0.84	217.854	
5	Hauling the material to the	1278.911 63.94556			Percentage Loads/Hr.	85.26074	Sterling LT 9513	7	0.7	417.7776	
6	Hauling exacavated	1460.044 584.0178			Percentage Trips/Hr.	116.8036	WA 320 Komatsu	3.8	0.7	310.6975	
7	Hauling of material to	2744.444 1097.778			Percentage Trips/Hr.	91.48148	WA 320 Komatsu	3.8	0.7	243.3407	

Figure 21. Fuel consumption calculations for open-cut for the non-intersection area (Continued on next page)

Sr. No.	Process	Quantities	Unit	Prod Rate	Unit	Time (Hrs)	Machine	Fuel Cons.	Load factor	Diesel Cons	Remarks
8	Laying out	1.111111	CY	5	Trips/Hr.	49.4	WA 320 Koma	3.8	0.7	131.404	
	the bedding	247	Trips	12	levels/Hr.	20.58333	PC 200 LC Korr	4.2	0.78	67.431	
9	Placing the	247	Placings	6	Placings/	41.16667	PC 200 LC	4.2	0.75	129.675	
	pipe and				Hr.		Komatsu				
10	Putting	2.592593	CY	5	Trips/Hr.	49.4	WA 320	3.8	0.7	131.404	
	aggregate	247	Trips				Komatsu				
11		1460.044	СҮ	5	Trips/Hr.	116.8036	WA 320	3.8	0.7	310.6975	
	Backfilling	584.0178	Trips				Komatsu				
12	Placing	247	Placings	12	Placings/	20.58333	PC 228 LC	4.2	0.78	67.431	
	compactor				Hr.		Komatsu				
13		4391.111	СҮ	10	CY/Hr.	439.1111	LP 8500	0.85	0.84	313.5253	
	Compacting						DYNAPAC				
14		0.733333	СҮ	5	Trips/Hr.	49.4	WA 320	3.8	0.7	131.404	
	Cold patch	247	Trips				Komatsu				
15	Placing and	40	Feet/day	6	Times/Hr.	20.5	PC 200 LC	4.2	0.75	64.575	
	removing	123	Days				Komatsu				
	Total									1347.547	

Figure 21. Fuel Consumption calculations for open-cut at non-intersection area

								Fuel	Load	Diesel	
. No.	Process	Quantities	Unit	Prod Rate	Unit	Time (Hrs)	Machine	Cons.	factor	Cons	Remarks
2	At the	Volume (CY)	Length of	f pipe (Ft)	Length of	this line					volume
	intersections	177.77778	1	LO	16	0					the
1	Excavating	177.77778	СҮ	25	CY/Hr.	7.111111	PC 228 LC	4.2	0.81	24.192	excavatio
	the trench						Komatsu				and the
2	Moving pipe	8	Trips	5	Trips/Hr.	1.6	WA 320	5	0.75	6	lenghts
	from the						Komatsu				pipe ar
3	Placing the	16	Placings	4	Placings/H	4	PC 228 LC	4.2	0.84	14.112	mentior
	trench box				r.		Komatsu				in the to
4		8.8888889	Trips	0.75	Loads/Hr.	6.666667	Sterling LT	7	0.7	32.66667	row
	material						9513				
5	Laying the	16	Trips		Trips/Hr.		WA 320 Koma		0.7		
	bedding			12	Levels/Hr.	1.333333	PC 228 LC Kor	4.2	0.75		
6	Placing the	16	Placings	6	Placings/H	2.666667	PC 228 LC	4.2	0.75	8.4	
	pipe and				r.		Komatsu				
7	Putting	16	Trips	5	Trips/Hr.	3.2		3.8	0.7	8.512	
	aggregate						Komatsu				
8		56.8888889	Trips	5	Trips/Hr.	11.37778		3.8	0.7	30.26489	
	Backfilling						Komatsu				
9	p	16	Placings	12	Placing/Hr.	1.333333	PC 228 LC	4.2	0.78	4.368	
	compactor						Komatsu				
10		142.222222	СҮ	7	CY/Hr.	20.31746	LP 8500	0.85	0.84	14.50667	
	Compacting				_ · /··		DYNAPAC			0.515	
11		16	Trips		Trips/Hr.	-	WA 320 Koma		0.7		
	Cold patch				Ft./Hr.		PC 200 LC Kor		0.75	10.08	
12			Feet	6	Times/Hr.	1.333333		4.2	0.75	4.2	
	Removing	8	Days				Komatsu				
	Total									178.5262	
	TUTAI									1/0.5202	L

. No.	Process	Quantities	Unit	Prod Rate	Unit	Time (Hrs)				Diesel Cons	gas Cons.	Remarks
3	Placing the Manholes	Dimen (Excavati Length		Width outside the trench	No. of manholes	· · · /						The dimension for
1	Excavation	8 266.66667		25	18 CY/Hr.	266.66667 10.666667		4.2	0.81	36.288		excavatio and volum are
3	3 Laying the bedding	18	Trips		Trips/Hr. MH. Hr.		WA 320 Komatsu PC 200 LC Komats					mentione in the top
4	Constructing the manhole			1.5	Hr./MH	27	PC 228 LC Komat	4.2	0.81	91.854		row and a used in th
5	Backfilling	106.66667	Trips	5	Trips/Hr.	21.333333	WA 320 Komatsu	3.8	0.7	56.74667		calculatio
6	Compacting	4	CY/Hr.			66.666667	Multiquip Tamper plate	0.31	0.84		17.36	
	Total									203.9147	17.36	

Figure 23. Fuel consumption during placing the manholes for open-cut method

	_			_					Load	Diesel	-
Sr. No.	Process	Quantities	Unit	Prod Rate		Time (Hrs	Machine	Cons.	factor	Cons	Remarks
4	Connecting laterals to			Length (Ft)	Number of						
4	the main			Lateral	oi laterals						
	the main			10							
1	Excavating	277.77778	СҮ	25	CY/Hr.	11.11111	PC 200 LC	4.2	0.81	37.8	
	for laterals						Komatsu				
2	Hauling the	111.11111	Trips	5	Trips/Hr.	22.22222	WA Komatsu	3.8	0.7	59.11111	Time =
	material to						320				Quantity
3	Laying the	25	Times		Times/Hr.		WA Komatsu 32		0.7		/Producti
	bedding			12	Levels/Hr		PC 200 LC Koma		0.75		on rate
4	Placing the	25	Placings	6	Placings/	4.166667	PC 200 LC	4.2	0.75	13.125	
	pipe and				Hr.		Komatsu				Total
5	Putting aggregate	25	Trips	5	Trips/Hr.	5	WA Komatsu 320	3.8	0.7	13.3	Consump tion =
6	aggregate	212.77778	СҮ	5	Trips/Hr.	17.022		3.8	0.7	45.27852	
	Backfilling	85.11				171022	320	510	017	1012/002	el
7		212.77778		7	CY/Hr.	30.39683	LP 8500	0.85	0.84	21.70333	Cons.*Lo
	Compacting						DYNAPAC				ad Factor
8		25	Trips	5	Trips/Hr.	5	WA Komatsu 32	3.8	0.7	13.3	
	Cold patch	250		50	Ft./Hr.	5	PC 200 LC Koma	4.2	0.75	15.75	
	Total									239.2305	

Figure 24. Fuel Consumption during connection of the laterals to the main line during the open-cut

5	machinery		Number of pipes		pes						
	from Factory		20 Feet	10 Feet	Total						
	to site		247	16	263						
		fuel Milage (MPG)	Unit	Prod Rate	Distance	Time	Machine		Load Factor	Total Cons	Remark
1	Pipe	4.77	MPG		70		Flat bed truck - 5565 HRST 07			14.67505	
2	Loading and unloading the			12 Pipes/Hr		21.91667	WA 320 Komatsu	3.8 GPH	0.78	64.961	Total
3	Steel Plates and Trench	4.77	MPG		40		Flat bed truck - 5565 HRST 07			8.385744	Consum tion =
4	Road Signs and Cones	5	MPG		40		Utility truck			8	Distanco fuel
5	Compactor				60	3	WA 320 Komatsu	3.8	0.84	9.576	Milage
6	PC 228 LC Komatsu	4.77	MPG		70		Flat bed truck - 5565 HRST 07			14.67505	
7	PC 200 LC Komatsu	4.77	MPG		70		Flat bed truck - 5565 HRST 07			14.67505	
8	Cold patch	5	MPG		40		Sterling			8	
	Total									142.9479	

Figure 25. Fuel consumption from moving the machinery from factory to site

			Area of	Area of									
	Asphalt	Depth of	trench	manholes	Depth of	Width of	Depth of Base						
	6 Restoration	excavation	sqft	Sqft.	asphalt	excav.	course (Ft.)						
		1.33	26750	1260	0.33	5	1						
								Fuel	Load	Diesel			
r. No.	Process	Quantities	Unit	Prod Rate	Unit	Time (Hrs)	Machine	Cons.	factor		gas Cons.	Remarks	
	1 Making cut	11026	Feet	100	Feet/Hr.	110.26	Vermeer CC	2.5	0.84	231.546		The top rov	
												shows all	
	2 Excavating the	1379.751852	CY	40	CY/Hr.	34.4937963	PC 228 PC	4.2	0.78	113.0017		the	
												dimension	
	3 Hauling the		CY/Load	0.75	Loads/Hr.	51.74069444	Sterling	7	0.7	253.5294		and	
		68.98759259										quantities	
	4 Laying the base	1037.407407	CY	5	Trips/Hr.	82.992	WA 320 Komat	3.8	0.7	220.7587		used in the	
		44.4.00	- .	45	0//11	60.460.400.000	416 E CAT					calculation	
		414.96		15	CY/Hr.	69.16049383		4	0.75			for asphal	
	5 Compacting	7	CY/Hr.			148.2010582	LP 8500 DYNAF	0.85	0.84	105.8156		restoration	
	-												
	6	342.3444444	CY	15	CY/Hr.	22.82296296		4	0.75	68.46889			
	sphalt restoratio		<i>c</i> .		6. 1		Backhoe						
	7	28010	sqft	500	sqft/Hr.	56.02	/ · I · · ·	3	0.84	141.1704			
	Rolling		-				CA25PD road						
	Concreting 8 around the	2.8	CV	0.00	CV/11=	0.315315315	Concrete	2	0.78	0.491892			
	8 around the Manhole	2.8	Cr	0.00	CY/Hr.	0.315315315	mixer	2	0.78	0.491892			
	Mannoie												
otal										1342.264			
										1372.204		Total fuel	
	Gross Total (Ga	llons)								5697.85	17.36	consumed	
	21000 10101 (00									0007.00	27.50	(Gallons)	
	CO2 emission (Pound)								126492.3	336.784	Total CO2	
												emitted	
	Total CO2 emission (Pounds) 126829.1 (Pc												

Figure 26. Fuel consumption during the asphalt restoration and total CO₂ for open-cut

APPENDIX D

Times		8 am	- 9 am	9 am -	10 am	10 am	- 12 pm	12 pm	- 1 pm	1 pm	-2 pm	2 pm -	-4 pm	4 pm	- 6 pm	
Type os vehicle	es	Cars/min	Heavy	cars/min	heavy	Cars/min	Heavy	Cars/min	Heavy	Cars/min	Heavy	Cars/min	Heavy	Cars/min	Heavy	7
Days										Numbers		•	· · ·			Remarks
8/10/2011						26	4			28	3					
8/17/2011										25				29		2
8/19/2011						30	3			38	2	33	2	2		1
8/22/2011								37	2							1
9/2/2011										27	1					-
9/8/2011						23	2	37	1	26	1					These are the
9/19/2011												25	1	. 28	5	2 actual site
						26	3							29		1 readings take
9/28/2011						19										at different
10/10/2011						23	2									times of the
10/18/2011						27	3	33	3							day
10/26/2011		41	2									27	2	30)	2 (Vehicle/Min.
										12		16	1	. 23		3
11/15/2011														15		3
11/16/2011		17				17	0.5									1
11/20/2011								26	1	29	4	23	2	16		2
11/28/2011				18.5	2	13										1
				28	1			32	1	23	1					
12/6/2011				15	1			17	2	15	2					1
		39	2									13	2	18.5		1
		22	1	13										25		1
12/8/2011		27	1	23												
				21												
				37	1			39	2	38	1					
12/9/2011				18.00	0.50			19	1	13	0.5					
	N. Main	2460		1950		1660		2260		2100		1800		1590)	T
	N'. Main	2340		1680		1380		1950		1600		1500		1740		The above
	Poe	1320		1095		1020		1140		840		960		1110)	readings are
Average per	Kroger	1620		1320		1140		1560		1380		1380		1380		convered to
Hour	Mall	1020		840		780		1020		720		780		930)	(Vehicles/Hr.
																Then an
																average for
Locations	N. Main	N' Main	Poe	Kroger	Mall											the day was
AADT	18870			<u> </u>	8580											calculated
						,				1				1		_

Figure 27. The traffic density measured during the day time from 8am-6pm

APPENDIX E

Bursting Zone	No. of Traffic	Location	Plan type	L'th of Zone (L)	Number of vehicles (T)	Duration (Hrs.)	Original speed	Reduced speed	Days (D)	Fuel increase	Remarks
Excavating	g, Set-up										
& Back	filling										
1	1	N. Main street south of Poe	Lanes Closed	0.135	16810	22	56.35	40.25	2.75	11.0724	
		Poe and N.Main Intersection - N.Main North of	Plan 4 - Two Lanes								calculated using the timeline
2	1	Poe	Closed	0.09	18870	20	56.35	40.25	2.5	7.532895	spreadsheet
3,4,5,6,7	5	N. Main street North of Poe	Plan 4 - Two Lanes Closed	0.135	18870	100	56.35	40.25	12.5	56.49671	Then these durations are converted to
8,9,10,11, 12	5	N.Main at Kroger	Lanes Closed	0.135	13680	100	56.35	40.25	12.5	40.95787	number of
13,14,15, 16,17	5	N.Main at Mall	Lanes Closed	0.135	8580	100	56.35	40.25	12.5	25.68849	
Total										141.7484	

Figure 28. Excess fuel consumption by traffic during the set-up, excavation and backfilling processes for the pipe-bursting

	No. of			L'th of	No. of		Original speed	Reduced speed		Fuel increase	
Bursting	Traffic			Zone (L)	vehicle	Duration	(Vn)	(Vr)		due to	
Zone	areas	Location	Plan type	(Km)	s (T)	(Hrs.)	(Km/Hr.)	(Km/Hr.)	Days (D)	Speed	Remarks
Burst	ting										
		N.Main	Plan 4 - One								
	1	South of	lane Closed	0.225	8405	9	56.35	40.25	1.125	3.774681	
		North of	Plan 4 - One								
1	1	Poe	lane Closed	0.075	9435	9	56.35	40.25	1.125	1.412418	
		South of	Plan 4 - One								
	1	Poe	lane Closed	0.135	8405	9	56.35	40.25	1.125	2.264808	Bursting is
		North of	Plan 4 - One								performed
2	1	Poe	lane Closed	0.135	9435	9	56.35	40.25	1.125	2.542352	
		South of	Plan 4 - One								300 feet
	1	Poe	lane Closed	0.045	8405	9	56.35	40.25	1.125	0.754936	
		North of	Plan 4 - One								is
3	1	Poe	lane Closed	0.255	9435	9	56.35	40.25	1.125	4.80222	considered
		North of	Plan 4 - One								to be a
4,5	2	Poe	lane Closed	0.315	9435	18	56.35	40.25	2.25	11.86431	zone

Figure 29. Excess fuel consumption by traffic during the bursting process for pipe-bursting (Continued on next page)

Durating	No. of Traffic			L'th of	Number of	Duration	Original	Reduced		Fuel increase	
Bursting Zone	areas	Location	Plan type	Zone (L) (Km)	Number of vehicles (T)	(Hrs.)	speed (Vn)	speed (Vr)	Days (D)	due to Speed Reduction	Remark
		N. Main	Plan 4 - One								Speed
	1	North of Poe	lane Closed	0.21	9435	9	56.35	40.25	1.125	3.954769647	Reduction
		N. Main at	Plan 4 - One								Increased
6	1	Kroger	lane Closed	0.105	6840	9	56.35	40.25	1.125	1.433525405	Fuel=(((3*0.000
		N. Main	Plan 4 - One								001*Vr*Vr-
	1	North of Poe	lane Closed	0.12	9435	9	56.35	40.25	1.125	2.25986837	0.0004*Vr+0.031
		N. Main at	Plan 4 - One								9)-
7	1	Kroger	lane Closed	0.195	6840	9	56.35	40.25	1.125	2.662261466	
		N. Main at	Plan 4 - One								*Vn-
8,9,10,11	4	Kroger	lane Closed	0.315	6840	36	56.35	40.25	4.5	17.20230485	0.0004*Vn+0.03
		N. Main at	Plan 4 - One								19))*L)*T*D
	1	Kroger	lane Closed	0.21	6840	9	56.35	40.25	1.125	2.867050809	
		N. Main at	Plan 4 - One								
12	1	Mall	lane Closed	0.09	4290	9	56.35	40.25	1.125	0.770654635	
		N.Main at	Plan 4 - One								
	1	Kroger	lane Closed	0.12	6840	9	56.35	40.25	1.125	1.638314748	
		N. Main at	Plan 4 - One								
13	1	Mall	lane Closed	0.18	4290	9	56.35	40.25	1.125	1.54130927	
		N. Main at	Plan 4 - One								
l,15,16,17	4	Mall	lane Closed	0.315	4290	36	56.35	40.25	4.5	10.78916489	
Fotal										45.11922409	
lotal										45.11922409	

Figure 29. Excess fuel consumption by traffic during the bursting process for pipe-bursting

Asp	halt	Length of Tren	ich for bypass	Rate	of Restora	ation for tre	ench				
Resto	ration	50)		1(00					
Burstin	Traffic			Zone (L)	of	Duration	speed	speed		increase	
g Zone	areas	Location	Plan type	(Km)	vehicles	(Hrs.)	(Vn)	(Vr)	Days (D)	due to	Remarks
		N. Main South	Plan 4 - Two								
1	1	of Poe	Lanes Closed	0.135	16810	3.75	56.35	40.25	0.46875	1.88734	
		N. Main North	Plan 4 - Two								restoration
2,3,4	3	of Poe	Lanes Closed	0.135	18870	9.75	56.35	40.25	1.21875	5.508429	
		N. Main North	Plan 4 - Two								determine
5,6	2	of Poe	Lanes Closed	0.135	18870	8.5	56.35	40.25	1.0625	4.80222	the number
_		N. Main North	Plan 4 - Two			a					of hours
7	1	of Poe	Lanes Closed	0.135	18870	3.75	56.35	40.25	0.46875	2.118627	required
		N. Main at	Plan 4 - Two								
8,9	2	kroger	Lanes Closed	0.135	13680	6.5	56.35	40.25	0.8125	2.662261	
		N. Main at	Plan 4 - Two								
10	1	Kroger	Lanes Closed	0.135	13680	3.75	56.35	40.25	0.46875	1.53592	
		N. Main at	Plan 4 - Two								
11	1	Kroger	Lanes Closed	0.135	13680	4.25	56.35	40.25	0.53125	1.740709	
		N. Main at	Plan 4 - Two								
12	1	Kroger	Lanes Closed	0.135	13680	3.75	56.35	40.25	0.46875	1.53592	
			Plan 4 - Two								
13,14,15	3	N. Main at Mall	Lanes Closed	0.135	0	9.75	56.35	40.25	1.21875	0	

Figure 30. Excess fuel consumption by traffic during the asphalt restoration process for pipe-bursting

	No. of			L'th of	Number		Original	Reduced		Fuel		
Bursting	Traffic			Zone (L)	of	Duration	speed	speed		increase		
Zone	areas	Location	Plan type	(Km)	vehicles	(Hrs.)	(Vn)	(Vr)	Days (D)	due to	Remarks	
		N. Main at	Plan 4 - Two									
16	1	Mall	Lanes Closed	0.135	8580	4.25	56.35	40.25	0.53125	1.091761		
		N. Main at	Plan 4 - Two									
17	1	Mall	Lanes Closed	0.135	8580	4.75	56.35	40.25	0.59375	1.220203		
		N. Main										
	1	south of	Plan 4 - One	0.045	0405	2		40.25	0.25	0 107704		
-	1	Poe N. Main	Lane Closed	0.045	8405	2	56.35	40.25	0.25	0.167764		
		North of	Plan 4 - One									
	1	Poe	Lane Closed	0.045	9435	2	56.35	40.25	0.25	0.188322		
Bypass											Speed	
Trench at			Plan 4 - Two								reduction	
Poe	2	Poe Road	Lanes Closed	0.045	10575	4	56.35	40.25	0.5	0.422153	due to	
											batches,	
Total										27.386		
Cold Batch	es, steel p	plates and si	gns								signs is	
		N. Main		0 765	4000			40.0	45		also	
		Street	no plan	0.765	4390	416	56.53	48.3	45	106.35	considered	
Cross Tata		,				E in				249.01	Fuel Consumed	
Gross Tota												
											(Gallons) CO2	
						F	xcess CO2	(Pounds)		6848.83	emitted	
								(100110.0)			(Pounds)	
		*							•		(100100)	

Figure 31. Total excess CO₂ emission by traffic during the pipe-bursting process

APPENDIX F

No Intersection Zone (Feet)	Length of line laid in 1 day (Feet/day)	N. main North of Poe	N. Main at Kroger	N. Main at Mall	N. Main South of poe	Hrs./day				
=4940	40	1700	1500		350					
Zone	Location	Plan Type	Length of zone (Miles)(L)	No. of vehicles (T)	Duration (Hrs.)	Original speed (Vn)	Reduced speed (Vr)	Days (D)	Fuel increase due to	Remarks
	N.Main south of Poe	Plan 4 - Two lanes closed	0.06	16810	70	56.35	40.25	8.75	15.65794	Top row shows the length of the cons.
	N. Main north of Poe	Plan 4 - Two lanes closed	0.06	18870	340	56.35	40.25	42.5	85.37281	zones separated according to
	N. Main at Kroger	Plan 4 - Two lanes closed	0.06	13680	300	56.35	40.25	37.5	54.61049	the traffic density
	N. Main at Mall	Plan 4 - Two lanes closed	0.06	8580	300	56.35	40.25	37.5	34.25132	Prod. rate was determined using timeline
Total									189.8925	

Figure 32. Excess fuel consumption by traffic during the open-cut process at the non-intersection zone

	Length of pipe	width of	Industrial	Mall	Kroger	Width of				
on Zone	laid in 1 day	Parkview		entrance		Poe Road	Hrs./day			
160	12.5	25	25	30	30	50	8			
			Length of		Duration	Original	Reduced		Fuel increase	
Zone	Location	Plan Type	zone	vehicles	(Hrs.)	speed	speed	Days (D)	due to Speed	Remarks
		Plan 4 - Two								
Main and	Poe Road	Lanes Closed	0.03	10575	32	56.35	40.25	4	2.25148518	Width of the
Poe	N. Main South	Plan 4 - Two								roads at the
intersecti	of Poe	Lanes Closed	0.036	16810	16	56.35	40.25	2	2.14737395	intersection
on = 50	N.Main North	Plan 4 - Two								is mentione
feet wide		Lanes Closed	0.036	18870	16	56.35	40.25	2	2.410526261	in the top ro
	N. Main south									and is used
	of Parkview	Plan 4 - Two								for
	Drive	Lanes Closed	0.036	18870	8	56.35	40.25	1	1.20526313	
At	N. Main North									the length c
Parkview	of Parkview	Plan 4 - Two								pipeline at
Drive	Drive	Lanes Closed	0.036	18870	8	56.35	40.25	1	1.20526313	intersection
	N. Main south									
	of Industrial	Plan 4 - Two								
	Parkway	Lanes Closed	0.036	13680	8	56.35	40.25	1	0.873767866	
At	N. Main North									
Industrial	of Industrial	Plan 4 - Two								
Parkway	Parkway	Lanes Closed	0.036	13680	8	56.35	40.25	1	0.873767866	
	N. Main South									
	of Mall	Plan 4 - Two								
	entrance	Lanes Closed	0.036	8580	9.6	56.35	40.25	1.2	0.657625288	
	N. Main North									
At Mall	of Mall	Plan 4 - Two								
Entrance	entrance	Lanes Closed	0.036	8580	9.6	56.35	40.25	1.2	0.657625288	
	N. Main south	Plan 4 - Two								
	of Kroger	Lanes Closed	0.036	13680	9.6	56.35	40.25	1.2	1.048521439	
At Kroger	N. Main North	Plan 4 - Two								
	of kroger	Lanes Closed	0.036	13680	9.6	56.35	40.25	1.2	1.048521439	
Entrance	UT KIUSEI	Lanca closed	0.036	12090	9.0	50.35	40.25	1.2	1.040321439	
Total									14.37974084	
iotai									14.3/3/4004	

Figure 33. Excess fuel consumption by traffic during the open-cut process for the intersection zone

			Length of	No. of	Duration	Original	Reduced		Fuel	
Zone	Location	Plan Type	zone (Miles)(L)	vehicles (T)	Duration (Hrs.)	speed (Vn)	speed (Vr)	Days (D)	increase due to	Remarks
		, , , , , , , , , , , , , , , , , , ,	N. Main	N. Main						
Asphalt	Restoration -		South of	North of	N. Main	N. Main				
No inte	rsection zone	Hrs./day	Poe	Poe	at Kroger	at Mall	Feet/Day			
		8	350	1700	1500	1500	200			
	N. Main	Plan 4 - Two								
	South of Poe	Lanes Closed	0.135	16810	14	56.35	40.25	1.75	7.046071	
	N. Main	Plan 4 - Two								
	North of Poe	Lanes Closed	0.09	18870	68	56.35	40.25	8.5	25.61184	
	N. Main at	Plan 4 - Two								
	Kroger	Lanes Closed	0.09	13680	60	56.35	40.25	7.5	16.38315	
	N. Main at	Plan 4 - Two								
	Mall	Lanes Closed	0.09	8580	60	56.35	40.25	7.5	10.2754	
Total									59.31645	

Figure 34. Excess fuel consumption by traffic during the asphalt restoration process for open-cut at no intersection zone

Asphalt restora the intersector sou Poe At Poe Road Poe	uth of	Plan Type Hr./day 8 Plan 4 - two lanes closed Plan 4 - two	poe Road 50	vehicles Length of Parkview 25		speed Kroger Entrance 30		Days (D) Feet/day	increase	Remarks
the intersect sou Poe At Poe Road At Parkview Drive Poe	ection uth of e e road	8 Plan 4 - two lanes closed	poe Road 50	Parkview	Parkway	Entrance	Entrance	Feet/day		
the intersect sou Poe At Poe Road At Parkview Drive Poe	ection uth of e e road	8 Plan 4 - two lanes closed	50		/			Feet/day		
At Poe Road At Parkview Nor Drive	uth of e e road	Plan 4 - two lanes closed		25	25	20	1			
At Poe Road Poe At Parkview Nor Drive Poe	e e road	lanes closed	0.045			50	30	30		
At Poe Road Poe At Parkview Nor Drive Poe	e e road	lanes closed	0.045							
At Poe Nor Road Poe Nor At Parkview Nor Drive Poe	-	Plan 4 - two	0.045	16810	6.666667	56.35	40.25	0.833333	1.118424	
At Poe Nor Road Poe Nor At Parkview Nor Drive Poe	-								_	
Road Poe Nor At Parkview Nor Drive Poe	orth of	lanes closed	0.045	10575	13.33333	56.35	40.25	1.666667	1.407178	
At Parkview Nor Drive Poe		Plan 4 - two								
At Parkview Nor Drive Poe	e	lanes closed	0.03	18870	6.666667	56.35	40.25	0.833333	0.836988	
	-	Plan 4 - two								
At	e	lanes closed	0.075	18870	6.666667	56.35	40.25	0.833333	2.092471	
1										
Industrial N. N	Main at	Plan 4 - two								
Parkway kro	oger	lanes closed	0.075	13680	6.666667	56.35	40.25	0.833333	1.516958	
At Kroger N. N	Main at	Plan 4 - two								
entrance kro	oger	lanes closed	0.075	13680	8	56.35	40.25	1	1.82035	
At Mall N. M	Main at	Plan 4 - two								
Entrance Ma	all	lanes closed	0.075	8580	8	56.35	40.25	1	1.141711	
Total									9.93408	
Cold Batches, ste	tool plates	and signs							5.55400	
	-	No Plan	0.765	4390		56.35	40.25	137	816.3079	
Gross Total (Gallons) Final fuel consumption 1089.83									1089.83	Fuel cons.
									(Gallons)	
Excess CO2 (Pounds) 21447.86										
			-							

Figure 35. Total ex	cess CO ₂ emission	by traffic dur	ring the o	pen-cut process