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Abstract 
 
 

 
Induction motor is one of the most important motors used in industrial applications. The 

operating condition may sometime lead the machine into different fault situations. The main types 

of external faults experienced by these motors are over loading, single phasing, unbalanced supply 

voltage, locked rotor, phase reversal, ground fault, under voltage and over voltage. The machine 

should be shut down when a fault is experienced to avoid damage and for the safety of the workers.  

Computer based relays monitor the machine and disconnect it during the faults. The relay logic 

used to identify these faults requires sophisticated signal processing techniques for fast and reliable 

operation. Artificial Intelligence (AI) techniques such as Artificial Neural Networks (ANN) have 

been applied in induction motor relays.  Though the ANN based methods are reliable, the selection 

of the ANN structures and training is time consuming.  Recently it is observed that the AI 

techniques such as Support Vector Machines (SVM) are alleviating some of the limitations of ANN 

method. 

 

The objectives of this study are to develop a SVM based induction motor external faults 

identifier and study its performance with real-time induction motor faults data. Data collected from 

a 1/3 hp, 208 V three-phase squirrel cage induction motor is used in this project. Radial Bases 

Function kernel is used to train and test the SVM, though the effect of other Kernel functions was 

also studied. The proposed SVM method uses RMS values of three-phase voltages and currents as 

inputs. The testing results showed the efficacy of the SVM based method for identifying the 

external faults experienced by 3-phase induction motors.  It is observed that the performance of the 

SVM based method is better than the ANN based method both in model creation and testing 

accuracy. 
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Chapter 1: Introduction 

 

Context of the Problem 

 

The induction motor is one of the most important motors used in industrial applications. 

It is used to convert electrical energy into mechanical energy. Its low cost and high performance 

in addition to its reliability make them the most popular alternating current motors used in the 

industrial and commercial fields (Wan & Hong, 2001). These motors have the flexibility of 

application fields; they can be used in low power applications such as household appliances or in 

large power applications such as petroleum industry. Despite the fact of high reliability of 

induction motors, the operating conditions may expose the machine into different fault 

conditions. These faults may lead to machine shut down, thus causing industrial production 

losses.  

Avoiding the unexpected shutdowns is important task for industries. In order to achieve 

this task the induction motor has to be continually monitored to identify faults in early stages. 

Detection of these faults in advance enables the maintenance engineers to take the necessary 

corrective actions as quickly as possible. The main types of external faults experienced by an 

induction motor are over-loading, single phasing, unbalanced supply voltage, locked rotor, phase 

reversal, ground faults, and under/over voltage.  

The history of fault monitoring and fault isolation started with the use of 

electromechanical relays to protect the motor against faults (Elmore, 2004). However, these 

electromechanical relays are slow in operation, consume significant power, and require periodic 

maintenance due to mechanical parts involved. The introduction of semiconductor technology 
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had a positive impact on the induction motor protection field, and replaced the electromechanical 

relays by solid state relays as their operating speed is faster, consume less power, cheaper to 

manufacture and provide more reliability. Development of microprocessor technology in late 

1970’s enabled their application in the induction motor protective relays (IEEE, 1997).  These 

relays allow the protection logic to be implemented by software programs.   

The recent development in computer software based on intelligent systems attracted the 

attention of relay engineers to use them in the diagnosis of faults in power system components 

such as induction motors (Kezunovic, 1997). The systems based on Artificial Intelligence (AI) 

techniques take the place of the human experts by providing with the required information about 

the system performance. These AI techniques include expert systems, Artificial Neural Networks 

(ANN) (Wasserman, 1989) and others (Mellit & Kalogirou, 2008). In earlier research projects at 

Bowling Green State University (BGSU), it was shown that ANN could be used to identify fault 

conditions in a simulated motor (Kolla & Varatharasa, 2000) and an actual motor (Kolla & 

Altman, 2007). The limitations of ANN based fault-detection systems are that they require 

significant time for training the network with the data, and their limited reliability of fault 

identification for untrained data. This project will use a new AI technique called Support Vector 

Machines (SVM) which is shown to provide better performance in some applications (Brun & 

Ernst, 2004). The training process in SVM is more efficient than ANN (E. Avci & D. Avci, 

2009). Statistical learning theory forms the backbone of SVM technique. The technique attempts 

to develop a more reliable classification system that can train faster. SVM will be applied to 

identify external fault conditions in a three-phase induction motor.  It will be trained with fault 

current and voltage signals obtained from a real induction motor and the efficacy of the method 

will be tested.  



3 
 

Statement of the Problem 

This project develops a fault detection method for three-phase induction motors to detect 

external faults experienced by the motor using SVM technique. The developed SVM method is 

tested with real-time faults data from a 1/3 hp three-phase squirrel cage induction motor. Effect 

of different SVM parameters on the training and testing of the induction motor data is studied. 

This study also investigates the classification performance characteristics of the proposed SVM 

based method in comparison to ANN based method. 

 

Objectives of the Study 

1. Study the usage of SVM method for pattern recognition applications and investigate the 

effect of different parameters on the training and testing of the method. 

2. Understand the usage of Libsvm software program for pattern recognition applications. 

3. Understand the characteristics of external faults on three-phase induction motors. 

4. Apply the SVM method for identifying external faults in three-phase induction motors. 

5. Study the performance of the proposed SVM based induction motor fault identification 

technique in comparison to ANN based method. 

 

.  
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Significance of the Study 

Induction motors are the most common electrical machines, because of their relatively 

low manufacturing cost and the ease of control. They represent about 80% of the 

electromechanical energy conversion machines (Wan & Hong, 2001). As indicated before, 

identifying faults in these motors and protecting them is an important aspect to reduce losses. AI 

techniques have been used to identify these faults in the past to some success.  These techniques 

include ANN and fuzzy logic.  This project attempts to apply other recent machine learning 

techniques that showed better performance than ANN in several fields such as text categorization 

and image classification.  SVM is one of the most successful AI techniques for pattern 

recognition applications proposed in recent times (Wang, 2005). This project applies the SVM 

method as a software tool for identification of faults in induction motors. SVM has advantages of 

handling large amount of data with several classes. It can effectively classify this data into 

classes using feature spaces. To classify the data, it uses nice mathematical techniques such as 

convex optimization that has the property to converge to a single global optimal solution. To the 

best of our knowledge, SVM technique has not been applied for identifying external faults in 3-

phase induction motors in the past. This technique is expected to improve the fault identification 

methods for induction motors.  
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Limitation of the Study 

This study uses the induction motor faults data collected from a data acquisition system 

in a previous research project conducted at BGSU. This study is, therefore, limited to the BGSU 

ECET lab equipment used in the ANN study (Altman, 2004). This study also uses Libsvm 

software to implement SVM method, and it is limited to the capabilities of the Libsvm software 

program. 

Definition of Terms 

ANN: Artificial Neural Network. 

SVM: Support Vector Machines. 

Protective Relays: Electromechanical or electronic devices used to trip the circuit breaker in 

case of faults diagnosis. 

Machine Learning: Brach of artificial intelligence, which study the design of system’s ability 

for learning from the data (Duda, Hart & Stork, 2001).   

Induction Motor Faults: Electrical or mechanical faults that lead the motor to unnecessary 

consequences, such as increase the drawn current and rising the temperature.  

RMS Values: Root mean square value.  

Kernel Function: It is a function that has the ability of providing a bridge from linearity to non-

linearity for algorithms, it can be expressed it terms of dot product (Konar & Chattopadhyay, 

2009).   

Statistical Learning Theory: It is a theory from statistical field deals with the problem of 
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finding a predictive function based on data (Wang, 2005). 

LabVIEW: “Laboratory Virtual Instrument Engineering Workbench”, is a designed system 

platform developed by National Instrumentation for visual programming language. 

SCXI: “Signal Conditioning Extension for Instrumentation”, a product from National 

Instrumentation used for interfacing the low level signals to signals can be send to DAQ (Data-

Acquisition Board). 

VI: “Virtual Instrument”, is LabVIEW subroutine contains a block diagram and a front panel. 
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Chapter 2: Review of Literature 

Introduction 

This chapter gives an overview of the existing literature of artificial intelligence methods 

and their application in fault identification. The first section describes different faults 

experienced by the 3-phase induction motors and their characteristics. It also discusses various 

protection schemes used for induction motors. A microprocessor based protective relay system is 

described in section 2. The third section describes the AI techniques which include the ANN and 

SVM.  Finally, the fourth section discusses available literature on AI techniques application for 

fault identification in power systems and induction motors. 

 

Faults in Induction Motors 

 

Three-phase induction motors are the most popularly used motors especially in industry 

because of their reliability and simplicity. These motors experience different types of faults 

during their operation (Elmore, 2004). These faults can be classified as internal and external 

faults.  The external faults include:  

1. Over loading 

2. Single phasing 

3. Unbalanced supply voltage 

4. Locked rotor 

5. Phase reversal 
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6. Ground fault 

7. Under voltage 

8. Over voltage 

A brief description of these faults and their characteristics is given below. Protection of 

these motors is an important task which has been challenging to engineers. Protective relays 

were used to monitor these faults and disconnect the motor in case of a fault.  Different relays 

used for protecting against these faults are also described below. 

Overloading 

Overload fault occurs when the mechanical torque exceeds the threshold point by 

applying mechanical load to the motor greater than full load rating. Overloading causes increase 

in phase currents, over heating the machine. In a traditional relay protection system, the over-

current relay trips the motor off-line when the current transformers (CT) encounter over current 

in the line. 

Single phasing: 

Single phasing is one of the unbalanced cases of the motor. It occurs when one of the 

three lines are open. More current flows through the other two lines and more heat is generated 

in stator winding.  In the traditional protection systems, a high-set instantaneous trip unit relay is 

used (Elmore, 2004). Single phasing also gives rise to negative sequence current.  A negative 

sequence relay can also be used to protect against this fault. 
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Unbalanced supply voltage: 

There are many causes of unbalance supply voltages such as unbalance loading, open 

delta transformers and unequal tap setting. This condition leads to reduction in motor efficiency, 

raises the motor temperature and excessive unbalanced full load current (Sudha & Anbalagan, 

2009). Three-phase voltages and currents during an unbalanced supply are shown in Figure 2.1. 

The protection design should detect over current condition during unbalanced supply (Elmore, 

2004). 

 

Figure 2.1. Three-phase Voltages and Currents for Induction Motor Under Unbalanced 

Supply Voltage. 

Locked Rotor 

Locked rotor occurs when the voltage is applied to a non-rotating motor. The stator 

current may be almost six times its rated value during this condition (Sudha & Anbalagan, 2009). 

There are many causes for this fault to occur for instance, if the rotor shaft is connected to heavy 
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load the motor may experience locked rotor conditions.  Locked rotor causes high current which 

leads to heating the rotor. Therefore locked rotor condition cannot be withstood for a long time. 

The allowed duration of the motor overloaded under locked rotor condition depends on the 

voltage applied to the motor terminals. Therefore, the protection system should be able to 

disconnect the motor when locked rotor condition exceeds the amount of allowed time. 

Traditional protective systems use over current relays with I-T characteristics (Elmore, 2004).  

Phase Reversal 

Phase reversal occurs when any of the two phases are reversed from the normal sequence, 

which leads the motor to rotate in the opposite direction. When the motor starts to rotate in the 

opposite direction, it can cause intensive damage. Therefore, this condition should be corrected 

immediately. Reverse-phase relays and negative sequence relays are used for the protection 

(Elmore, 2004).  

Ground Fault  

  Ground faults occur when any of the phases touches the ground. Ground faults are more 

frequent in motors than any other power system, because of their violent condition and frequent 

starts. The effects of this fault are intensive such as causing hazards to human safety and 

interference with telecommunication. It can be detected by measuring the ground leakage current 

(Elmore, 2004).  

 

Under Voltage 

Under voltage fault is reducing the supply voltage on the three phases by specific 

percentage, which makes the motor from attaining rated speed in specified time, increases the 
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current and overheats the machine. Low voltage protection relays are used in traditional systems. 

However, in order to avoid unwanted relay shutdowns due to momentary voltage drops, the AC 

contacts need a delay mechanism which delays the under voltage protection for a time period. 

This additional mechanism needs high sensitive devices and involves calibrations (Elmore, 

2004). 

Over Voltage 

Over voltage occur if the three phase voltages are greater than rated voltage. The effect of 

this fault is increasing current flow which leads unacceptable stress on the motor insulation due 

to high heat dissipation. Conventional protection systems use the over voltage relays to 

protection the motor during this condition (Elmore, 2004).  

 

Power System Relays 

 

Protective relays are used to protect power system apparatus against faults such as 

induction motor faults described in the previous section (Elmore, 2004).  The traditional 

protective relays based on electromechanical and solid state devices are mostly replaced by 

microprocessor based relays because of several advantages such as increased flexibility, 

improved reliability, faster response and economically viable (Sachdev, 1997). 

A microprocessor based relay design scheme consists of several subsystems, such as 

analog processing, analog to digital conversion, and digital processor as shown in Figure. 2.2 

(Sachdev, 1988). The starting point of this system is measuring the 3-phase voltages and currents 
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of the power system component such as induction motor. These quantities are first modified by 

current and voltage transformers and then processed in the analog pre-processing block. This 

block consists of auxiliary transformers, surge suppression circuit and low pass filer.  The 

auxiliary transformers are used for reduction of the inputs to levels that are compatible with the 

digital equipment used. The surge suppression circuits protect the relay from voltage surges. 

Low pass filters are used to band limit the inputs to avoid aliasing. The cut-off frequency of the 

low pass filters is selected considering the sampling frequency and the predominant high 

frequency components expected in the inputs. The outputs of the analog preprocessor are 

digitalized using A/D converters. The digitalized values representing voltages and currents are 

processed in a digital processor that performs two main functions. The first function is to 

estimate the parameters of the fundamental frequency voltage and current phasors. The second 

function of the digital processor is to use the parameters of the calculated phasors to compute the 

required additional parameters and thereby decide if the motor is experiencing an abnormal 

operating condition. Recently AI techniques are used in this relay logic block.  In this project the 

logic is implemented using SVM method to identify the faults in the induction motor.  A brief 

description of AI techniques is given in the next section.  

 

Figure 2.2. Block Diagram of a Microprocessor Based Relay Scheme. 
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Artificial Intelligence Techniques 

 

The concept of AI came from the notation of implementing the human’s intelligence in a 

machine, so it can perform the same kind of functions that features human thinking processes. AI 

composed of several branches such as expert systems (ES), genetic algorithms (GAs), fuzzy 

logic (FL), problem solving and planning (PSP), logic programming (LP), ANN, SVM, and more 

branches (Krishnamoorthy & Rajeev, 1996). These techniques have the ability to deal with 

nonlinear problems and to deal with large amount of data; once they are trained they can produce 

a model for the prediction of the new data. The AI techniques have been implemented in many 

disciplines such as engineering, economics, medicine, and military (Mellit & Kalogirou, 2008). 

This project uses SVM as an AI technique for classification and prediction of external faults 

experienced by three-phase induction motor.  It also compares the performance of SVM with 

ANN for fault identification. In the following two sections, ANN and SVM techniques are 

described briefly from the existing literature.  

Artificial Neural Networks 

ANN is an intelligent system that emulates the biological neural networks into a 

mathematical model. It has been used by many researchers in different scientific fields to solve 

different kinds of problems such as pattern recognition, prediction, and optimization. ANNs are 

parallel computing systems consisting of a number of simple processors with many 

interconnections. Practically, this technique allows the network to learn rules for solving a 

problem by processing a set of examples. These simple processors are mutually interconnected 

with weights assigned to the connections. By modifying these weights according to learning 

rules, the ANN can be trained to recognize any pattern given by the training data. As per the 
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history, this technology started in 1940 due to McCulloch and Pitts pioneering work (Jain, Mao, 

& Mohiuddin, 1996). Furthermore, the real revolution of this technology occurred in early 1980s 

when it received considerable interest because of the Hopfield’s energy approach (Jain, Mao, & 

Mohiuddin, 1996). Moreover, in1982 the back-propagation learning algorithm for multilayer 

perceptrons (multilayer feed-forward networks) was proposed by Werbos (Mellit & Kalogirou, 

2008). In the late 1980s, the research interest developed rapidly in neural network area.  

The use of ANN for pattern recognition consists of two steps: first, the network is trained 

to learn the patterns using the training data; second, the trained network is used to test and 

monitor. In the ANN the neuron is the processor unit in the network, and these neurons are 

connected together in layers. Inputs are received at the first layer and they are processed in the 

neuron. These process steps include the multiplication of the inputs by their weights and adding 

them together, and then transfer them into the translation part of the neuron as shown in Figure 

2.3.  

 

Figure 2.3. Single Neuron. 

In the translation part, the incoming weighted signal will be sent through the transfer 

function. There are many transfer functions proposed such as tanh and sigmoid. After that the 

output from the input layer is transferred to hidden layers, one output from each neuron will 



15 
 

differ from other outputs by the link weights. Generally one hidden layer is used in a network as 

shown in Figure 2.4. 

 

Figure 2.4. Feed Forward Neural Network. 

Same processes are repeated till the signal is received at the output layer.  In a previous 

study at BGSU (Kolla & Altman, 2007) ANN was introduced to identify external faults and no 

fault condition in a three-phase induction motor. A feed-forward network with back propagation 

training was used with one hidden layer. JavaNNS software program was used to create and train 

the network. Inputs were selected as RMS values of 3-phase voltages and currents, and they were 

collected from a 1/3 hp three-phase induction motor in real time. There were seven output 

neurons, corresponds to six faults and no fault condition as shown in Figure 2.5. If a particular 

condition exists the output goes to one otherwise it is zero. In this study, data from the same 

motor is used with a recent AI technique called SVM for identifying the faults. A comparison is 

made between the two techniques to study their performance and accuracy. 
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Figure 2.5. Inputs and Outputs of the ANN. 

Support Vectors Machines 

SVM is a machine learning method for classification and regression based on statistical 

learning theory (Cristianini & Shawe-Taylor, 2000). The concept behind SVM is that the 

machine learns from the training data to classify the input data into different classes. If data is 

not linearly separable, it is mapped into a feature space where the training data is separable. The 

classifier is a hyperplane, so the most important points are the points which define the 

hyperplane, that are called support vectors as shown in Figure 2.6. The SVM method requires the 

solution of an optimization problem to find this hyperplane (Vapnik, 1995).  A detailed 

mathematical development of SVM and the required optimization is presented in the 

methodology Chapter 3. 

The properties of SVM make it a valuable method in classification, because it can handle 

very large feature spaces. The training is carried out so that the dimension of classified vectors 

does not have a special influence on the performance of SVM as it has on the performance of the 

traditional classifier (Widodo, Yang, & Han, 2007).  Therefore, it is very efficient for large 
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classification problems especially in power systems, because the number of feature to be 

classified may be large. 

 

Figure 2.6. Classification of Two Classes Using SVM. 

  Applications of SVM for condition monitoring and fault identification were introduced in 

many areas. For example, they were reported in successfully classifying human cytochrome 

P450 enzyme (Kriegl, Arnold, Beck, & Fox, 2005), also they were used in financial analysis by 

(Min & Lee, 2005). Furthermore, SVM has been used for monitoring and identifying mechanical 

faults in power systems machinery; for example, ball bearing faults in induction motors (Jack & 

Nandi, 2002),  bearing faults detection of induction motor by (Konar & Chattopadhyay, 2009).  

Also, Korkeakoulu and  Hogskola (2004) used SVM based classification in condition monitoring 

of induction motors.  An account of SVM application for power system fault identification from 

the existing literature is given in the next section. 
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Literature Review of AI Techniques for Faults Identification in Power Systems 

 

Power systems components include generators, transformers, transmission lines, and 

motors. These electrical components may experience several types of faults due to insulation 

failures and other conditions. Protection of the electrical components against these faults is an 

important aspect that has been developed since the power systems were established. As indicated 

in Section 2, relaying systems are used to protect power system components. Microprocessor 

based relays are the most popularly used technology (Farag & Kamel, 1999). Some of these 

relays use three-phase voltages and currents as inputs. Motor current signature analysis (MCSA) 

that analyzes high frequency components in currents to identify faults has also been used by 

many researchers (Benbouzid & Kliman, 2003).  In this section some of the existing literature 

that uses AI techniques in the relay logic part of the microprocessor based relays are discussed. 

A detailed literature of the existing AI and other techniques for induction motor stator fault 

identification is given in (Siddique, Yadava & Singh, 2005). 

Chow & Yee applied ANN to detect incipient faults in single-phase induction motors in 

the early 90’s (Chow & Yee, 1991). They identified stator winding faults and bearing wear using 

motor current and speed as inputs. A fault identification scheme for three-phase induction motors 

using feed-forward ANN was proposed by Kolla and Altman (2007). They identified the external 

faults in the motor.  There are several other applications of ANN for fault identification in power 

systems described by Kezunovic (1997).  The problem with the traditional neural networks is 

difficulties with the generalization which produces models that can over-fit the data.  SVM 
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technique is shown to alleviate some of these problems in traditional ANN.  

SVM techniques have been applied for different types of faults identification in power 

systems (Ravikumar, Thukaram & Kincha, 2009).  SVM is applied for internal fault 

identification in induction motors by (Widodo & Yang, 2007), (Poyhonen, et al., 2005) and 

(Nguyen & Lee, 2008). Also Fang and Mahave combined the MCSA and SVM techniques to 

identify induction motor faults (Fang & Ma, 2006). However, to the best of our knowledge there 

has not been much work done in applying SVM technique to identify external faults in three-

phase induction motors. The aim of this project is to apply SVM method for identifying the 

three-phase induction motor external faults. 

Summary 

In this chapter, a literature review was provided to complete this project successfully. The 

first section is an overview of three-phase induction motor and external faults that could be 

experienced during its operation. The second section covered power system relays for the 

protection of power systems apparatus. The artificial intelligence techniques including ANN and 

SVM are described in section three.  The last section covered the literature review for the AI 

techniques for fault identification in power systems. 
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Chapter: 3 Methodology 

 

 

The methodology used to address the research problem is described in this chapter.  The 

first two sections restate problem and objectives of this study. The next section describes the 

procedures used for this study which includes a detailed account of SVM technique.  The Libsvm 

software used for implementing the SVM techniques is also described in that section.  Section 4 

gives the details of data collection to apply SVM technique for classification of induction motor 

faults. A summary of the chapter is given in Section 5. 

 

Restatement of the problem 

 

This project develops a fault detection method for three-phase induction motors to detect 

external faults experienced by the motor using SVM technique. The developed SVM method is 

tested with real-time faults data from a 1/3 hp three-phase squirrel cage induction motor. Effect 

of different SVM parameters on the training and testing of the induction motor data is studied. 

This study also investigates the classification performance characteristics of the proposed SVM 

based method in comparison to ANN based method. 

Restatement of the objective 

1. Study the usage of SVM method for pattern recognition applications and investigate the 

effect of different parameters on the training and testing of the method. 

2. Understand the usage of Libsvm software program for pattern recognition applications. 

3. Understand the characteristics of external faults on three-phase induction motors. 
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4. Apply the SVM method for identifying external faults in three-phase induction motors. 

5. Study the performance of the proposed SVM based induction motor fault identification 

technique in comparison to ANN based method. 

 

 Procedure of the study 

As described in the objectives of this study, the starting point is the understanding of 

SVM as a classifier machine learning technique based on the statistical learning theory.  A brief 

description of SVM from the literature is given below to explain various parameters used in the 

method.  A systematic method to select these parameters to identify different faults using the 

Libsvm software forms the basis of the procedure for the study in this project. 

Support Vectors Machines 

As explained in Chapter 2, the SVM method is based on mapping the input data into 

higher dimensional space and finding the optimal hyperplane that separates the input data with 

maximal margin if it is not linearly separable. The support vectors are those with nearest training 

patterns from the hyperplane (Richard et.al, 2001). The mapping of the data into higher 

dimensional space can be done by one of the four Kernel Functions.  The linearly separable case 

is explained below first, and then the mapping using Kernel functions for nonlinear separable 

cases are explained.   

The first case considered has the training data in only two classes and are linearly 

separated as shown in Figure 3.1. The training set is given by Equation (1) below:  
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(X1, y1) … (Xn, yn), Xi∈R
n
        (1) 

yi∈ {-1, +1}
 

 

Figure 3.1. SVM Classification. 

  The separating hyper plane can be expressed by Equation (2) below:  

W
T

Xi+b=0,         (2) 

where W is the weight vector, which is perpendicular to the hyperplane, “b” is the bias 

that expands the margin. The classified data are expressed by Equations (3) and (4) 

W
T

Xi+b≥1, if yi=1        (3) 

W
T

Xi+b≤-1, if yi=-1.        (4) 

Precision of the training data depends on the optimal separating hyperplane that separates 

the data by maximizing the margin 2/||w||. This problem can be solved by quadratic 
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optimization method as formulated by Vapnik (1995) and stated below: 

Minimize   

(
 

 
)  || ||

 
   ∑  

 

   

 

Subject to                                 yi(W
T

Xi+b)≥1-ξi,     ξi≥0, 1≤i≤n, 

Where, ξi are the slack variables, which measure the miscalculation of the data Xi 

c   is the error penalty constant. 

After solving the above optimization problem, and applying the optimal solution to the W 

and b, the following decision function is obtained: 

f(X) = sgn (W
T
Xi+b)         (5) 

The second case occurs when the trained data are beyond the boundary of the linear 

separation. Nonlinear classification has to be applied by mapping the data into feature space 

using Kernel function. There are many Kernel functions used such as  

1. Linear: K(xi, xj) = xi 
T xj        (6) 

2. Polynomial: K(xi, xj) = ( γ.xi
Txj+r)

d 
, γ >0     (7) 

3. Radial Basis Function: K(Xi, Xj) = exp(-γ||Xi-Xj||
2
), γ>0.    (8) 

4. Sigmoid: K(Xi, Xj) = tanh(γ.Xi
T
Xj+r),       (9) 

where r, d, γ are Kernel parameters. 
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The most flexible and popular Kernel function used is Radial Basis Function (Wang, 

2005) given in Equation (8), above. In this project this function is primarily used for mapping the 

input vectors into feature space, though an attempt is be made to study the performance of the 

other Kernel functions.  

In general, SVM creates one hyperplane to separate the two classes. To classify multiple 

classes, “one-against-one” and “one-against-the rest” strategies are implemented (Wu, Liu & 

Wang, 2013).   Solution methodology used for this optimization problem in case of the induction 

motor faults identification includes using a software program called Libsvn, which is described 

below. 

 

Libsvm Software to Implement SVM Technique 

Libsvm is combined software package for implementing SVM technique. Libsvm was 

developed by Chih-Chung Chang and Chih-Jen Lin in the Department of Computer Science in 

National Taiwan University (Chang & Lin, 2011). It was written in C++ programming language. 

Sequential Minimal Optimization (SMO) algorithm is used to perform the training of the SVMs 

(Wang, 2005). Moreover, its library contains an automatic model selection tool for C-SVM 

classification. It has the advantages of ease of use for implementing the SVM applications. In 

addition, there are many software packages introduced for SVM applications such as 

SVMLight(C), as well as a complete machine learning toolboxes which include Torch(C++), 

Spider (Matlab), and Weka, that are available through www.Kernel-machines.org.  In order to 

understand the usage of SVM method, the Libsvm package provides a simple graphical applet 

called svm-toy, a self-explanatory interface to show how SVM separates the data into classes. It 

http://www.kernel-machines.org/
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can separate up to three classes of input data. Libsvm uses one-against-one method to classify 

multiple classes (Chang& Lin, 2001). A detailed description of svm-toy applet is given below. 

Svm-toy 

The svm-toy applet is started by using the command Svm-toy.exe in the MS-DOS 

window.  The program allows the user to select points in different classes indicated by different 

colors as shown in Figure 3.2. 

1 

Figure  3.2. Svm-toy Screen Shot. 

The selected points are separated into classes by the program after clicking the run button 

as shown in the Figure 3.2 with different color regions. The svm-toy applet allows selecting 

training parameters such as c and type of Kernel function as represented by different values in 

the screen shot in Figure 3.2  The applet also has other functionalities such as Save and Load. 
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Scaling and Training the SVM 

The format of the Libsvm data file starts with the label corresponding to’ y’ and attributes 

corresponding to ‘X’. In general the attribute space can be n-dimensional. Generally the Libsvm 

expects the data to be in the range of -1 to 1.  In case if the data is not within this range, Libsvm 

provides a command to scale the values of the data in a particular range.  The scaling command 

for the training data is shown below: 

Svm-scale.exe –l -1 –u 1 –s range abc.txt > abc.scale 

A new file (abc.scale) is created which has the training data in scaled form between -1, to 1. 

Scaling the testing data with the same range as training data can be achieved by recalling the 

saved file range. The command used for scaling the testing data is: 

Svm-scale.exe –r range cba.txt >cba.scale. 

The new created file cba.scale contains the scaled testing data in the range of -1 to1. 

After the scaling is performed, the svm model is created through training using the 

training data.  This training is performed using the following command:   

Svm-train.exe abc.scale 

The abc.scale in the above command contains the scaled training data.  After executing that 

command in DOS prompt, an output model file is created (abc.scale.model). This file can be 

used to predict the classes for the testing data.  
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Testing the SVM 

Testing the data (prediction), is the process of classifying the output data, where the 

labels are assigned by the trained Libsvm model. Libsvm uses the following DOS command to 

test the data.  The command requires the scaled test data file (cba.scale) and svm model file 

(abc.scale.model) as input; it gives predicted classes in the specified output file (p1p.out). 

Svm-predict.exe cba.scale abc.scale.model p1p.out 

If the classification accuracy is not satisfactory; Libsvm has tools to improve the 

prediction by adjusting Kernel function parameters.  As mentioned before, RBF Kernel function 

is the most popularly used function. This function uses parameters γ, and C described in 

Equation (8). Libsvm provides in its tools library a command grid.py, which can give optimum 

values for γ and c, so that the accuracy can be improved.  The grid.py command works in 

collaboration with gnuplot graphics software.  After executing the following command: 

Grid.py –gnuplot.exe C:\Users\Rama\Dessktop\Libsvm-3.17\windows\bin\gnuplot abc.scale.  

in the DOS prompt, the optimum values of C and γ can be found.  The prediction accuracy will 

be increased if these values are used in creating the training model.  

The graphical output that shows the decision boundaries from the gnuplot program is 

shown in Figure 3.3.  The figure shows the values of γ and c for the chosen RBF as the optimum 

parameters are being determined by grid.py (Chang & Lin, 2011).  
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Figure 3.3. Grid Search for γ and C of the SVM Technique. 

 

These optimim values are used to train the SVM with training data (abc.scale) using the 

following command:  

Svm-train.exe –c value  –g value abc.scale 

The new model file is used to predict the classes in the testing data (cba.scale) using the 

following command, as given before.  

Svm-predict.exe cba.scale abc.scale.model p2p.out 

The new predicted output is given in file p2p.out. 

 

 

Induction Motor Faults Data Collection and SVM Implementation 

The SVM technique described in pervious section is applied to induction motor faults 

identification. Figure 3.4 shows the inputs and outputs of the SVM-based faults identification 

technique. 
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Figure 3.4. Inputs and Outputs of the SVM. 

The Libsvm software described in the previous section is used.  The data that is used in 

this project was collected in real time from 1/3 hp three-phase squirrel induction motor by 

Altman (2004), a graduate student at BGSU. The faults simulated were under voltage, over 

voltage, unbalanced voltage, single phasing, locked rotor, and overload. Three phase voltages 

and currents representing each of these faults are arranged in the required format for the Libsvm 

program.  The format is: 

<labe1><index1>:<value1><index2>:<value2>……………… 

Label is an integer indicates the class number (y); Index is an integer starts from 1. Value 

is a real number representing the input (X). For example, the three-phase voltages and currents 

are shown below for few cases of faults.  The complete data for all faults is given in Appendix A. 

1 1: 2.6573950   2: 2.6461120   3: 2.6721640   4: 0.7466173   5: 0.7661240   6: 0.7626198  

1 1: 2.6579960   2: 2.6453840   3: 2.6896300   4: 0.8143297   5: 0.7855652   6: 0.8147647    

2 1: 2.6390520   2: 2.5931930   3: 2.6670100   4: 0.0062597   5: 0.6447509   6: 0.6415373 

2 1: 2.6496810   2: 2.6034040   3: 2.6744000   4: 0.0060545   5: 0.6397968   6: 0.636463 
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Data Collection Procedure  

 As explained before, this project uses the same induction motor faults data used in a 

previous study at BGSU for ANN method (Altman, 2004). This allows an appropriate 

comparison of the proposed SVM method with ANN method for faults identification. Faults 

were simulated in a real time on a 1/3 hp Hamden three-phase squirrel cage induction motor. As 

indicated before, the faults simulated were under voltage, over voltage, unbalanced voltage, 

single phasing, locked rotor, and overload. Three VARIACS shown in Figure 3.5 were used to 

implement under voltage, over voltage, and unbalanced voltage faults. 

 

 

Figure 3.5. VARIAC. 

Overload and locked rotor fault conditions were simulated by a prony brake shown in Figure3.6. 

Single phasing fault was created by disconnecting a phase power line. These simulated faults 

data were collected in real-time through a LabVIEW
TM  

program, and the data for the voltage and 

current waveforms was stored in a text file. The data acquisition system that collects the voltage 

and current samples is shown in Figure 3.7. This data was used in this project to train and test the 

SVM.   

The data acquisition system reduced the three-phase voltages and converted three-phase 
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currents into its proportional voltages. The conversion range was +/- 10 volts, the scaling factor 

for voltages was 41.283 V/V, and the transfer function for currents to voltages conversion was 

2.3741 A/V. A voltage transducer was used to step the voltage down. A second order active low-

pass Butterworth filter was used so that only the signal up to 60 Hz was passed to the DAQ 

board on the SCXI 1000 chassis shown in figure3.7. The SCXI chassis contains simultaneous 

sampling analogue module 1140 to collect the voltages and currents, and eight-channel power 

relay output module 1161 to simulate circuit breakers. The chassis communicated with multi-

function I/O card PCI-MIO-16E-1 placed in the PC. 

 

 

Figure 3.6. Prony Brake. 

 A LabVIEW
TM

 program was written in the previous work to simultaneously acquire the 

signal conditioned instantaneous motor voltages and currents data values. The program acquired 

data at a sampling rate of 1000 scans/sec.  The program then converted these data values into 
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RMS values.  These signals were used to train and test the faults identification system.  The 

number of signals collected for each fault is listed in Table 3.1.  There were also 21 other signals 

representing various faults collected and used for testing. 

Condition Number of Patterns 

No Fault (NF) 154 

Single Phasing (SP) 85 

Unbalanced Voltage (UB) 450 

Under Voltage (UV) 49 

Over Voltage (OV) 10 

Locked Rotor (LR) 10 

Overload (OL) 30 

Total 788 

 

Table 3.1. Number of Training Patterns Per Fault. 
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Figure.3.7. Complete System. 

In addition the data in Table 3.1 is divided into two parts with some samples used to train 

the SVM and the remaining data used for the testing part. Different Kernel functions are used 

and the performance of these functions is studied.  The Kernel function parameters are varied as 

explained in the previous section.  Once the data is trained the trained model is used to predict 

the faults.  The results are compared with other existing techniques such as ANN. These results 

are presented in the next chapter. 

Summary 

This chapter provided a detailed description of the procedure used to achieve the 

objectives of the study. The restated statement and the objectives were followed by the 

description of the SVM method. The training and testing procedure using Libsvm software was 

also described. Finally the data collection procedure from the three-phase induction motor was 

also presented. 
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Chapter 4:  Findings 

 This chapter provides the results from testing the SVM technique with real-time acquired 

induction motor testing data. In this chapter, comparison of SVM technique performance with 

ANN technique is also described. The first section provides information from the training of the 

3-phase induction motor data and the testing with a different 21 samples that are not part of the 

training. The second section provides information from the training of 80% of the total training 

data from previous section for training and using the 20% for testing. The third section provides 

information from the training of 90% of the data and using the 10% for testing. The fourth 

section uses 90% training data as a model and 21 samples that are not part of the training used 

for testing. The fifth section gives the studies of the performance of different Kernel functions 

for training and testing the 3-phase induction motor data. The last section describes the 

comparison of the performance of SVM and ANN techniques for faults identification. 

 

Training and testing with the SVM 

The training of the SVM was done using Radial Bases Function as the Kernel. The 

training was done by using the 788 patterns of the 3-Phase induction motor data given in 

Appendix A. The testing was done by using the 21 testing samples that were not part of the 

training. The optimization of the Kernel parameters was achieved using grid search of the 

Libsvm.  Different scaling factors for the data were also used in the training process. The first 

case considered was applying RBF Kernel with a scaling range between (-1, 1).  After searching 

for the best parameters values for γ and c using grid.py, the optimum values obtained were 
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(C=128, γ =0.5). The search results are shown in Figure 4.1. The classification accuracy 

obtained for these parameter values was 90.47% (19/21 samples) as shown in Figure 4.2. 

 

Figure 4.1. Gnuplot Output of Optimum C and γ for (-1,1) Scaling.  

 

Figure 4.2. Screen-shot of Prediction Command for 21 Test Cases Scaling (-1, 1). 

Since the classification accuracy is not 100% with this scaling, a second case was considered 

using the same Kernel function with a different scaling range between (-1, 0). For this case, the 

optimum Kernel parameters were found to be (C=512, γ =0.5). The search results are shown in 
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Figure 4.3. The classification accuracy (testing) was found to be 100% for the 21 samples.   The 

screen-shot of the execution of Libsvm for this case is shown in Figure 4.4. 

 

Figure 4.3. Gnuplot Output of Optimum C and γ for (-1,0) Scaling.  

 

Figure 4.4. Screen-shot of Prediction Command for 21 Test Cases. 

This testing data consisted of the voltages and currents obtained during simulated fault 

conditions on 1/3 hp motor in real time.  The input voltage and current waveforms for one of the 

sets used to test the SVM are shown in Figures 4.5 through 4.11. Figure 4.5 shows the voltage 

and current waveforms from a no fault condition. Figure 4.6 shows the waveforms from a single 
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phasing fault case. Figure 4.7 shows the waveforms from an unbalanced voltage fault. Figure 4.8 

shows the waveforms from an under voltage fault. Figure 4.9 shows the waveforms from an over 

voltage fault. Figure 4.10 shows the waveforms from a locked rotor fault. Figure 4.11 shows the 

waveforms from an overload fault.  RMS values of voltages and currents for these cases were 

calculated and reported in Table 4.1.  The third row for each of the fault cases in the table 

corresponds to these seven voltages and currents waveform figures.  The table also shows 

another two sets of data that was used as a part of the data to test the performance of the SVM.  

As it can be observed from the table, the SVM method has correctly identified all the seven types 

of conditions for these three sets of data. 

Faults Inputs Outputs 

V1 V2 V3 I1 I2 I3  

No 

Fault (1) 

2.650 2.640 2.696 0.428 0.428 0.431 1 

2.694 2.652 2.690 0.517 0.521 0.502 1 

2.622 2.614 2.666 0.410 0.418 0.417 1 

Single 

Phasing (2) 

2.688 2.609 2.721 0.625 0.629 0.013 2 

2.694 2.642 2.703 0.644 0.648 0.004 2 

2.616 2.600 2.642 0.628 0.632 0.004 2 

Unbalanced 

Voltage (3) 

2.624 1.906 2.022 0.538 0.249 0.332 3 

1.682 2.475 2.702 0.186 0.634 0.628 3 

1.624 2.019 2.585 0.207 0.449 0.576 3 

Under 

Voltage (4) 

1.088 1.087 1.084 0.231 0.239 0.225 4 

1.966 1.969 1.977 0.305 0.318 0.300 4 

1.976 1.967 1.995 0.306 0.312 0.307 4 

Over 

Voltage (5) 

2.888 2.878 2.863 0.482 0.499 0.496 5 

2.856 2.839 2.871 0.478 0.477 0.467 5 

2.882 2.872 2.868 0.488 0.484 0.459 5 

Locked 

Rotor (6) 

2.657 2.613 2.687 1.671 1.651 1.669 6 

2.649 2.614 2.647 3.090 3.096 3.043 6 

2.573 2.565 2.609 3.052 3.073 2.996 6 

Overload 

(7) 

2.638 2.602 2.675 0.807 0.788 0.800 7 

2.681 2.639 2.679 0.831 0.833 0.820 7 

2.604 2.600 2.643 0.882 0.893 0.884 7 

 

Table 4.1. Testing the SVM. 
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Figure 4.5. No Fault Condition. 

 

 

Figure 4.6. Single Phasing Case. 

 

 

Figure 4.7. Unbalanced Voltage Fault. 
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Figure 4.8. Under Voltage Fault. 

 

 

Figure 4.9. Over Voltage Fault. 

 

 

Figure 4.10. Locked Rotor Fault. 
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Figure 4.11. Overload Fault. 

 

Training and Testing of the Split Data 

Training data of 80% samples and 20% testing data: 

In this section testing is performed by using 80% of the training data from the previous 

section as the training model data and the remaining 20% of the data is used for testing.  The 

80% samples represent 632 samples of the total 788 samples.  The testing samples represent 156 

cases.  These 156 samples correspond to fault cases shown in Table 4.2: 

                               Condition  Number of Patterns 

                             No Fault (NF)                                   30 

                             Single Phasing                                   17 

                           Unbalanced Voltage                                   90 

                           Under Voltage                                    9 

                           Over Voltage                                    2 

                           Locked Rotor                                    2 

                            Over Load                                    6 

 

Table 4.2. Testing Samples. 
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The same RBF Kernel is used for this study also. The scaling of the data was done between (-1, 

1).  For this case, the optimum Kernel parameters were found to be (C=32, γ =0.5). The search 

results are shown in Figure 4.12. 

 

Figure 4.12. Gnuplot Output of Optimum C and γ for (-1,1) Scaling. 

 The classification accuracy (testing) was found to be 100% for the 156 samples.   The screen-

shot of the execution of  Libsvm for this case is shown in Figure 4.13. 

 

Figure 4.13. Screen-shot of Prediction Command for 20% Test Cases. 

The scaling of the data was also done between (-1, 0) and tested to study the effect of the 

different scaling for this case.  In this case, the optimum Kernel parameters were found to be 

(C=32, γ =0.5). The search results are shown in Figure 4.14. 
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Figure 4.14. Gnuplot Output of Optimum C and γ for (-1,0) Scaling. 

 

 The classification accuracy (testing) was found to be 100% for the 156 samples.   The 

screen-shot of the execution of Libsvm for this case is shown in Figure 4.15. 

 

Figure 4.15. Screen-shot of Prediction Command for 20% Test Cases. 

 It can be observed that though scaling made a difference in the testing results of previous 

section, there was no effect of scaling for this case which was found to be 100% accuracy. 

Training data of 90% samples and 10% testing data: 

Another aspect of study was testing by using 90% of the training data from the previous 
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section as the training model data and the remaining 10% of the data is used for testing.  The 

90% samples represent 710 samples of the total 788 samples.  The testing samples represent 78 

cases.  These 78 samples correspond to fault cases shown in Table 4.3: 

                               Condition  Number of Patterns 

                             No Fault (NF)                                   15 

                             Single Phasing                                   8 

                           Unbalanced Voltage                                   45 

                           Under Voltage                                    5 

                           Over Voltage                                    1 

                           Locked Rotor                                    1 

                            Over Load                                    3 

 

Table 4.3. Testing Samples. 

 

The RBF Kernel was used for this study also.  The scaling of the data was done between (-1, 1).  

For this case, the optimum Kernel parameters were found to be (C=32, γ =0.5). The search 

results are shown in Figure 4.16. 

 

Figure 4.16. Gnuplot Output of Optimum C and γ for (-1,1) Scaling. 

The classification accuracy (testing) was found to be 100% for the 78 samples. The screen-shot 
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of the execution of Libsvm for this case that gives 78 out of 78 classifications is shown in Figure 

4.17.

 

 

Figure 4.17. Screen-shot of Prediction Command for 10% Test Cases. 

 

The scaling of the data was also done between (-1, 0) and tested to study the effect of the 

different scaling.  For this case, the optimum Kernel parameters were found to be (C=512, γ 

=0.5). The search results are shown in Figure 4.18. 

 

Figure 4.18. Gnuplot Output of Optimum C and γ for (-1,0) Scaling. 
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The classification accuracy (testing) was found to be 100% for the 78 samples. The 

screen-shot of the execution of Libsvm for this case is shown in Figure 4.19.  

 

Figure 4.19. Screen-shot of Prediction Command for 10% Test Cases. 

It can be observed that though scaling made a difference in the testing results of previous 

section, there was no effect of scaling for this case also, giving the testing accuracy to be 100%. 

Testing of 21 samples with 90% training model data: 

 Another aspect of the study conducted was testing the 21samples from earlier section 

with 90% of training data from this section as a model. The first case considered was with the 

model of scaling between (-1, 1) and γ and C parameter values same as before. The classification 

accuracy (testing) was found to be 90.476% (19 out of 21 samples identified correctly).   The 

screen-shot of the execution of Libsvm for this case is shown in Figure 4.20.  

 

Figure 4.20. Screen-shot of Prediction Command for 21 Samples Test Cases. 
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To improve the classification accuracy for the 21 samples case, the scaling of the data 

was also done between (-1, 0) with the same γ and C values as before. The classification 

accuracy (testing) was found to be 100%, (21 out of 21 samples classified correctly).   The 

screen-shot of the execution of Libsvm for this case is shown in Figure 4.20.  As before, the 

scaling had an effect on the classification accuracy for this 21 samples case also. 

 

Figure 4.21. Screen-shot of Prediction Command for 21 Samples Test Cases. 

 

Effect of Different Kernel Functions 

This section gives results of the study of the effect of different Kernel functions on the 

classification accuracy. The Kernel functions considered were Linear, Polynomial, RBF and 

Sigmoid.  The effect of different scaling factors and the grid search usage on these different 

Kernel functions is also considered in this study. Table 4.4 presents different Kernel Function 

classification rates with different scaling factors and grid search modifications for C and γ 

values. As it can be observed, the best results were achieved by Polynomial Kernel Function 

when the scaling is between (-1, 1), which gave the testing classification of 100%. Also the RBF 

with the scaling between (-1, 0) gave the classification accuracy of 100% as discussed in the 
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previous section.  

 

Kernel Function 

Type 

Scaling Factor. 

 

Grid Search Effect The Classification  

Accuracy 

Linear Kernel 

Function 

T=0. 

(-1, 0) No mod. 33.3% 

Mod. C=512, γ =0.5 71.42% 

(-1, 1) No mod. 57.14% 

Mod. C=128, γ =0.5 71.42% 

Polynomial Kernel 

Function. 

T=1. 

(-1, 0) No  mod 28.57% 

Mod. C=512, γ =0.5 95.23% 

(-1, 1) No mod 33.33% 

Mod. C=128, γ =0.5 100% 

Radial Bases 

Function. 

T=2. 

(-1, 0) No mod 33.33% 

 Mod. C=512, γ =0.5 100% 

(-1, 1) No mod 33.33% 

 Mod. C=128, γ =0.5 90.47% 

Sigmoid Kernel 

Function 

T=3. 

(-1, 0) No mod 19.04% 

Mod. C=512, γ =0.5 28.57% 

(-1, 1) No mod 33.3% 

Mod. C=128, γ =0.5 38.095% 

 

Table 4.4. Kernel Function Verification. 

 

SVM versus ANN classification Performance 

The faults classification performance of SVM and ANN methods was studied by 

comparing the training times (model creation time) and prediction accuracy of them. 

The model creation and training phase with ANN involves selecting number of neurons 

in the input and output layers (Jack & Nandi, 2002), to match the input fault data and output 

number of faults to identify.  The number of hidden layers and the number of neurons in each 

layer is a trial and error process requiring significant time and effort to come up with an 
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appropriate model for ANN.  For the same induction motor data, the previous study (Altman, 

2004) came up with one hidden layer that has eight neurons after a significant trial and error 

method. The training of the selected ANN to obtain the weights using back propagation 

algorithm in the previous study involved choosing the parameters α (Momentum coefficient), 

and Ƞ (Learning Coefficient), which is also done by trial and error method.  During the training, 

the Sum of Squared Error (SSE) that represents the effectiveness of training was only reduced to 

0.013284 after 160,000 training iterations. 

In SVM method, model creation by obtaining support vectors uses a well-developed 

software tool in Libsvm that does not require trial and error method like selecting number of 

layers and neurons in the ANN method. To select γ and C parameters in the SVM method, 

Libsvm has a well-developed software tool using the grid search, unlike the trial and error (α) 

and (Ƞ) parameter search in ANN.  Thus the model creation phase with SVM is less time 

consuming than the ANN method. 

Testing performance of the SVM is also better than ANN using the same set of induction 

motor faults data.  The ANN method used in previous study by Altman (2004) required the 

output to be considered either 1 or 0 within 5% of their values in identifying the faults.  In the 

SVM method there is no need to use any rounding for the results as the faults are classified into 

one or other type.  
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Summary 

This chapter provided the results obtained from testing the SVM method. It started with 

training the SVM with a set of 788 data samples and testing the SVM with a data of 21 samples 

that are not part of the training data. The second section gave results of training and testing the 

SVM method using 80% and 90% of 788 samples for training and rest of the samples for testing. 

The third section provided the studies of different Kernel functions and their effect on the testing 

accuracy. Finally the results of comparison between SVM and ANN methods were given. The 

results obtained from this chapter confirmed the efficacy of SVM based method for identifying 

faults in three-phase induction motor.  
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Chapter 5: Conclusion 

 

       In this chapter, a summary for the work that has been done in this project for achieving the 

objectives of the study is provided. Also conclusions from this work and suggestions for future 

work are presented. 

 Summary and Conclusions 

    The objective of this study is to develop a SVM based induction motor external faults 

identifier. This faults identifier detects six types of external faults experienced by the three-phase 

induction motor and also no fault condition. These faults are single phasing, unbalanced supply 

voltage, under voltage, over voltage, locked rotor, and over Load. The real time collected data 

from a 1/3 hp, 208 V three-phase squirrel cage induction motor is used to train and test the SVM. 

Libsvm software program is used for implementing the SVM method. In addition, the Libsvm 

tools library is used for searching the optimum parameters for achieving the adequate accuracy.  

 A RBF Kernel is used in this project for creating the trained model; also different Kernel 

functions are introduced in this project to study their effectiveness on the testing accuracy. It is 

observed that the scaling range has an impact on the prediction accuracy for some Kernel 

functions in the SVM based induction motor faults identification method considered in this 

study.  One of the testing cases considered used a part of the data for creating the model and the 

remaining part for testing the accuracy of the prediction. Finally, a compression between SVM 

based method and ANN method is discussed. The findings of this project attained the goals of 

this study: developing a SVM based induction motor external faults identifier, and achieving the 

better performance of the SVM based method than ANN based method (Altman, 2004). 
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To the best of our knowledge, the SVM technique is not applied for external fault 

identification of three-phase induction motor before this study, though it has been used for other 

types of faults in induction motors (Poyhonen, et al., 2005).  SVM has the advantages of 

simplicity of creating the model and testing its accuracy. The time consumed for the model 

creation phase with SVM method is less than the ANN method, and SVM method accuracy is 

better than ANN based method. 

Recommendation for Future Work 

1. The first recommendation for future work would be to build the real-time implementation 

system for the three-phase induction motor faults identification based on the proposed 

SVM method in this project. Testing the SVM classifications of the faults in a real-time 

with several fault conditions should also be performed.   

2. Another suggestion would be to apply SVM based method for identifying faults in 

different power systems components such as synchronous generators and transformers.  

3. The proposed scheme in this project uses the RMS values of the voltages and currents as 

input signals to train and test the SVM. The recommendation for future is to use different 

signal such as instantaneous values of voltages and currents, and magnitude and phase 

angles of voltages and currents. 

4. Another suggestion would be to study the effect of simultaneous faults occurrence on the 

performance of the SVM based faults identifying method. 
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Appendix A 

 
Training Data 

 
No. of patterns: 788 

No. of inputs: 6 

No. of outputs 7 
 

 V1 V2 V3 I1 I2 I3 
1 1: 2.661025 2: 2.624276 3: 2.701274 4: 0.4907675 5: 0.478549 6: 0.4933681 
1 1: 2.660319 2: 2.624661 3: 2.7007 4: 0.4911136 5: 0.4787216 6: 0.4925841 
1 1: 2.658824 2: 2.623414 3: 2.699373 4: 0.4907824 5: 0.4780662 6: 0.4924988 
1 1: 2.659359 2: 2.623496 3: 2.700214 4: 0.4909006 5: 0.4778042 6: 0.4928816 
1 1: 2.659918 2: 2.624527 3: 2.701876 4: 0.4911553 5: 0.4781739 6: 0.4923389 
1 1: 2.660713 2: 2.624278 3: 2.700593 4: 0.4912516 5: 0.4782521 6: 0.4925644 
1 1: 2.660079 2: 2.623479 3: 2.699637 4: 0.4908446 5: 0.478162 6: 0.4926641 
1 1: 2.65911 2: 2.623836 3: 2.699883 4: 0.4906552 5: 0.4780388 6: 0.4923748 
1 1: 2.660678 2: 2.624341 3: 2.70043 4: 0.4913352 5: 0.4774227 6: 0.4927595 
1 1: 2.661025 2: 2.624276 3: 2.701274 4: 0.4907675 5: 0.478549 6: 0.4933681 
1 1: 2.653508 2: 2.618927 3: 2.695269 4: 0.6115847 5: 0.597014 6: 0.6095109 
1 1: 2.65609 2: 2.619306 3: 2.695886 4: 0.6115017 5: 0.5960048 6: 0.6103757 
1 1: 2.655185 2: 2.620171 3: 2.695862 4: 0.6117206 5: 0.596801 6: 0.6094408 
1 1: 2.654937 2: 2.619618 3: 2.6959 4: 0.6114231 5: 0.5967827 6: 0.6096965 
1 1: 2.655788 2: 2.619876 3: 2.695217 4: 0.6120566 5: 0.5962501 6: 0.6095838 
1 1: 2.655232 2: 2.620571 3: 2.695642 4: 0.6120045 5: 0.5961067 6: 0.6097577 
1 1: 2.655519 2: 2.61995 3: 2.696013 4: 0.6117751 5: 0.5963824 6: 0.6097241 
1 1: 2.65538 2: 2.621187 3: 2.696468 4: 0.6115075 5: 0.597183 6: 0.6089038 
1 1: 2.65524 2: 2.620778 3: 2.696097 4: 0.6114631 5: 0.5966644 6: 0.6093523 
1 1: 2.654109 2: 2.6177 3: 2.696032 4: 0.6112516 5: 0.5972841 6: 0.6095978 
1 1: 2.652949 2: 2.617502 3: 2.691755 4: 0.679997 5: 0.6630695 6: 0.675884 
1 1: 2.653947 2: 2.61846 3: 2.69309 4: 0.6802169 5: 0.6630145 6: 0.6758427 
1 1: 2.654646 2: 2.619546 3: 2.694069 4: 0.6801607 5: 0.6630943 6: 0.6760761 
1 1: 2.653576 2: 2.619166 3: 2.692964 4: 0.6800552 5: 0.6637426 6: 0.6757043 
1 1: 2.65484 2: 2.620561 3: 2.694237 4: 0.6799366 5: 0.6642037 6: 0.6756256 
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1 1: 2.65575 2: 2.621506 3: 2.696075 4: 0.6797796 5: 0.6641113 6: 0.6756669 
1 1: 2.652686 2: 2.619627 3: 2.692855 4: 0.6804986 5: 0.6638437 6: 0.6753921 
1 1: 2.653393 2: 2.619608 3: 2.692457 4: 0.6804592 5: 0.6633366 6: 0.6759489 
1 1: 2.654018 2: 2.619407 3: 2.692362 4: 0.6803204 5: 0.6632937 6: 0.6759761 
1 1: 2.65416 2: 2.61867 3: 2.69252 4: 0.6800834 5: 0.6631575 6: 0.6757772 
1 1: 2.651632 2: 2.6181 3: 2.692459 4: 0.7442518 5: 0.7277177 6: 0.7385438 
1 1: 2.651218 2: 2.618053 3: 2.691295 4: 0.7447775 5: 0.7273625 6: 0.738741 
1 1: 2.650345 2: 2.616702 3: 2.689826 4: 0.7448472 5: 0.7271636 6: 0.7396483 
1 1: 2.650834 2: 2.616907 3: 2.690293 4: 0.7445992 5: 0.7273633 6: 0.7399066 
1 1: 2.650428 2: 2.616399 3: 2.690159 4: 0.7444701 5: 0.72786 6: 0.7399503 
1 1: 2.651311 2: 2.617485 3: 2.691184 4: 0.7447671 5: 0.7276557 6: 0.7399828 
1 1: 2.651568 2: 2.617853 3: 2.691633 4: 0.7451041 5: 0.727931 6: 0.7398077 
1 1: 2.652178 2: 2.619033 3: 2.693182 4: 0.745323 5: 0.7283805 6: 0.7391569 
1 1: 2.653515 2: 2.619257 3: 2.693602 4: 0.7455138 5: 0.7279445 6: 0.7393124 
1 1: 2.65034 2: 2.616713 3: 2.69016 4: 0.7459358 5: 0.7284408 6: 0.7394889 
1 1: 2.697322 2: 2.649326 3: 2.695952 4: 0.434414 5: 0.4142901 6: 0.4124829 
1 1: 2.696793 2: 2.648861 3: 2.694307 4: 0.4350086 5: 0.4139784 6: 0.4129565 
1 1: 2.697142 2: 2.648501 3: 2.69492 4: 0.4344819 5: 0.4135517 6: 0.4123409 
1 1: 2.697197 2: 2.648599 3: 2.694938 4: 0.4337505 5: 0.4135587 6: 0.4126464 
1 1: 2.696565 2: 2.648551 3: 2.694751 4: 0.4345582 5: 0.414148 6: 0.413638 
1 1: 2.696184 2: 2.648384 3: 2.696225 4: 0.4334154 5: 0.4146245 6: 0.4135129 
1 1: 2.695967 2: 2.648392 3: 2.694897 4: 0.4328751 5: 0.4138973 6: 0.4135326 
1 1: 2.696562 2: 2.648019 3: 2.695978 4: 0.4344367 5: 0.4144415 6: 0.4141197 
1 1: 2.696226 2: 2.648179 3: 2.696942 4: 0.4341586 5: 0.414401 6: 0.413102 
1 1: 2.697268 2: 2.648663 3: 2.696495 4: 0.4333051 5: 0.4137648 6: 0.4131066 
1 1: 2.697365 2: 2.648982 3: 2.696256 4: 0.4343351 5: 0.4144157 6: 0.4133662 
1 1: 2.696713 2: 2.648403 3: 2.695808 4: 0.43451 5: 0.4140275 6: 0.4128283 
1 1: 2.697153 2: 2.647973 3: 2.695733 4: 0.4130617 5: 0.4215126 6: 0.4117201 
1 1: 2.696436 2: 2.648303 3: 2.67724 4: 0.4153801 5: 0.4021312 6: 0.4133645 
1 1: 2.697099 2: 2.64851 3: 2.676638 4: 0.4154756 5: 0.401545 6: 0.4129759 
1 1: 2.69736 2: 2.649193 3: 2.675709 4: 0.4147182 5: 0.4011172 6: 0.4120305 
1 1: 2.696463 2: 2.649131 3: 2.671853 4: 0.4529331 5: 0.4341953 6: 0.450655 
1 1: 2.696757 2: 2.648782 3: 2.66626 4: 0.5218772 5: 0.4979789 6: 0.5183506 
1 1: 2.695643 2: 2.648685 3: 2.664089 4: 0.5214739 5: 0.4979619 6: 0.5183697 
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1 1: 2.695727 2: 2.648845 3: 2.664536 4: 0.5217751 5: 0.4978073 6: 0.5178254 
1 1: 2.695743 2: 2.648656 3: 2.664514 4: 0.5231938 5: 0.4972155 6: 0.5175851 
1 1: 2.696513 2: 2.649003 3: 2.665331 4: 0.5235548 5: 0.496991 6: 0.5186568 
1 1: 2.695711 2: 2.648852 3: 2.685261 4: 0.4036345 5: 0.4230579 6: 0.4139806 
1 1: 2.695124 2: 2.648784 3: 2.686463 4: 0.4039669 5: 0.4234286 6: 0.4132729 
1 1: 2.646549 2: 2.648902 3: 2.686672 4: 0.4039952 5: 0.4230519 6: 0.4131241 
1 1: 2.641693 2: 2.600013 3: 2.687235 4: 0.4044011 5: 0.4235151 6: 0.4132784 
1 1: 2.641789 2: 2.599556 3: 2.688995 4: 0.4046342 5: 0.4240693 6: 0.4143183 
1 1: 2.639579 2: 2.597977 3: 2.688344 4: 0.4048383 5: 0.4239191 6: 0.4146179 
1 1: 2.639855 2: 2.598443 3: 2.689093 4: 0.4050134 5: 0.4242126 6: 0.4145411 
1 1: 2.63905 2: 2.597599 3: 2.689892 4: 0.4047301 5: 0.4245637 6: 0.4150462 
1 1: 2.639127 2: 2.597583 3: 2.689994 4: 0.4132204 5: 0.4327742 6: 0.4234085 
1 1: 2.638714 2: 2.596648 3: 2.686446 4: 0.4178508 5: 0.43715 6: 0.4279297 
1 1: 2.637364 2: 2.595923 3: 2.689517 4: 0.4182805 5: 0.4375683 6: 0.4283726 
1 1: 2.634876 2: 2.5936 3: 2.688503 4: 0.4179565 5: 0.4377481 6: 0.4281828 
1 1: 2.634664 2: 2.593509 3: 2.690073 4: 0.4185042 5: 0.4379684 6: 0.4286435 
1 1: 2.634139 2: 2.59151 3: 2.690111 4: 0.4182101 5: 0.4375099 6: 0.4285923 
1 1: 2.633987 2: 2.590933 3: 2.690223 4: 0.4180262 5: 0.437491 6: 0.428648 
1 1: 2.634248 2: 2.590949 3: 2.690487 4: 0.4183157 5: 0.4373334 6: 0.4283918 
1 1: 2.634075 2: 2.59103 3: 2.690613 4: 0.4178572 5: 0.4375141 6: 0.4277986 
1 1: 2.634677 2: 2.59151 3: 2.689216 4: 0.4176738 5: 0.4373995 6: 0.4275657 
1 1: 2.63442 2: 2.591173 3: 2.690975 4: 0.4184826 5: 0.4374706 6: 0.4282448 
1 1: 2.634634 2: 2.592161 3: 2.689744 4: 0.4177855 5: 0.4369351 6: 0.4287377 
1 1: 2.634549 2: 2.592067 3: 2.692192 4: 0.4156703 5: 0.4342401 6: 0.4262839 
1 1: 2.652089 2: 2.64112 3: 2.68001 4: 0.5457847 5: 0.5656723 6: 0.5598875 
1 1: 2.651276 2: 2.639724 3: 2.682293 4: 0.5426228 5: 0.5620964 6: 0.5561645 
1 1: 2.651127 2: 2.640616 3: 2.681654 4: 0.5426836 5: 0.5617902 6: 0.5565209 
1 1: 2.651925 2: 2.640871 3: 2.692761 4: 0.4156144 5: 0.4342483 6: 0.4264356 
1 1: 2.653449 2: 2.643286 3: 2.693767 4: 0.4158215 5: 0.4343628 6: 0.4259275 
1 1: 2.652623 2: 2.642312 3: 2.692896 4: 0.4149959 5: 0.4345885 6: 0.4260514 
1 1: 2.653241 2: 2.641718 3: 2.692696 4: 0.4154069 5: 0.4349161 6: 0.4256034 
1 1: 2.652621 2: 2.642102 3: 2.692859 4: 0.4153117 5: 0.4351994 6: 0.4256902 
1 1: 2.652579 2: 2.642174 3: 2.692337 4: 0.4150669 5: 0.4349843 6: 0.4257393 
1 1: 2.653431 2: 2.642523 3: 2.692934 4: 0.4151706 5: 0.4352474 6: 0.4261055 
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1 1: 2.654109 2: 2.64296 3: 2.691661 4: 0.4149314 5: 0.4349117 6: 0.4261536 
1 1: 2.654102 2: 2.642343 3: 2.69321 4: 0.4156473 5: 0.4350146 6: 0.4262911 
1 1: 2.653137 2: 2.642589 3: 2.691524 4: 0.4157361 5: 0.4344165 6: 0.4259987 
1 1: 2.653778 2: 2.643097 3: 2.675662 4: 0.620412 5: 0.6393502 6: 0.6342357 
1 1: 2.654194 2: 2.643574 3: 2.675408 4: 0.6801454 5: 0.6987316 6: 0.6951651 
1 1: 2.65549 2: 2.643652 3: 2.675695 4: 0.677575 5: 0.6959341 6: 0.692548 
1 1: 2.656063 2: 2.645024 3: 2.675057 4: 0.6747949 5: 0.6932238 6: 0.6903382 
1 1: 2.655919 2: 2.644959 3: 2.673281 4: 0.6715187 5: 0.6910382 6: 0.6873876 
1 1: 2.655133 2: 2.64429 3: 2.675755 4: 0.6700318 5: 0.6890166 6: 0.6850387 
1 1: 2.653988 2: 2.643141 3: 2.675185 4: 0.6694633 5: 0.6871263 6: 0.6848475 
1 1: 2.65658 2: 2.644599 3: 2.676314 4: 0.6675897 5: 0.6859077 6: 0.68242 
1 1: 2.657052 2: 2.645792 3: 2.674477 4: 0.6656589 5: 0.6838555 6: 0.6810809 
1 1: 2.656885 2: 2.645248 3: 2.674548 4: 0.6651244 5: 0.6838646 6: 0.6807088 
1 1: 2.656238 2: 2.645165 3: 2.673669 4: 0.6640027 5: 0.6829661 6: 0.679563 
1 1: 2.65649 2: 2.645886 3: 2.673125 4: 0.6628118 5: 0.6822056 6: 0.6787031 
1 1: 2.65845 2: 2.646958 3: 2.674316 4: 0.6615382 5: 0.6801103 6: 0.6765433 
1 1: 2.65761 2: 2.64657 3: 2.674271 4: 0.6614415 5: 0.680144 6: 0.6765336 
1 1: 2.657395 2: 2.646112 3: 2.672164 4: 0.7466173 5: 0.766124 6: 0.7626198 
1 1: 2.658366 2: 2.646966 3: 2.671093 4: 0.7430073 5: 0.762291 6: 0.7589417 
1 1: 2.657933 2: 2.646438 3: 2.671285 4: 0.7379 5: 0.7576979 6: 0.7534468 
1 1: 2.657607 2: 2.64599 3: 2.669959 4: 0.7382876 5: 0.7566167 6: 0.7541529 
1 1: 2.657114 2: 2.64607 3: 2.670923 4: 0.7452279 5: 0.7477898 6: 0.7423192 
1 1: 2.656556 2: 2.645507 3: 2.671249 4: 0.7507145 5: 0.7392567 6: 0.7430079 
1 1: 2.655658 2: 2.6451 3: 2.687579 4: 0.7521474 5: 0.7250581 6: 0.7523645 
1 1: 2.655022 2: 2.643788 3: 2.688266 4: 0.7491037 5: 0.7237691 6: 0.7506114 
1 1: 2.655042 2: 2.644289 3: 2.687682 4: 0.7481878 5: 0.723229 6: 0.7483666 
1 1: 2.6555 2: 2.644512 3: 2.688714 4: 0.7490288 5: 0.7239705 6: 0.7500601 
1 1: 2.65719 2: 2.646107 3: 2.689996 4: 0.7481137 5: 0.7227195 6: 0.7501977 
1 1: 2.658417 2: 2.647034 3: 2.690814 4: 0.7450285 5: 0.7190654 6: 0.746648 
1 1: 2.657996 2: 2.645384 3: 2.68963 4: 0.8143297 5: 0.7855652 6: 0.8147647 
1 1: 2.658478 2: 2.646319 3: 2.707983 4: 0.427676 5: 0.4178647 6: 0.4412994 
1 1: 2.659029 2: 2.647599 3: 2.709454 4: 0.4170238 5: 0.4083359 6: 0.4316729 
1 1: 2.656146 2: 2.644919 3: 2.710732 4: 0.4181483 5: 0.4094471 6: 0.4324603 
1 1: 2.653172 2: 2.642973 3: 2.710961 4: 0.4180101 5: 0.4094621 6: 0.4324501 
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1 1: 2.654418 2: 2.643044 3: 2.710733 4: 0.4182363 5: 0.4100225 6: 0.4325742 
1 1: 2.655461 2: 2.644923 3: 2.710531 4: 0.4189846 5: 0.4105237 6: 0.4327792 
1 1: 2.654501 2: 2.644346 3: 2.71189 4: 0.4191359 5: 0.4113073 6: 0.4327083 
1 1: 2.653847 2: 2.643722 3: 2.712264 4: 0.4188605 5: 0.4113317 6: 0.4327599 
1 1: 2.658205 2: 2.646481 3: 2.708875 4: 0.4280554 5: 0.4194082 6: 0.4410295 
1 1: 2.659536 2: 2.647071 3: 2.70831 4: 0.4513036 5: 0.4393579 6: 0.462926 
1 1: 2.659633 2: 2.647491 3: 2.707507 4: 0.4431409 5: 0.4316343 6: 0.4550797 
1 1: 2.659842 2: 2.647347 3: 2.707987 4: 0.4454578 5: 0.4339773 6: 0.4565783 
1 1: 2.659231 2: 2.646948 3: 2.706961 4: 0.4508948 5: 0.4388415 6: 0.4624864 
1 1: 2.658519 2: 2.646097 3: 2.707444 4: 0.4609749 5: 0.4475574 6: 0.4728047 
1 1: 2.657581 2: 2.646291 3: 2.703551 4: 0.4942202 5: 0.4782696 6: 0.5032329 
1 1: 2.657764 2: 2.646167 3: 2.702805 4: 0.511809 5: 0.495457 6: 0.5203554 
1 1: 2.658664 2: 2.647373 3: 2.712137 4: 0.4259365 5: 0.4170007 6: 0.4385732 
1 1: 2.657801 2: 2.647148 3: 2.711155 4: 0.4262641 5: 0.4170549 6: 0.4393252 
1 1: 2.657986 2: 2.646044 3: 2.711289 4: 0.4262034 5: 0.4232072 6: 0.4375025 
1 1: 2.657416 2: 2.646575 3: 2.695097 4: 0.4296375 5: 0.4253608 6: 0.4291741 
1 1: 2.658294 2: 2.647373 3: 2.694492 4: 0.4252739 5: 0.4268809 6: 0.4297068 
1 1: 2.658563 2: 2.647855 3: 2.695126 4: 0.4263157 5: 0.4267686 6: 0.4297866 
1 1: 2.658965 2: 2.647678 3: 2.686654 4: 0.538016 5: 0.5347058 6: 0.5378957 
1 1: 2.658453 2: 2.646374 3: 2.686501 4: 0.5385297 5: 0.5351173 6: 0.5391469 
1 1: 2.659259 2: 2.647441 3: 2.685979 4: 0.5382825 5: 0.5352463 6: 0.5390682 
1 1: 2.659412 2: 2.648036 3: 2.6954 4: 0.4264752 5: 0.4269881 6: 0.4295657 
1 1: 2.659789 2: 2.647579 3: 2.696819 4: 0.4270584 5: 0.4271924 6: 0.4297657 
1 1: 2.658994 2: 2.646827 3: 2.69709 4: 0.4273545 5: 0.4278249 6: 0.4307352 
1 1: 2.653513 2: 2.64219 3: 2.69762 4: 0.4277468 5: 0.4283656 6: 0.4305478 
1 1: 2.650308 2: 2.640349 3: 2.696875 4: 0.4277991 5: 0.4282332 6: 0.4313022 
1 1: 2.649964 2: 2.639867 3: 2.696419 4: 0.4277886 5: 0.4283571 6: 0.4313133 
2 1: 2.639052 2: 2.593193 3: 2.66701 4: 0.0062597 5: 0.6447509 6: 0.6415373 
2 1: 2.644109 2: 2.597327 3: 2.669648 4: 0.0061618 5: 0.643999 6: 0.6405873 
2 1: 2.647625 2: 2.598815 3: 2.671626 4: 0.0061937 5: 0.6435176 6: 0.6402169 
2 1: 2.647963 2: 2.599153 3: 2.67209 4: 0.0062368 5: 0.6425905 6: 0.6393902 
2 1: 2.651849 2: 2.601844 3: 2.673132 4: 0.006156 5: 0.6422666 6: 0.63901 
2 1: 2.650816 2: 2.601661 3: 2.673722 4: 0.006123 5: 0.641548 6: 0.6385528 
2 1: 2.628087 2: 2.602545 3: 2.672384 4: 0.0061942 5: 0.6407932 6: 0.6373292 
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2 1: 2.649681 2: 2.603404 3: 2.6744 4: 0.0060545 5: 0.6397968 6: 0.636463 
2 1: 2.650662 2: 2.604571 3: 2.675484 4: 0.0060614 5: 0.6391505 6: 0.6359752 
2 1: 2.650347 2: 2.604759 3: 2.675032 4: 0.0061104 5: 0.6387148 6: 0.6352944 
2 1: 2.625339 2: 2.624541 3: 2.669839 4: 0.6252548 5: 0.0145094 6: 0.6125097 
2 1: 2.621724 2: 2.62397 3: 2.668056 4: 0.6244646 5: 0.0146452 6: 0.611628 
2 1: 2.622185 2: 2.623376 3: 2.668053 4: 0.6242134 5: 0.0145427 6: 0.6114829 
2 1: 2.621597 2: 2.623556 3: 2.66816 4: 0.6240045 5: 0.0144969 6: 0.6110426 
2 1: 2.618958 2: 2.619706 3: 2.665676 4: 0.6227452 5: 0.0145174 6: 0.6098157 
2 1: 2.61912 2: 2.621497 3: 2.667474 4: 0.6227121 5: 0.014418 6: 0.6098734 
2 1: 2.618631 2: 2.621098 3: 2.66667 4: 0.6226041 5: 0.0142608 6: 0.6097428 
2 1: 2.61782 2: 2.619749 3: 2.665758 4: 0.6222544 5: 0.014206 6: 0.6092628 
2 1: 2.624021 2: 2.6242 3: 2.669475 4: 0.6250926 5: 0.0145195 6: 0.6122303 
2 1: 2.622269 2: 2.624548 3: 2.669342 4: 0.6243864 5: 0.0144204 6: 0.6116893 
2 1: 2.624702 2: 2.608564 3: 2.660888 4: 0.622824 5: 0.6266529 6: 0.0142696 
2 1: 2.625152 2: 2.610523 3: 2.661465 4: 0.6229203 5: 0.6269173 6: 0.0142131 
2 1: 2.626952 2: 2.611647 3: 2.661433 4: 0.6232172 5: 0.6272398 6: 0.0142552 
2 1: 2.62758 2: 2.611288 3: 2.661562 4: 0.6231534 5: 0.6270218 6: 0.0143278 
2 1: 2.629568 2: 2.611594 3: 2.663084 4: 0.6234588 5: 0.6272577 6: 0.0142738 
2 1: 2.628732 2: 2.612757 3: 2.662817 4: 0.623511 5: 0.6273411 6: 0.0143363 
2 1: 2.628282 2: 2.614013 3: 2.660388 4: 0.6229229 5: 0.6266871 6: 0.0144627 
2 1: 2.624851 2: 2.608232 3: 2.660788 4: 0.6226623 5: 0.6263832 6: 0.0141404 
2 1: 2.625761 2: 2.610769 3: 2.660925 4: 0.6231158 5: 0.6270782 6: 0.0142361 
2 1: 2.627837 2: 2.611571 3: 2.661799 4: 0.6231391 5: 0.6271357 6: 0.0143238 
2 1: 2.651062 2: 2.64164 3: 2.695483 4: 0.0059256 5: 0.635686 6: 0.6395525 
2 1: 2.652171 2: 2.642029 3: 2.695508 4: 0.0059842 5: 0.6359173 6: 0.6396987 
2 1: 2.651511 2: 2.641484 3: 2.696072 4: 0.005867 5: 0.6360843 6: 0.6400133 
2 1: 2.65127 2: 2.641222 3: 2.721691 4: 0.6358515 5: 0.0180078 6: 0.6350757 
2 1: 2.650634 2: 2.640998 3: 2.723218 4: 0.6362488 5: 0.018181 6: 0.6353615 
2 1: 2.650586 2: 2.64078 3: 2.721407 4: 0.6353304 5: 0.0181311 6: 0.6345674 
2 1: 2.648657 2: 2.639017 3: 2.721568 4: 0.635591 5: 0.0183736 6: 0.6347775 
2 1: 2.648983 2: 2.639854 3: 2.720525 4: 0.6355465 5: 0.0181334 6: 0.6347592 
2 1: 2.649559 2: 2.639871 3: 2.716151 4: 0.6340056 5: 0.6385465 6: 0.0085759 
2 1: 2.649984 2: 2.640135 3: 2.717418 4: 0.6343415 5: 0.6389635 6: 0.0085832 
2 1: 2.649557 2: 2.639409 3: 2.716575 4: 0.6340744 5: 0.6385038 6: 0.0084875 
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2 1: 2.650535 2: 2.639366 3: 2.716651 4: 0.6339869 5: 0.6386513 6: 0.0087568 
2 1: 2.6514 2: 2.641298 3: 2.716903 4: 0.6342775 5: 0.6388557 6: 0.0086837 
2 1: 2.650317 2: 2.640077 3: 2.717748 4: 0.6341964 5: 0.6387232 6: 0.008864 
2 1: 2.648514 2: 2.638497 3: 2.716745 4: 0.6342112 5: 0.6387797 6: 0.0087673 
2 1: 2.649291 2: 2.639254 3: 2.690204 4: 0.0059362 5: 0.6855779 6: 0.6894485 
2 1: 2.649141 2: 2.639075 3: 2.690852 4: 0.0059136 5: 0.6855621 6: 0.689427 
2 1: 2.648866 2: 2.639196 3: 2.692173 4: 0.0059035 5: 0.6861497 6: 0.6898886 
2 1: 2.647392 2: 2.638237 3: 2.694569 4: 0.0058949 5: 0.6868173 6: 0.6908325 
2 1: 2.648971 2: 2.639116 3: 2.717915 4: 0.6882356 5: 0.0174556 6: 0.6873411 
2 1: 2.649124 2: 2.639234 3: 2.717932 4: 0.6885232 5: 0.0173706 6: 0.6877941 
2 1: 2.64898 2: 2.639116 3: 2.717281 4: 0.6887263 5: 0.0175646 6: 0.6878852 
2 1: 2.648118 2: 2.63885 3: 2.718129 4: 0.6887667 5: 0.0173646 6: 0.6880867 
2 1: 2.648632 2: 2.638591 3: 2.718193 4: 0.6888208 5: 0.0171492 6: 0.6880753 
2 1: 2.646077 2: 2.636828 3: 2.718166 4: 0.6887856 5: 0.0172653 6: 0.6878704 
2 1: 2.645513 2: 2.636638 3: 2.719331 4: 0.6867101 5: 0.6909426 6: 0.0090622 
2 1: 2.645542 2: 2.636956 3: 2.719579 4: 0.6869455 5: 0.6910623 6: 0.0090868 
2 1: 2.645947 2: 2.638145 3: 2.720622 4: 0.687193 5: 0.6913996 6: 0.0090688 
2 1: 2.646446 2: 2.63677 3: 2.721074 4: 0.6873272 5: 0.691329 6: 0.0090835 
2 1: 2.644443 2: 2.635756 3: 2.721169 4: 0.6877181 5: 0.691697 6: 0.0092696 
2 1: 2.645974 2: 2.637226 3: 2.72084 4: 0.6875339 5: 0.6915793 6: 0.0091268 
2 1: 2.645472 2: 2.636754 3: 2.720566 4: 0.6876772 5: 0.6915676 6: 0.0089998 
2 1: 2.670274 2: 2.636588 3: 2.721604 4: 0.6873366 5: 0.6913805 6: 0.0091837 
2 1: 2.673924 2: 2.635932 3: 2.687713 4: 0.0056385 5: 0.9767016 6: 0.9808123 
2 1: 2.674132 2: 2.619226 3: 2.6875 4: 0.0054999 5: 0.9851511 6: 0.9892578 
2 1: 2.675325 2: 2.601152 3: 2.687416 4: 0.0056243 5: 0.9886547 6: 0.992827 
2 1: 2.675141 2: 2.601195 3: 2.685054 4: 0.0055254 5: 0.9916154 6: 0.9955447 
2 1: 2.674113 2: 2.600739 3: 2.708484 4: 0.9889787 5: 0.0168184 6: 0.9888266 
2 1: 2.674911 2: 2.600459 3: 2.70828 4: 0.9847451 5: 0.0165438 6: 0.9847818 
2 1: 2.674748 2: 2.600274 3: 2.708417 4: 0.9873922 5: 0.0164193 6: 0.9874103 
2 1: 2.674631 2: 2.600208 3: 2.708328 4: 0.9892695 5: 0.0165024 6: 0.9892967 
2 1: 2.674161 2: 2.599297 3: 2.719579 4: 0.9884981 5: 0.9909444 6: 0.008858 
2 1: 2.676485 2: 2.600618 3: 2.719054 4: 0.9897136 5: 0.9923492 6: 0.0087745 
2 1: 2.676883 2: 2.602028 3: 2.719336 4: 0.9908766 5: 0.9934195 6: 0.0089922 
2 1: 2.677131 2: 2.601172 3: 2.719327 4: 0.988566 5: 0.9911124 6: 0.0090497 
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2 1: 2.675903 2: 2.599575 3: 2.720678 4: 0.9902932 5: 0.9927527 6: 0.0091499 
2 1: 2.679408 2: 2.603977 3: 2.702923 4: 0.0044858 5: 0.6300898 6: 0.6338261 
2 1: 2.684002 2: 2.607824 3: 2.70151 4: 0.0045288 5: 0.6297895 6: 0.6334688 
2 1: 2.686174 2: 2.609325 3: 2.700067 4: 0.0053338 5: 0.6299559 6: 0.6335398 
2 1: 2.687533 2: 2.608335 3: 2.724302 4: 0.628893 5: 0.0049897 6: 0.6274013 
2 1: 2.687124 2: 2.609382 3: 2.723326 4: 0.6288567 5: 0.0048804 6: 0.627361 
2 1: 2.687497 2: 2.609831 3: 2.723994 4: 0.6289026 5: 0.0047561 6: 0.627362 
2 1: 2.686947 2: 2.609763 3: 2.724014 4: 0.6291794 5: 0.0047997 6: 0.6275301 
2 1: 2.686833 2: 2.609658 3: 2.720394 4: 0.6249679 5: 0.6285737 6: 0.0131279 
2 1: 2.688366 2: 2.608813 3: 2.721451 4: 0.6251115 5: 0.6287187 6: 0.013141 
3 1: 0.9225996 2: 2.620864 3: 2.625168 4: 0.1721304 5: 0.7720316 6: 0.6629209 
3 1: 0.9211622 2: 2.619409 3: 2.624676 4: 0.1717272 5: 0.7721959 6: 0.6629794 
3 1: 0.9207521 2: 2.620637 3: 2.624294 4: 0.1718667 5: 0.7717378 6: 0.6624818 
3 1: 0.9199523 2: 2.622002 3: 2.625915 4: 0.1724143 5: 0.7726538 6: 0.663118 
3 1: 0.9195703 2: 2.6214 3: 2.626511 4: 0.1721125 5: 0.7724191 6: 0.6627584 
3 1: 0.9191691 2: 2.621913 3: 2.625237 4: 0.1726076 5: 0.7722042 6: 0.6627471 
3 1: 0.9218292 2: 2.62031 3: 2.625566 4: 0.1718554 5: 0.7723441 6: 0.6629364 
3 1: 0.9206891 2: 2.618773 3: 2.62415 4: 0.1719643 5: 0.7718436 6: 0.6629226 
3 1: 0.9199519 2: 2.620756 3: 2.625503 4: 0.1718144 5: 0.7720957 6: 0.6626348 
3 1: 0.9198515 2: 2.621627 3: 2.6253 4: 0.1720716 5: 0.7721062 6: 0.6626533 
3 1: 2.600413 2: 1.303555 3: 2.667813 4: 0.6857667 5: 0.1734909 6: 0.7607303 
3 1: 2.59924 2: 1.301566 3: 2.667279 4: 0.6852569 5: 0.1739493 6: 0.7607235 
3 1: 2.596522 2: 1.30034 3: 2.666048 4: 0.6847681 5: 0.1735806 6: 0.7603071 
3 1: 2.600644 2: 1.299432 3: 2.665714 4: 0.6858547 5: 0.173042 6: 0.7598948 
3 1: 2.601971 2: 1.299378 3: 2.667823 4: 0.6856466 5: 0.1731501 6: 0.760505 
3 1: 2.602494 2: 1.300968 3: 2.671745 4: 0.6862939 5: 0.174582 6: 0.7623009 
3 1: 2.604725 2: 1.29962 3: 2.670581 4: 0.6863873 5: 0.173785 6: 0.7614975 
3 1: 2.604409 2: 1.299682 3: 2.671277 4: 0.685783 5: 0.1733134 6: 0.7606852 
3 1: 2.600881 2: 1.302418 3: 2.667618 4: 0.6858006 5: 0.1737468 6: 0.7610977 
3 1: 2.592163 2: 1.300948 3: 2.666902 4: 0.6834224 5: 0.1747393 6: 0.7604709 
3 1: 2.639939 2: 2.578533 3: 1.369383 4: 0.7661272 5: 0.6655651 6: 0.1651184 
3 1: 2.637952 2: 2.578868 3: 1.367732 4: 0.7660856 5: 0.6655678 6: 0.1649561 
3 1: 2.63637 2: 2.578954 3: 1.366762 4: 0.7656196 5: 0.6651156 6: 0.1649571 
3 1: 2.636644 2: 2.580678 3: 1.366535 4: 0.766041 5: 0.6653493 6: 0.1649446 
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3 1: 2.635708 2: 2.580811 3: 1.366881 4: 0.7659558 5: 0.6649157 6: 0.1647416 
3 1: 2.633009 2: 2.578487 3: 1.364784 4: 0.7640203 5: 0.6633822 6: 0.1641112 
3 1: 2.632717 2: 2.579411 3: 1.365297 4: 0.7648808 5: 0.6642228 6: 0.1643883 
3 1: 2.631879 2: 2.57869 3: 1.364772 4: 0.7647428 5: 0.6641751 6: 0.1645545 
3 1: 2.629497 2: 2.576563 3: 1.363402 4: 0.7630999 5: 0.6625988 6: 0.1637454 
3 1: 2.639939 2: 2.578533 3: 1.369383 4: 0.7661272 5: 0.6655651 6: 0.1651184 
3 1: 1.3733 2: 2.612208 3: 2.690273 4: 0.1756413 5: 0.545693 6: 0.4813709 
3 1: 1.393875 2: 2.613278 3: 2.689921 4: 0.176599 5: 0.5454496 6: 0.4802281 
3 1: 1.370728 2: 2.609634 3: 2.686523 4: 0.176628 5: 0.5440311 6: 0.4791166 
3 1: 1.371299 2: 2.611626 3: 2.688412 4: 0.1770007 5: 0.5443295 6: 0.4796076 
3 1: 1.37072 2: 2.611242 3: 2.688011 4: 0.1757156 5: 0.5455513 6: 0.4804097 
3 1: 1.370074 2: 2.610919 3: 2.687196 4: 0.1770468 5: 0.5443598 6: 0.4787651 
3 1: 1.370629 2: 2.612086 3: 2.688321 4: 0.1761639 5: 0.5459392 6: 0.4799649 
3 1: 1.370306 2: 2.612053 3: 2.688004 4: 0.1766888 5: 0.5453934 6: 0.4794296 
3 1: 1.369544 2: 2.611253 3: 2.688216 4: 0.1775777 5: 0.5450937 6: 0.4783716 
3 1: 1.369484 2: 2.610282 3: 2.686703 4: 0.1750569 5: 0.5461357 6: 0.4805211 
3 1: 2.621595 2: 1.919321 3: 2.703427 4: 0.4752193 5: 0.1755215 6: 0.5520643 
3 1: 2.621668 2: 1.919544 3: 2.705695 4: 0.4751609 5: 0.1759361 6: 0.5526993 
3 1: 1.809361 2: 1.918804 3: 2.705779 4: 0.4747395 5: 0.1759178 6: 0.5525107 
3 1: 1.809552 2: 1.917573 3: 2.705622 4: 0.4741605 5: 0.1763637 6: 0.5522856 
3 1: 1.809611 2: 1.917886 3: 2.706892 4: 0.4742794 5: 0.1763938 6: 0.552551 
3 1: 1.808397 2: 1.915491 3: 2.704026 4: 0.4735866 5: 0.1761771 6: 0.5514545 
3 1: 1.810073 2: 1.917782 3: 2.706678 4: 0.4744418 5: 0.1763147 6: 0.5524352 
3 1: 1.810501 2: 1.91744 3: 2.706755 4: 0.4745241 5: 0.17616 6: 0.552688 
3 1: 1.810646 2: 1.917362 3: 2.707914 4: 0.4748766 5: 0.1761178 6: 0.5527049 
3 1: 1.811211 2: 1.917706 3: 2.708271 4: 0.4750451 5: 0.1760048 6: 0.5528433 
3 1: 2.653705 2: 2.614147 3: 2.028877 4: 0.543493 5: 0.475775 6: 0.1814861 
3 1: 2.654049 2: 2.613937 3: 2.027018 4: 0.543914 5: 0.4748901 6: 0.1820608 
3 1: 2.654544 2: 2.614204 3: 2.02644 4: 0.5442713 5: 0.474587 6: 0.1822782 
3 1: 2.655128 2: 2.615594 3: 2.026343 4: 0.5441885 5: 0.4748455 6: 0.1822233 
3 1: 2.655285 2: 2.61528 3: 2.02612 4: 0.5437202 5: 0.4744471 6: 0.1822292 
3 1: 2.653131 2: 2.614144 3: 2.024545 4: 0.5428688 5: 0.4747292 6: 0.1817223 
3 1: 2.655784 2: 2.615468 3: 2.025563 4: 0.5428583 5: 0.4747836 6: 0.1821259 
3 1: 2.653248 2: 2.614509 3: 2.024135 4: 0.5427941 5: 0.4746458 6: 0.1813862 
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3 1: 2.656427 2: 2.616841 3: 2.026238 4: 0.5429251 5: 0.4754656 6: 0.1818401 
3 1: 2.655554 2: 2.616243 3: 2.025561 4: 0.5428445 5: 0.4753714 6: 0.1818746 
3 1: 2.385922 2: 2.629629 3: 2.701563 4: 0.3177741 5: 0.4651335 6: 0.4200537 
3 1: 2.385229 2: 2.630017 3: 2.702202 4: 0.3162158 5: 0.4657916 6: 0.4209398 
3 1: 2.385149 2: 2.630552 3: 2.703093 4: 0.3192305 5: 0.4634379 6: 0.4181119 
3 1: 2.387486 2: 2.632321 3: 2.704263 4: 0.3178545 5: 0.4660915 6: 0.4209347 
3 1: 2.386165 2: 2.632894 3: 2.703356 4: 0.316889 5: 0.4646793 6: 0.4204536 
3 1: 2.38595 2: 2.632178 3: 2.702839 4: 0.3167746 5: 0.4659957 6: 0.4208159 
3 1: 2.386482 2: 2.632602 3: 2.701921 4: 0.3175223 5: 0.4653084 6: 0.4202846 
3 1: 2.386478 2: 2.631784 3: 2.701433 4: 0.3165661 5: 0.464897 6: 0.4202667 
3 1: 2.385639 2: 2.63159 3: 2.700718 4: 0.3169631 5: 0.4652731 6: 0.4204615 
3 1: 2.385577 2: 2.63038 3: 2.700629 4: 0.3159978 5: 0.4640188 6: 0.4199329 
3 1: 2.663012 2: 2.35629 3: 2.703289 4: 0.4238377 5: 0.3155979 6: 0.4555021 
3 1: 2.660393 2: 2.353268 3: 2.702329 4: 0.4230552 5: 0.3155315 6: 0.4544868 
3 1: 2.661469 2: 2.354127 3: 2.704253 4: 0.4228573 5: 0.3155259 6: 0.4575427 
3 1: 2.663279 2: 2.355311 3: 2.70546 4: 0.4226383 5: 0.3159655 6: 0.4568847 
3 1: 2.662695 2: 2.35337 3: 2.704921 4: 0.423315 5: 0.3153975 6: 0.4583284 
3 1: 2.661803 2: 2.353524 3: 2.705673 4: 0.4223462 5: 0.315266 6: 0.4565728 
3 1: 2.663421 2: 2.354231 3: 2.705387 4: 0.4233003 5: 0.316494 6: 0.4578612 
3 1: 2.662612 2: 2.354356 3: 2.704991 4: 0.4226563 5: 0.3154855 6: 0.455925 
3 1: 2.663044 2: 2.354925 3: 2.705945 4: 0.4230778 5: 0.3160763 6: 0.4570387 
3 1: 2.664813 2: 2.355774 3: 2.706889 4: 0.4235811 5: 0.3162653 6: 0.4572154 
3 1: 2.656384 2: 2.633445 3: 2.432497 4: 0.4622566 5: 0.4264065 6: 0.3130925 
3 1: 2.655165 2: 2.632166 3: 2.429615 4: 0.4624754 5: 0.4253971 6: 0.3127446 
3 1: 2.654612 2: 2.631246 3: 2.428245 4: 0.4614996 5: 0.425031 6: 0.3136229 
3 1: 2.652956 2: 2.632832 3: 2.427749 4: 0.461677 5: 0.4251734 6: 0.3130102 
3 1: 2.657572 2: 2.633795 3: 2.428521 4: 0.4629409 5: 0.4254745 6: 0.3132823 
3 1: 2.657873 2: 2.633445 3: 2.428229 4: 0.4620567 5: 0.4247509 6: 0.313193 
3 1: 2.659496 2: 2.635507 3: 2.429089 4: 0.4634762 5: 0.42552 6: 0.3135886 
3 1: 2.658673 2: 2.632818 3: 2.42757 4: 0.4618028 5: 0.4245296 6: 0.3128626 
3 1: 2.661912 2: 2.636072 3: 2.430581 4: 0.4635791 5: 0.4258782 6: 0.3140867 
3 1: 2.662791 2: 2.637258 3: 2.431277 4: 0.463476 5: 0.4252959 6: 0.3137005 
3 1: 1.357003 2: 1.929112 3: 2.677621 4: 0.2826269 5: 0.3186511 6: 0.5535332 
3 1: 1.354794 2: 1.926796 3: 2.678251 4: 0.2823911 5: 0.318702 6: 0.5531879 
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3 1: 1.698297 2: 1.925821 3: 2.678703 4: 0.281425 5: 0.3189677 6: 0.552309 
3 1: 1.35424 2: 1.924621 3: 2.678444 4: 0.2811888 5: 0.3189747 6: 0.5515713 
3 1: 1.9525 2: 1.925309 3: 2.680472 4: 0.2804667 5: 0.3207786 6: 0.5542581 
3 1: 1.943104 2: 1.906913 3: 2.680069 4: 0.2846058 5: 0.3163432 6: 0.5570244 
3 1: 1.901354 2: 1.906907 3: 2.680907 4: 0.2840009 5: 0.3166821 6: 0.5566862 
3 1: 1.937755 2: 1.905722 3: 2.680084 4: 0.2834245 5: 0.3164 6: 0.5560867 
3 1: 1.938035 2: 1.906907 3: 2.681655 4: 0.2825291 5: 0.3174368 6: 0.5559007 
3 1: 1.936823 2: 1.906577 3: 2.681901 4: 0.2817123 5: 0.3180473 6: 0.5563063 
3 1: 1.947697 2: 2.602883 3: 1.992684 4: 0.3178189 5: 0.5436338 6: 0.2663363 
3 1: 1.947218 2: 2.605506 3: 1.990721 4: 0.3195043 5: 0.5450477 6: 0.2652533 
3 1: 1.915162 2: 2.605071 3: 1.991196 4: 0.3194352 5: 0.5448654 6: 0.2651909 
3 1: 1.909033 2: 2.606556 3: 1.991803 4: 0.3201001 5: 0.5451954 6: 0.2649039 
3 1: 1.911644 2: 2.604775 3: 1.989579 4: 0.3198528 5: 0.5443847 6: 0.2643039 
3 1: 1.503935 2: 2.606694 3: 1.993159 4: 0.3201847 5: 0.5446446 6: 0.2649194 
3 1: 1.351323 2: 2.607838 3: 1.991863 4: 0.3208329 5: 0.5451593 6: 0.2643603 
3 1: 1.350992 2: 2.607679 3: 1.993737 4: 0.3196678 5: 0.544442 6: 0.2654287 
3 1: 1.35142 2: 2.609432 3: 1.996179 4: 0.3199884 5: 0.5437507 6: 0.264806 
3 1: 1.351808 2: 2.609183 3: 1.995304 4: 0.3200443 5: 0.5435389 6: 0.2643298 
3 1: 2.623542 2: 1.905637 3: 2.02183 4: 0.5378798 5: 0.2486431 6: 0.3315674 
3 1: 2.624578 2: 1.905428 3: 2.019328 4: 0.5426109 5: 0.2467208 6: 0.334955 
3 1: 2.625546 2: 1.905926 3: 2.020507 4: 0.5407114 5: 0.2476339 6: 0.3335177 
3 1: 2.62558 2: 1.905861 3: 2.020971 4: 0.5396098 5: 0.2478058 6: 0.3327723 
3 1: 2.625347 2: 1.905757 3: 2.021078 4: 0.538861 5: 0.2482942 6: 0.3323872 
3 1: 2.624219 2: 1.90531 3: 2.020568 4: 0.5402007 5: 0.2479011 6: 0.3327829 
3 1: 2.623235 2: 1.904244 3: 2.017929 4: 0.5410335 5: 0.2469442 6: 0.3338147 
3 1: 2.624116 2: 1.905655 3: 2.019374 4: 0.5409548 5: 0.2470299 6: 0.3336209 
3 1: 2.624899 2: 1.905651 3: 2.019904 4: 0.539458 5: 0.2471872 6: 0.3329566 
3 1: 2.623586 2: 1.905292 3: 2.020602 4: 0.5393709 5: 0.2478254 6: 0.3326539 
3 1: 2.864564 2: 2.62464 3: 2.698914 4: 0.5095592 5: 0.3890364 6: 0.4206336 
3 1: 2.86796 2: 2.625952 3: 2.700519 4: 0.5088057 5: 0.3883264 6: 0.4194417 
3 1: 2.867471 2: 2.625566 3: 2.701997 4: 0.5099968 5: 0.3896588 6: 0.4201935 
3 1: 2.865891 2: 2.623774 3: 2.699962 4: 0.5078855 5: 0.3881325 6: 0.4188586 
3 1: 2.865511 2: 2.622754 3: 2.698978 4: 0.5087093 5: 0.3883677 6: 0.420021 
3 1: 2.864275 2: 2.621032 3: 2.69568 4: 0.5063153 5: 0.3873912 6: 0.4181687 
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3 1: 2.865965 2: 2.623484 3: 2.698964 4: 0.5083985 5: 0.3885746 6: 0.4194363 
3 1: 2.868222 2: 2.623395 3: 2.6993 4: 0.5076109 5: 0.3881262 6: 0.4194338 
3 1: 2.867028 2: 2.624424 3: 2.699529 4: 0.5087548 5: 0.3886549 6: 0.4191809 
3 1: 2.867276 2: 2.623892 3: 2.699292 4: 0.5081728 5: 0.3885395 6: 0.4182866 
3 1: 2.656758 2: 2.864797 3: 2.690047 4: 0.4284313 5: 0.5265988 6: 0.3723344 
3 1: 2.654877 2: 2.866116 3: 2.689667 4: 0.4286316 5: 0.5270982 6: 0.3723149 
3 1: 2.654832 2: 2.867328 3: 2.689974 4: 0.4290054 5: 0.5270979 6: 0.3718573 
3 1: 2.656101 2: 2.870345 3: 2.691667 4: 0.4294506 5: 0.5280842 6: 0.3723471 
3 1: 2.653295 2: 2.869588 3: 2.688331 4: 0.4288544 5: 0.5267005 6: 0.3715188 
3 1: 2.653254 2: 2.87197 3: 2.691434 4: 0.4301922 5: 0.5283831 6: 0.3707819 
3 1: 2.652662 2: 2.870859 3: 2.690352 4: 0.4299784 5: 0.5280883 6: 0.3707674 
3 1: 2.651539 2: 2.871018 3: 2.689484 4: 0.4296927 5: 0.5276254 6: 0.3698772 
3 1: 2.654806 2: 2.872909 3: 2.690702 4: 0.4305368 5: 0.5286586 6: 0.3717536 
3 1: 2.654914 2: 2.873268 3: 2.692364 4: 0.4293341 5: 0.5271548 6: 0.3713567 
3 1: 2.648912 2: 2.633086 3: 2.957096 4: 0.3772411 5: 0.4365781 6: 0.5122814 
3 1: 2.647305 2: 2.630706 3: 2.954706 4: 0.3758935 5: 0.4342194 6: 0.5103551 
3 1: 2.649348 2: 2.633682 3: 2.958364 4: 0.3768349 5: 0.4369961 6: 0.5124472 
3 1: 2.650172 2: 2.634649 3: 2.959671 4: 0.3763519 5: 0.436359 6: 0.5120184 
3 1: 2.648131 2: 2.63396 3: 2.957187 4: 0.3772958 5: 0.4354494 6: 0.511977 
3 1: 2.64882 2: 2.634295 3: 2.958115 4: 0.376855 5: 0.4357871 6: 0.5120213 
3 1: 2.650193 2: 2.634819 3: 2.958983 4: 0.3768061 5: 0.435817 6: 0.5131088 
3 1: 2.648528 2: 2.633967 3: 2.958509 4: 0.3768621 5: 0.4351365 6: 0.5120979 
3 1: 2.649956 2: 2.633822 3: 2.95911 4: 0.377046 5: 0.4353712 6: 0.5127382 
3 1: 2.651077 2: 2.636139 3: 2.961948 4: 0.3777254 5: 0.4363745 6: 0.5142132 
3 1: 2.882632 2: 2.870531 3: 2.698823 4: 0.5260387 5: 0.4939467 6: 0.3710006 
3 1: 2.885059 2: 2.874369 3: 2.701392 4: 0.5291751 5: 0.4967764 6: 0.3720371 
3 1: 2.88563 2: 2.87414 3: 2.699029 4: 0.5278365 5: 0.4955971 6: 0.3715217 
3 1: 2.888399 2: 2.877364 3: 2.700872 4: 0.5286131 5: 0.495825 6: 0.3723196 
3 1: 2.891679 2: 2.880068 3: 2.702057 4: 0.5302366 5: 0.4969534 6: 0.3731592 
3 1: 2.890955 2: 2.880229 3: 2.701598 4: 0.5281008 5: 0.4957254 6: 0.3720586 
3 1: 2.892906 2: 2.880637 3: 2.70209 4: 0.5303913 5: 0.497237 6: 0.3730648 
3 1: 2.891149 2: 2.880119 3: 2.700509 4: 0.5287099 5: 0.4963061 6: 0.3726102 
3 1: 2.892821 2: 2.881511 3: 2.701682 4: 0.5289413 5: 0.4963882 6: 0.3730666 
3 1: 2.891544 2: 2.879307 3: 2.700219 4: 0.5295868 5: 0.4965737 6: 0.3733252 
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3 1: 2.863127 2: 2.637574 3: 2.951216 4: 0.4743905 5: 0.3906479 6: 0.5204321 
3 1: 2.840272 2: 2.635505 3: 2.952624 4: 0.4747085 5: 0.391536 6: 0.5204166 
3 1: 2.85805 2: 2.636624 3: 2.955042 4: 0.4743297 5: 0.3908978 6: 0.5197293 
3 1: 2.857537 2: 2.636371 3: 2.954668 4: 0.4745767 5: 0.3918271 6: 0.5198101 
3 1: 2.856882 2: 2.636773 3: 2.956551 4: 0.4740886 5: 0.3924679 6: 0.5206956 
3 1: 2.859195 2: 2.636991 3: 2.958117 4: 0.4734753 5: 0.3917514 6: 0.5211533 
3 1: 2.861154 2: 2.639406 3: 2.960854 4: 0.4758182 5: 0.393251 6: 0.5237657 
3 1: 2.860168 2: 2.637427 3: 2.959816 4: 0.4744613 5: 0.3923485 6: 0.5218581 
3 1: 2.875678 2: 2.637415 3: 2.960976 4: 0.4747766 5: 0.3930194 6: 0.5211673 
3 1: 2.875127 2: 2.637157 3: 2.960501 4: 0.4751707 5: 0.3933928 6: 0.5224262 
3 1: 2.683471 2: 2.868088 3: 2.954926 4: 0.3973749 5: 0.5296357 6: 0.4723327 
3 1: 2.685974 2: 2.870574 3: 2.956132 4: 0.3986473 5: 0.5312074 6: 0.4737445 
3 1: 2.682843 2: 2.870628 3: 2.953648 4: 0.3984418 5: 0.5311017 6: 0.4727873 
3 1: 2.684228 2: 2.872305 3: 2.954824 4: 0.3982594 5: 0.529968 6: 0.4728418 
3 1: 2.683956 2: 2.871312 3: 2.952433 4: 0.3985905 5: 0.531103 6: 0.4736171 
3 1: 2.681305 2: 2.871129 3: 2.953475 4: 0.3975068 5: 0.531044 6: 0.4730635 
3 1: 2.681652 2: 2.872568 3: 2.954075 4: 0.396976 5: 0.5309119 6: 0.4727216 
3 1: 2.68076 2: 2.869696 3: 2.952789 4: 0.3978765 5: 0.5313447 6: 0.4733026 
3 1: 2.681603 2: 2.872939 3: 2.95502 4: 0.3980276 5: 0.5318675 6: 0.4731025 
3 1: 2.682361 2: 2.871972 3: 2.954717 4: 0.3977194 5: 0.5305052 6: 0.4730106 
3 1: 2.866166 2: 2.343634 3: 2.705462 4: 0.5133088 5: 0.2792532 6: 0.4733805 
3 1: 2.867451 2: 2.343673 3: 2.704964 4: 0.5133116 5: 0.2791125 6: 0.4735139 
3 1: 2.869396 2: 2.344887 3: 2.707598 4: 0.5145962 5: 0.2793732 6: 0.4745388 
3 1: 2.87293 2: 2.346549 3: 2.709246 4: 0.5147081 5: 0.2793009 6: 0.4747439 
3 1: 2.874104 2: 2.34637 3: 2.710391 4: 0.5163824 5: 0.2794495 6: 0.4764359 
3 1: 2.87354 2: 2.345845 3: 2.708416 4: 0.514616 5: 0.2791101 6: 0.4744444 
3 1: 2.874045 2: 2.345329 3: 2.708219 4: 0.5156051 5: 0.2794685 6: 0.4759558 
3 1: 2.873209 2: 2.345315 3: 2.708171 4: 0.5145346 5: 0.2791449 6: 0.4745008 
3 1: 2.873578 2: 2.345472 3: 2.709234 4: 0.515152 5: 0.279458 6: 0.4754029 
3 1: 2.875236 2: 2.346485 3: 2.710647 4: 0.5159681 5: 0.279255 6: 0.4760323 
3 1: 2.866533 2: 2.627301 3: 2.426344 4: 0.5530134 5: 0.4041961 6: 0.3268193 
3 1: 2.863009 2: 2.627897 3: 2.427311 4: 0.5542271 5: 0.4060551 6: 0.3263036 
3 1: 2.862391 2: 2.628765 3: 2.427224 4: 0.5530258 5: 0.4051556 6: 0.325681 
3 1: 2.858348 2: 2.624883 3: 2.42293 4: 0.5527237 5: 0.4037808 6: 0.3264718 
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3 1: 2.888765 2: 2.628337 3: 2.425885 4: 0.5528683 5: 0.4045763 6: 0.3266591 
3 1: 2.891084 2: 2.628305 3: 2.426714 4: 0.5529187 5: 0.4043931 6: 0.3272386 
3 1: 2.890825 2: 2.628883 3: 2.426495 4: 0.5537398 5: 0.4045748 6: 0.327342 
3 1: 2.891829 2: 2.630133 3: 2.427149 4: 0.553249 5: 0.4041457 6: 0.3275972 
3 1: 2.891221 2: 2.62898 3: 2.426523 4: 0.5545524 5: 0.4047952 6: 0.3272193 
3 1: 2.890232 2: 2.628094 3: 2.424039 4: 0.5529396 5: 0.4036552 6: 0.3265032 
3 1: 2.398978 2: 2.869986 3: 2.681575 4: 0.3366791 5: 0.5630464 6: 0.3930982 
3 1: 2.398624 2: 2.870721 3: 2.680924 4: 0.336545 5: 0.5630998 6: 0.3936848 
3 1: 2.397643 2: 2.871122 3: 2.681896 4: 0.336612 5: 0.5628562 6: 0.3938675 
3 1: 2.39782 2: 2.872357 3: 2.682282 4: 0.3365579 5: 0.5627389 6: 0.3937206 
3 1: 2.397249 2: 2.87174 3: 2.682665 4: 0.3375051 5: 0.5632329 6: 0.3934723 
3 1: 2.398203 2: 2.87178 3: 2.683265 4: 0.3366189 5: 0.5627291 6: 0.3937706 
3 1: 2.395648 2: 2.870402 3: 2.682097 4: 0.3372375 5: 0.5634876 6: 0.393311 
3 1: 2.394087 2: 2.868927 3: 2.681887 4: 0.3356911 5: 0.5611915 6: 0.3926138 
3 1: 2.39627 2: 2.872326 3: 2.683399 4: 0.3372835 5: 0.5637803 6: 0.3940929 
3 1: 2.395832 2: 2.871829 3: 2.682345 4: 0.3366885 5: 0.5614722 6: 0.3930647 
3 1: 2.654056 2: 2.873251 3: 2.418747 4: 0.4823615 5: 0.5261681 6: 0.2742906 
3 1: 2.655846 2: 2.873909 3: 2.419844 4: 0.4835795 5: 0.5269113 6: 0.2745757 
3 1: 2.655558 2: 2.874553 3: 2.418647 4: 0.4823426 5: 0.5258783 6: 0.2745936 
3 1: 2.654364 2: 2.87412 3: 2.419393 4: 0.4842559 5: 0.5274884 6: 0.2739938 
3 1: 2.653712 2: 2.872604 3: 2.41715 4: 0.4817698 5: 0.5255313 6: 0.2736923 
3 1: 2.653342 2: 2.872216 3: 2.41744 4: 0.4833592 5: 0.5266313 6: 0.2742521 
3 1: 2.651094 2: 2.87055 3: 2.416067 4: 0.4816383 5: 0.5250584 6: 0.2731858 
3 1: 2.653122 2: 2.872037 3: 2.41627 4: 0.4835878 5: 0.526541 6: 0.2734687 
3 1: 2.653691 2: 2.873388 3: 2.417873 4: 0.4831358 5: 0.5263587 6: 0.2733474 
3 1: 2.652627 2: 2.872692 3: 2.417524 4: 0.4833191 5: 0.5267664 6: 0.2730185 
3 1: 2.378637 2: 2.651754 3: 2.948166 4: 0.272337 5: 0.4952164 6: 0.5170674 
3 1: 2.379217 2: 2.654273 3: 2.951499 4: 0.2725792 5: 0.4970479 6: 0.5175106 
3 1: 2.377339 2: 2.654188 3: 2.953896 4: 0.2726176 5: 0.4962381 6: 0.5170214 
3 1: 2.377048 2: 2.653993 3: 2.953519 4: 0.2731294 5: 0.4967284 6: 0.5176833 
3 1: 2.378433 2: 2.654414 3: 2.953461 4: 0.2728246 5: 0.4947698 6: 0.5174299 
3 1: 2.377584 2: 2.65427 3: 2.955154 4: 0.2733927 5: 0.4967357 6: 0.5181301 
3 1: 2.377208 2: 2.655399 3: 2.955883 4: 0.2737368 5: 0.4947184 6: 0.5168238 
3 1: 2.374901 2: 2.653008 3: 2.953485 4: 0.2732206 5: 0.4952434 6: 0.5169247 
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3 1: 2.376546 2: 2.653129 3: 2.95501 4: 0.2733424 5: 0.4947922 6: 0.5175055 
3 1: 2.376865 2: 2.654395 3: 2.957332 4: 0.2733145 5: 0.4954093 6: 0.5176221 
3 1: 2.659465 2: 2.352135 3: 2.970046 4: 0.4076051 5: 0.3305309 6: 0.5618654 
3 1: 2.66212 2: 2.353067 3: 2.972605 4: 0.4073033 5: 0.3301847 6: 0.5610484 
3 1: 2.659752 2: 2.352185 3: 2.971217 4: 0.4069714 5: 0.331507 6: 0.5616516 
3 1: 2.658792 2: 2.350035 3: 2.97051 4: 0.4059177 5: 0.3310979 6: 0.56022 
3 1: 2.65676 2: 2.351611 3: 2.972427 4: 0.4064358 5: 0.3316989 6: 0.5605394 
3 1: 2.653714 2: 2.352171 3: 2.97266 4: 0.4066124 5: 0.3317941 6: 0.5610365 
3 1: 2.651886 2: 2.351112 3: 2.971762 4: 0.40647 5: 0.3312326 6: 0.5602003 
3 1: 2.64985 2: 2.35141 3: 2.972881 4: 0.4061022 5: 0.3320981 6: 0.5610026 
3 1: 2.650616 2: 2.351339 3: 2.972718 4: 0.4063696 5: 0.331387 6: 0.5600172 
3 1: 2.648766 2: 2.350154 3: 2.971105 4: 0.4064279 5: 0.3321843 6: 0.5609437 
3 1: 2.883925 2: 1.934498 3: 2.708467 4: 0.5767817 5: 0.112336 6: 0.5889852 
3 1: 2.885501 2: 1.933236 3: 2.708519 4: 0.5772637 5: 0.1121746 6: 0.5895937 
3 1: 2.88595 2: 1.932796 3: 2.710216 4: 0.5769671 5: 0.1126937 6: 0.5888161 
3 1: 2.884518 2: 1.930957 3: 2.709268 4: 0.5759599 5: 0.1131795 6: 0.5880892 
3 1: 2.886574 2: 1.931522 3: 2.709149 4: 0.5772798 5: 0.1121606 6: 0.5895276 
3 1: 2.887566 2: 1.931854 3: 2.71021 4: 0.5776809 5: 0.1120085 6: 0.590033 
3 1: 2.887958 2: 1.931478 3: 2.710571 4: 0.5772751 5: 0.112357 6: 0.5899563 
3 1: 2.885036 2: 1.929463 3: 2.708111 4: 0.5765475 5: 0.1124928 6: 0.5883664 
3 1: 2.886028 2: 1.92923 3: 2.707385 4: 0.5770617 5: 0.1118947 6: 0.5896868 
3 1: 2.885723 2: 1.929338 3: 2.707751 4: 0.5770201 5: 0.1123167 6: 0.5891762 
3 1: 2.890272 2: 2.619056 3: 2.030071 4: 0.6403416 5: 0.4739701 6: 0.2119101 
3 1: 2.891225 2: 2.62052 3: 2.029035 4: 0.6402839 5: 0.4739807 6: 0.2122906 
3 1: 2.894497 2: 2.62483 3: 2.029982 4: 0.642289 5: 0.4748568 6: 0.2126706 
3 1: 2.894446 2: 2.62523 3: 2.029185 4: 0.6424979 5: 0.4748758 6: 0.212791 
3 1: 2.894873 2: 2.625988 3: 2.029104 4: 0.6425535 5: 0.4744673 6: 0.2133469 
3 1: 2.894258 2: 2.625977 3: 2.028267 4: 0.6423099 5: 0.4748404 6: 0.2130094 
3 1: 2.893171 2: 2.623388 3: 2.028751 4: 0.6414747 5: 0.4733674 6: 0.2136012 
3 1: 2.893519 2: 2.623507 3: 2.028121 4: 0.6415043 5: 0.4730741 6: 0.2140291 
3 1: 2.894006 2: 2.623249 3: 2.028337 4: 0.6410341 5: 0.4728454 6: 0.214055 
3 1: 2.892982 2: 2.623817 3: 2.027896 4: 0.641091 5: 0.4730057 6: 0.2137039 
3 1: 1.993749 2: 2.875222 3: 2.649975 4: 0.2323019 5: 0.6592163 6: 0.4557509 
3 1: 1.995466 2: 2.877611 3: 2.638955 4: 0.2363662 5: 0.6632178 6: 0.453104 
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3 1: 1.993528 2: 2.878207 3: 2.58154 4: 0.2525107 5: 0.6703488 6: 0.4400139 
3 1: 1.992357 2: 2.877546 3: 2.599992 4: 0.2473798 5: 0.6674857 6: 0.4435414 
3 1: 1.992064 2: 2.878492 3: 2.593536 4: 0.249251 5: 0.6695724 6: 0.4420643 
3 1: 1.992263 2: 2.879892 3: 2.616803 4: 0.2421113 5: 0.6657251 6: 0.4468828 
3 1: 1.991842 2: 2.879056 3: 2.626873 4: 0.2389827 5: 0.668257 6: 0.4516497 
3 1: 1.965047 2: 2.87867 3: 2.623157 4: 0.2406563 5: 0.6684191 6: 0.4499035 
3 1: 1.963098 2: 2.879515 3: 2.629265 4: 0.2391034 5: 0.6674153 6: 0.4514369 
3 1: 1.959409 2: 2.876758 3: 2.628274 4: 0.2392588 5: 0.6675358 6: 0.4511543 
3 1: 2.644664 2: 2.872074 3: 2.030863 4: 0.5897823 5: 0.5800314 6: 0.1214538 
3 1: 2.645571 2: 2.870898 3: 2.028227 4: 0.5883817 5: 0.5783902 6: 0.122568 
3 1: 2.645386 2: 2.870283 3: 2.026275 4: 0.5880713 5: 0.5785228 6: 0.122212 
3 1: 2.649341 2: 2.870957 3: 2.02536 4: 0.5880567 5: 0.5777234 6: 0.1231346 
3 1: 2.646765 2: 2.869272 3: 2.023882 4: 0.5879145 5: 0.5779874 6: 0.1223316 
3 1: 2.649357 2: 2.870443 3: 2.024524 4: 0.5881719 5: 0.5777479 6: 0.1231432 
3 1: 2.648386 2: 2.870014 3: 2.023373 4: 0.5877267 5: 0.5774469 6: 0.1228989 
3 1: 2.649368 2: 2.870781 3: 2.023734 4: 0.5882636 5: 0.5779365 6: 0.1228733 
3 1: 2.647758 2: 2.869171 3: 2.022265 4: 0.5884052 5: 0.5780859 6: 0.1218917 
3 1: 2.648297 2: 2.869462 3: 2.02218 4: 0.5882497 5: 0.5776529 6: 0.1227032 
3 1: 1.992376 2: 2.636828 3: 2.952657 4: 0.1139055 5: 0.5977876 6: 0.578835 
3 1: 1.990301 2: 2.636588 3: 2.953013 4: 0.1144166 5: 0.5970471 6: 0.5782852 
3 1: 1.987934 2: 2.635479 3: 2.95166 4: 0.1140213 5: 0.5973573 6: 0.5780775 
3 1: 1.989388 2: 2.637558 3: 2.954909 4: 0.1139374 5: 0.5983519 6: 0.5790558 
3 1: 1.987847 2: 2.638594 3: 2.957004 4: 0.1143629 5: 0.5991067 6: 0.5788473 
3 1: 1.988474 2: 2.639386 3: 2.959173 4: 0.1146522 5: 0.5999875 6: 0.5790513 
3 1: 1.985026 2: 2.637057 3: 2.956445 4: 0.1149476 5: 0.598698 6: 0.578118 
3 1: 1.546678 2: 2.637809 3: 2.957926 4: 0.1147467 5: 0.5992159 6: 0.5785324 
3 1: 1.365259 2: 2.635328 3: 2.956406 4: 0.114885 5: 0.5980103 6: 0.577589 
3 1: 1.366443 2: 2.635656 3: 2.956289 4: 0.1144264 5: 0.5983336 6: 0.5779234 
3 1: 2.608702 2: 1.919132 3: 2.960456 4: 0.4818839 5: 0.2180935 6: 0.6610849 
3 1: 2.610705 2: 1.918984 3: 2.96278 4: 0.4817012 5: 0.2185244 6: 0.6616911 
3 1: 2.611045 2: 1.917579 3: 2.961352 4: 0.4817474 5: 0.2182568 6: 0.6614475 
3 1: 2.61202 2: 1.917361 3: 2.96221 4: 0.4816396 5: 0.218438 6: 0.6615601 
3 1: 2.611633 2: 1.916762 3: 2.962538 4: 0.4810615 5: 0.2189182 6: 0.6614998 
3 1: 2.612892 2: 1.916134 3: 2.961255 4: 0.4813614 5: 0.2184266 6: 0.6612247 
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3 1: 2.612995 2: 1.916012 3: 2.963639 4: 0.4809026 5: 0.2189547 6: 0.6609439 
3 1: 2.614583 2: 1.916313 3: 2.964598 4: 0.4811302 5: 0.219131 6: 0.6615496 
3 1: 2.615691 2: 1.91686 3: 2.965665 4: 0.481583 5: 0.2194076 6: 0.6617692 
3 1: 2.615227 2: 1.915817 3: 2.965615 4: 0.4816101 5: 0.219353 6: 0.6621651 
3 1: 2.848711 2: 1.280485 3: 2.702216 4: 0.7967888 5: 0.2150265 6: 0.8381048 
3 1: 2.849156 2: 1.278995 3: 2.70329 4: 0.7961278 5: 0.2148275 6: 0.8373546 
3 1: 2.849147 2: 1.278123 3: 2.704254 4: 0.7945525 5: 0.2140991 6: 0.8365772 
3 1: 2.849499 2: 1.277442 3: 2.703124 4: 0.7945896 5: 0.2140711 6: 0.8367594 
3 1: 2.851177 2: 1.276781 3: 2.704342 4: 0.794538 5: 0.214023 6: 0.8366787 
3 1: 2.853186 2: 1.276866 3: 2.705264 4: 0.7950171 5: 0.2145924 6: 0.8373585 
3 1: 2.852475 2: 1.276896 3: 2.706686 4: 0.7936636 5: 0.2142278 6: 0.836391 
3 1: 2.852644 2: 1.275934 3: 2.704619 4: 0.7930435 5: 0.2141149 6: 0.8360413 
3 1: 2.848711 2: 1.280485 3: 2.702216 4: 0.7967888 5: 0.2150265 6: 0.8381048 
3 1: 2.849156 2: 1.278995 3: 2.70329 4: 0.7961278 5: 0.2148275 6: 0.8373546 
3 1: 2.864136 2: 2.606253 3: 1.371891 4: 0.8712473 5: 0.6987545 6: 0.2487019 
3 1: 2.866429 2: 2.608966 3: 1.370537 4: 0.8712392 5: 0.698469 6: 0.2490513 
3 1: 2.86677 2: 2.609131 3: 1.368302 4: 0.8704994 5: 0.697388 6: 0.2485641 
3 1: 2.86597 2: 2.61003 3: 1.367747 4: 0.8702443 5: 0.6971658 6: 0.2485745 
3 1: 2.866582 2: 2.611141 3: 1.367446 4: 0.8705531 5: 0.6976136 6: 0.2488287 
3 1: 2.864277 2: 2.611344 3: 1.365555 4: 0.870666 5: 0.6982818 6: 0.2488139 
3 1: 2.865711 2: 2.61291 3: 1.366348 4: 0.8703048 5: 0.6975959 6: 0.2486813 
3 1: 2.864136 2: 2.606253 3: 1.371891 4: 0.8712473 5: 0.6987545 6: 0.2487019 
3 1: 2.866429 2: 2.608966 3: 1.370537 4: 0.8712392 5: 0.698469 6: 0.2490513 
3 1: 2.86677 2: 2.609131 3: 1.368302 4: 0.8704994 5: 0.697388 6: 0.2485641 
3 1: 1.321227 2: 2.883518 3: 2.703833 4: 0.2741966 5: 0.9060237 6: 0.7203761 
3 1: 1.317656 2: 2.883249 3: 2.702366 4: 0.2739349 5: 0.9050196 6: 0.7200783 
3 1: 1.317224 2: 2.883495 3: 2.702592 4: 0.2738253 5: 0.9048558 6: 0.7200472 
3 1: 1.315834 2: 2.883223 3: 2.702509 4: 0.2733584 5: 0.9042926 6: 0.7189843 
3 1: 1.315147 2: 2.884414 3: 2.703708 4: 0.2733395 5: 0.9042258 6: 0.7188001 
3 1: 1.312702 2: 2.881185 3: 2.70196 4: 0.2733005 5: 0.9030778 6: 0.7181544 
3 1: 1.311774 2: 2.881931 3: 2.702526 4: 0.2728506 5: 0.9025943 6: 0.7175111 
3 1: 1.31211 2: 2.883107 3: 2.702363 4: 0.2734692 5: 0.9038061 6: 0.7187272 
3 1: 1.20908 2: 2.884183 3: 2.703332 4: 0.2730347 5: 0.9027422 6: 0.7179093 
3 1: 0.9061481 2: 2.88311 3: 2.703058 4: 0.2731746 5: 0.9025234 6: 0.7176536 
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3 1: 2.652579 2: 2.85952 3: 1.36939 4: 0.8381335 5: 0.7780255 6: 0.1950746 
3 1: 2.65687 2: 2.861159 3: 1.368052 4: 0.8386686 5: 0.7781405 6: 0.194978 
3 1: 2.657808 2: 2.861063 3: 1.367102 4: 0.8389426 5: 0.7785074 6: 0.1954481 
3 1: 2.658472 2: 2.859459 3: 1.365794 4: 0.8376881 5: 0.7771115 6: 0.194529 
3 1: 2.657713 2: 2.859886 3: 1.366104 4: 0.8388114 5: 0.7790508 6: 0.1958883 
3 1: 2.660226 2: 2.860165 3: 1.365506 4: 0.8375675 5: 0.7770939 6: 0.1944721 
3 1: 2.658793 2: 2.860836 3: 1.364833 4: 0.8366735 5: 0.7766506 6: 0.1937523 
3 1: 2.659639 2: 2.860794 3: 1.3649 4: 0.8368805 5: 0.7769428 6: 0.1943538 
3 1: 2.655954 2: 2.859673 3: 1.363699 4: 0.8362921 5: 0.7762194 6: 0.1938516 
3 1: 2.653132 2: 2.859238 3: 1.363754 4: 0.8364016 5: 0.7767048 6: 0.1942116 
3 1: 1.311705 2: 2.638706 3: 2.929888 4: 0.2176978 5: 0.8540278 6: 0.7906227 
3 1: 1.310587 2: 2.639184 3: 2.932162 4: 0.2174692 5: 0.853768 6: 0.790264 
3 1: 1.308391 2: 2.636251 3: 2.930315 4: 0.2171209 5: 0.852119 6: 0.7895299 
3 1: 1.308665 2: 2.638446 3: 2.932846 4: 0.2168626 5: 0.8528979 6: 0.7893712 
3 1: 1.308709 2: 2.638927 3: 2.93309 4: 0.2174677 5: 0.8537473 6: 0.7898716 
3 1: 1.306904 2: 2.637911 3: 2.932447 4: 0.2166412 5: 0.8523822 6: 0.7884687 
3 1: 1.307375 2: 2.638789 3: 2.934768 4: 0.2166576 5: 0.8524045 6: 0.788917 
3 1: 1.307237 2: 2.639673 3: 2.937421 4: 0.217321 5: 0.853738 6: 0.7897837 
3 1: 1.306667 2: 2.639842 3: 2.937515 4: 0.2173637 5: 0.853578 6: 0.7893758 
3 1: 1.306779 2: 2.639947 3: 2.937496 4: 0.2174327 5: 0.8538302 6: 0.7899071 
3 1: 2.628277 2: 1.286088 3: 2.963191 4: 0.731343 5: 0.2828016 6: 0.8906009 
3 1: 2.629144 2: 1.283852 3: 2.962597 4: 0.7311126 5: 0.2823225 6: 0.8899908 
3 1: 2.629211 2: 1.281597 3: 2.961973 4: 0.7300448 5: 0.2822807 6: 0.8890498 
3 1: 2.633998 2: 1.281446 3: 2.963846 4: 0.7317463 5: 0.2834898 6: 0.8912933 
3 1: 2.633253 2: 1.280379 3: 2.962758 4: 0.7309988 5: 0.2826631 6: 0.8897895 
3 1: 2.635467 2: 1.280312 3: 2.962992 4: 0.7319694 5: 0.2834088 6: 0.8910705 
3 1: 2.636501 2: 1.279694 3: 2.963483 4: 0.7320888 5: 0.2833346 6: 0.8907039 
3 1: 2.633997 2: 1.277626 3: 2.961228 4: 0.7307955 5: 0.2828028 6: 0.8887949 
3 1: 2.637354 2: 1.27879 3: 2.964189 4: 0.7313442 5: 0.283185 6: 0.8897198 
3 1: 2.638426 2: 1.279033 3: 2.965485 4: 0.7305727 5: 0.282838 6: 0.8891887 
3 1: 2.869298 2: 2.87518 3: 2.42939 4: 0.579487 5: 0.5102055 6: 0.193961 
3 1: 2.867915 2: 2.874105 3: 2.426294 4: 0.5778185 5: 0.5094989 6: 0.193475 
3 1: 2.870855 2: 2.875861 3: 2.426853 4: 0.5785119 5: 0.5096981 6: 0.1938725 
3 1: 2.870834 2: 2.876613 3: 2.426518 4: 0.5788447 5: 0.509951 6: 0.1939896 
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3 1: 2.869227 2: 2.876194 3: 2.426574 4: 0.5786881 5: 0.5103472 6: 0.1932336 
3 1: 2.87033 2: 2.875032 3: 2.425338 4: 0.5783918 5: 0.5098706 6: 0.193518 
3 1: 2.877224 2: 2.878229 3: 2.42735 4: 0.5792007 5: 0.5099892 6: 0.1939197 
3 1: 2.874111 2: 2.876889 3: 2.424884 4: 0.5794499 5: 0.5096252 6: 0.1939721 
3 1: 2.874462 2: 2.87637 3: 2.425447 4: 0.5779349 5: 0.5085555 6: 0.1937221 
3 1: 2.8761 2: 2.877447 3: 2.42513 4: 0.5800811 5: 0.5093909 6: 0.194473 
3 1: 2.869234 2: 2.352456 3: 2.945788 4: 0.490329 5: 0.2874164 6: 0.3982192 
3 1: 2.866159 2: 2.350295 3: 2.947839 4: 0.4906842 5: 0.2879876 6: 0.398044 
3 1: 2.867807 2: 2.351009 3: 2.950583 4: 0.4902012 5: 0.2878592 6: 0.3971742 
3 1: 2.868864 2: 2.350649 3: 2.95187 4: 0.4918291 5: 0.288295 6: 0.3992275 
3 1: 2.86902 2: 2.35023 3: 2.952507 4: 0.4906214 5: 0.2876421 6: 0.3976758 
3 1: 2.869033 2: 2.348606 3: 2.952369 4: 0.4914208 5: 0.2879786 6: 0.3987887 
3 1: 2.867786 2: 2.347903 3: 2.953589 4: 0.4902968 5: 0.2879993 6: 0.3974267 
3 1: 2.869832 2: 2.34831 3: 2.954478 4: 0.4907328 5: 0.2885434 6: 0.398367 
3 1: 2.870896 2: 2.348327 3: 2.953447 4: 0.490928 5: 0.2879644 6: 0.3989019 
3 1: 2.784194 2: 2.348328 3: 2.953886 4: 0.4910822 5: 0.2880568 6: 0.3985613 
3 1: 2.39712 2: 2.875784 3: 2.942779 4: 0.287734 5: 0.5906616 6: 0.3429033 
3 1: 2.395504 2: 2.877579 3: 2.942599 4: 0.2882628 5: 0.5907407 6: 0.3423982 
3 1: 2.393123 2: 2.876936 3: 2.941219 4: 0.2879145 5: 0.5901232 6: 0.3422651 
3 1: 2.392529 2: 2.879073 3: 2.942968 4: 0.288268 5: 0.5911543 6: 0.3423441 
3 1: 2.392622 2: 2.88029 3: 2.944112 4: 0.2881045 5: 0.590566 6: 0.3425158 
3 1: 2.390948 2: 2.879273 3: 2.942909 4: 0.2880478 5: 0.5910791 6: 0.3427403 
3 1: 2.390175 2: 2.879375 3: 2.943025 4: 0.2868535 5: 0.5901292 6: 0.3424285 
3 1: 2.389598 2: 2.879089 3: 2.942558 4: 0.2875883 5: 0.591306 6: 0.3430271 
3 1: 2.389092 2: 2.880811 3: 2.943743 4: 0.2869338 5: 0.5901502 6: 0.3422285 
3 1: 2.387308 2: 2.879532 3: 2.941964 4: 0.2877414 5: 0.5916591 6: 0.3424553 
3 1: 2.898855 2: 2.877991 3: 2.026266 4: 0.6959101 5: 0.5835677 6: 0.1027822 
3 1: 2.900534 2: 2.879656 3: 2.023386 4: 0.695485 5: 0.5830539 6: 0.1032374 
3 1: 2.902347 2: 2.878625 3: 2.021208 4: 0.6945503 5: 0.5824337 6: 0.1034561 
3 1: 2.902662 2: 2.877813 3: 2.019533 4: 0.6946336 5: 0.5817826 6: 0.1036982 
3 1: 2.904124 2: 2.877234 3: 2.018381 4: 0.6940526 5: 0.5810437 6: 0.1040995 
3 1: 2.902341 2: 2.877679 3: 2.017839 4: 0.6948185 5: 0.5821616 6: 0.1036352 
3 1: 2.902855 2: 2.876442 3: 2.015309 4: 0.693703 5: 0.5803308 6: 0.1043272 
3 1: 2.902428 2: 2.876148 3: 2.015754 4: 0.6937998 5: 0.5808678 6: 0.1041285 
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3 1: 2.902549 2: 2.877033 3: 2.015444 4: 0.6944572 5: 0.5814266 6: 0.1040123 
3 1: 2.899304 2: 2.872547 3: 2.012637 4: 0.6920879 5: 0.5800074 6: 0.1036828 
3 1: 2.897877 2: 1.926304 3: 2.95819 4: 0.574745 5: 0.1576823 6: 0.4866651 
3 1: 2.89883 2: 1.923764 3: 2.956994 4: 0.5753022 5: 0.1576618 6: 0.4871841 
3 1: 2.897318 2: 1.923272 3: 2.958913 4: 0.5746293 5: 0.1577675 6: 0.4869962 
3 1: 2.896374 2: 1.921822 3: 2.959247 4: 0.5737883 5: 0.1583673 6: 0.4864729 
3 1: 2.896022 2: 1.921167 3: 2.959394 4: 0.5736904 5: 0.1580611 6: 0.4858303 
3 1: 2.893449 2: 1.919452 3: 2.958516 4: 0.5728073 5: 0.157512 6: 0.4849752 
3 1: 2.893145 2: 1.91866 3: 2.958015 4: 0.5728554 5: 0.1574137 6: 0.4851336 
3 1: 2.894341 2: 1.919098 3: 2.959013 4: 0.572764 5: 0.1574303 6: 0.4849042 
3 1: 2.894859 2: 1.918063 3: 2.957782 4: 0.573199 5: 0.1575601 6: 0.4854648 
3 1: 2.894386 2: 1.917979 3: 2.957599 4: 0.5734485 5: 0.1570611 6: 0.485257 
3 1: 1.993388 2: 2.874621 3: 2.951811 4: 0.1565158 5: 0.7068903 6: 0.3994827 
3 1: 1.989449 2: 2.875722 3: 2.952027 4: 0.1568166 5: 0.705988 6: 0.3991813 
3 1: 1.990714 2: 2.881382 3: 2.955542 4: 0.1574917 5: 0.7071833 6: 0.399677 
3 1: 1.989603 2: 2.881707 3: 2.955533 4: 0.1570817 5: 0.7073283 6: 0.3996201 
3 1: 1.990178 2: 2.886694 3: 2.959225 4: 0.157963 5: 0.7082874 6: 0.3997458 
3 1: 1.989892 2: 2.887299 3: 2.95906 4: 0.1574524 5: 0.7088872 6: 0.4004959 
3 1: 1.987636 2: 2.88749 3: 2.960347 4: 0.1583788 5: 0.7093159 6: 0.3997871 
3 1: 1.986993 2: 2.887277 3: 2.960588 4: 0.15818 5: 0.7090072 6: 0.3998096 
3 1: 1.986566 2: 2.886937 3: 2.959363 4: 0.1577422 5: 0.7081607 6: 0.3997358 
3 1: 1.986981 2: 2.886266 3: 2.958389 4: 0.1580077 5: 0.707935 6: 0.3995723 
3 1: 2.894386 2: 2.87306 3: 1.370604 4: 0.9429961 5: 0.8098531 6: 0.1822205 
3 1: 2.896339 2: 2.872651 3: 1.367719 4: 0.9428183 5: 0.8098455 6: 0.1822807 
3 1: 2.895823 2: 2.869182 3: 1.364775 4: 0.9402191 5: 0.807332 6: 0.1814316 
3 1: 2.902101 2: 2.871469 3: 1.364429 4: 0.9418942 5: 0.8073709 6: 0.1818118 
3 1: 2.901702 2: 2.872546 3: 1.363214 4: 0.9416142 5: 0.8072713 6: 0.1818187 
3 1: 2.90146 2: 2.872289 3: 1.362425 4: 0.9414435 5: 0.8077422 6: 0.1820667 
3 1: 2.900975 2: 2.872383 3: 1.361516 4: 0.9402315 5: 0.8068039 6: 0.1817753 
3 1: 2.891164 2: 2.871726 3: 1.360891 4: 0.9397248 5: 0.8059003 6: 0.1814507 
3 1: 2.894386 2: 2.87306 3: 1.370604 4: 0.9429961 5: 0.8098531 6: 0.1822205 
3 1: 2.896339 2: 2.872651 3: 1.367719 4: 0.9428183 5: 0.8098455 6: 0.1822807 
3 1: 2.862875 2: 1.310295 3: 2.970051 4: 0.8172097 5: 0.2823321 6: 0.6575707 
3 1: 2.862191 2: 1.306149 3: 2.969894 4: 0.8166515 5: 0.2820602 6: 0.657154 
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3 1: 2.861213 2: 1.303973 3: 2.970037 4: 0.8158715 5: 0.2818973 6: 0.6567931 
3 1: 2.862015 2: 1.302887 3: 2.972013 4: 0.8160524 5: 0.2820284 6: 0.6571088 
3 1: 2.872379 2: 1.301194 3: 2.971612 4: 0.8141873 5: 0.2808872 6: 0.6556095 
3 1: 2.874311 2: 1.300923 3: 2.972992 4: 0.8150353 5: 0.2815393 6: 0.6563665 
3 1: 2.875653 2: 1.3014 3: 2.975021 4: 0.8150071 5: 0.2812961 6: 0.6563923 
3 1: 2.873734 2: 1.299935 3: 2.973098 4: 0.8142779 5: 0.2810717 6: 0.6554931 
3 1: 2.874092 2: 1.299274 3: 2.97255 4: 0.8138343 5: 0.2809078 6: 0.6550871 
3 1: 2.874286 2: 1.299629 3: 2.976068 4: 0.8128911 5: 0.2803116 6: 0.6548108 
3 1: 1.348948 2: 2.884112 3: 2.960971 4: 0.2733612 5: 0.9542636 6: 0.5647501 
3 1: 0.9224163 2: 2.886713 3: 2.961327 4: 0.2734528 5: 0.9546964 6: 0.5650246 
3 1: 0.9217279 2: 2.889416 3: 2.963029 4: 0.2737507 5: 0.9553607 6: 0.5652831 
3 1: 0.921012 2: 2.890906 3: 2.963917 4: 0.273513 5: 0.9553913 6: 0.5650934 
3 1: 0.9210893 2: 2.891352 3: 2.965438 4: 0.2740591 5: 0.9563518 6: 0.5663143 
3 1: 0.9206495 2: 2.895095 3: 2.966468 4: 0.2740626 5: 0.9564064 6: 0.56546 
3 1: 0.9195053 2: 2.893107 3: 2.964883 4: 0.2741228 5: 0.9557357 6: 0.5655521 
3 1: 0.9194766 2: 2.896158 3: 2.966534 4: 0.2736887 5: 0.9552947 6: 0.5647303 
3 1: 0.9184621 2: 2.894506 3: 2.965183 4: 0.2729994 5: 0.9538033 6: 0.5640372 
3 1: 0.9182459 2: 2.894907 3: 2.965013 4: 0.2731076 5: 0.954013 6: 0.5640218 
4 1: 2.382402 2: 2.360674 3: 2.422607 4: 0.3529491 5: 0.3529101 6: 0.341619 
4 1: 2.381336 2: 2.360096 3: 2.421237 4: 0.3528076 5: 0.3531542 6: 0.3408604 
4 1: 2.381771 2: 2.360703 3: 2.422024 4: 0.3526075 5: 0.3531779 6: 0.3400515 
4 1: 2.382953 2: 2.360257 3: 2.42146 4: 0.3537958 5: 0.3532522 6: 0.3402935 
4 1: 2.380475 2: 2.358105 3: 2.419025 4: 0.3527327 5: 0.3525339 6: 0.3370528 
4 1: 2.382225 2: 2.360513 3: 2.420996 4: 0.3530358 5: 0.3531011 6: 0.3286321 
4 1: 2.382402 2: 2.360674 3: 2.422607 4: 0.3529491 5: 0.3529101 6: 0.341619 
4 1: 2.381336 2: 2.360096 3: 2.421237 4: 0.3528076 5: 0.3531542 6: 0.3408604 
4 1: 2.381771 2: 2.360703 3: 2.422024 4: 0.3526075 5: 0.3531779 6: 0.3400515 
4 1: 2.163475 2: 2.152964 3: 2.201442 4: 0.3237105 5: 0.3294426 6: 0.3284097 
4 1: 2.163955 2: 2.153846 3: 2.201543 4: 0.3238132 5: 0.3290614 6: 0.3283143 
4 1: 2.164716 2: 2.153646 3: 2.201396 4: 0.3238479 5: 0.3293944 6: 0.3282555 
4 1: 2.164056 2: 2.153861 3: 2.202069 4: 0.324045 5: 0.3296407 6: 0.3279101 
4 1: 2.164577 2: 2.154193 3: 2.202618 4: 0.3238008 5: 0.32948 6: 0.3279611 
4 1: 2.165098 2: 2.154525 3: 2.203167 4: 0.3235566 5: 0.3293193 6: 0.3280121 
4 1: 2.165619 2: 2.154857 3: 2.203716 4: 0.3233124 5: 0.3291586 6: 0.3280631 
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4 1: 2.16614 2: 2.155189 3: 2.204265 4: 0.3230682 5: 0.3289979 6: 0.3281141 
4 1: 1.874775 2: 1.8553 3: 1.876041 4: 0.2871271 5: 0.2874525 6: 0.2812617 
4 1: 1.875157 2: 1.855805 3: 1.875452 4: 0.2871257 5: 0.2868409 6: 0.281019 
4 1: 1.875168 2: 1.855323 3: 1.875755 4: 0.2870673 5: 0.287159 6: 0.2811552 
4 1: 1.874487 2: 1.855414 3: 1.875549 4: 0.2872205 5: 0.2876024 6: 0.2810761 
4 1: 1.874989 2: 1.855204 3: 1.875994 4: 0.2867131 5: 0.2871328 6: 0.281181 
4 1: 1.874796 2: 1.855089 3: 1.874878 4: 0.2867769 5: 0.2870515 6: 0.2810125 
4 1: 1.8750663 2: 1.8549107 3: 1.8748027 4: 0.2864599 5: 0.2867113 6: 0.2810263 
4 1: 1.8752208 2: 1.8547482 3: 1.8744672 4: 0.2862381 5: 0.2864359 6: 0.2809945 
4 1: 1.8753753 2: 1.8545857 3: 1.8741317 4: 0.2860163 5: 0.2861604 6: 0.2809627 
4 1: 1.453689 2: 1.451406 3: 1.443113 4: 0.2451649 5: 0.2501255 6: 0.2338819 
4 1: 1.453575 2: 1.451258 3: 1.44291 4: 0.244853 5: 0.2500153 6: 0.2339149 
4 1: 1.453321 2: 1.450869 3: 1.442793 4: 0.245033 5: 0.2499871 6: 0.2339913 
4 1: 1.453478 2: 1.450875 3: 1.442797 4: 0.2450377 5: 0.2498526 6: 0.2341033 
4 1: 1.454064 2: 1.451483 3: 1.443405 4: 0.2452552 5: 0.2497707 6: 0.2342472 
4 1: 1.453358 2: 1.450648 3: 1.442555 4: 0.2451787 5: 0.2497242 6: 0.2340178 
4 1: 1.453138 2: 1.450073 3: 1.442078 4: 0.2449135 5: 0.2495876 6: 0.2339642 
4 1: 1.453841 2: 1.450904 3: 1.442799 4: 0.2448468 5: 0.2495778 6: 0.2340336 
4 1: 1.454063 2: 1.45136 3: 1.443139 4: 0.2449421 5: 0.2494111 6: 0.2336491 
4 1: 1.453433 2: 1.450631 3: 1.442537 4: 0.2450867 5: 0.2495748 6: 0.2339004 
4 1: 1.452803 2: 1.449902 3: 1.441935 4: 0.2452313 5: 0.2497385 6: 0.2341517 
4 1: 1.452173 2: 1.449173 3: 1.441333 4: 0.2453759 5: 0.2499022 6: 0.234403 
4 1: 1.086678 2: 1.087319 3: 1.083799 4: 0.2310545 5: 0.2390753 6: 0.2256249 
4 1: 1.086249 2: 1.086596 3: 1.08313 4: 0.2311174 5: 0.2388403 6: 0.225809 
4 1: 1.086426 2: 1.086924 3: 1.083376 4: 0.2307567 5: 0.2386741 6: 0.2258985 
4 1: 1.086638 2: 1.087107 3: 1.083449 4: 0.230776 5: 0.2385777 6: 0.225558 
4 1: 1.086082 2: 1.08678 3: 1.083857 4: 0.2306681 5: 0.238907 6: 0.2254433 
4 1: 1.086021 2: 1.086736 3: 1.083372 4: 0.2305058 5: 0.238935 6: 0.2253883 
4 1: 1.086537 2: 1.08722 3: 1.083831 4: 0.230644 5: 0.2385258 6: 0.2253385 
4 1: 1.086927 2: 1.087158 3: 1.083856 4: 0.2306754 5: 0.2388429 6: 0.2251484 
4 1: 1.087317 2: 1.087096 3: 1.083881 4: 0.2307068 5: 0.23916 6: 0.2249583 
4 1: 1.087707 2: 1.087034 3: 1.083906 4: 0.2307382 5: 0.2394771 6: 0.2247682 
4 1: 1.088097 2: 1.086972 3: 1.083931 4: 0.2307696 5: 0.2394942 6: 0.2245781 
5 1: 2.859328 2: 2.867916 3: 2.84877 4: 0.4832593 5: 0.4986941 6: 0.4966687 
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5 1: 2.862447 2: 2.868324 3: 2.851844 4: 0.4826271 5: 0.4987077 6: 0.4967233 
5 1: 2.864296 2: 2.871733 3: 2.855676 4: 0.4839867 5: 0.5001969 6: 0.4972649 
5 1: 2.865128 2: 2.871906 3: 2.855436 4: 0.4828961 5: 0.4992056 6: 0.4968944 
5 1: 2.86833 2: 2.876102 3: 2.859047 4: 0.4831682 5: 0.4986701 6: 0.4965286 
5 1: 2.86879 2: 2.875877 3: 2.860353 4: 0.4834527 5: 0.4993634 6: 0.4968793 
5 1: 2.853745 2: 2.876647 3: 2.861104 4: 0.4841212 5: 0.5006972 6: 0.4974402 
5 1: 2.887868 2: 2.879664 3: 2.863563 4: 0.4840554 5: 0.5006475 6: 0.4974832 
5 1: 2.88767 2: 2.878232 3: 2.862817 4: 0.4821643 5: 0.4988643 6: 0.496281 
5 1: 2.88538 2: 2.880068 3: 2.863697 4: 0.4835059 5: 0.4995906 6: 0.4969449 
6 1: 2.661374 2: 2.613395 3: 2.688907 4: 1.416786 5: 1.397752 6: 1.411372 
6 1: 2.657179 2: 2.613409 3: 2.687374 4: 1.671357 5: 1.650515 6: 1.6687 
6 1: 2.661374 2: 2.613395 3: 2.688907 4: 1.416786 5: 1.397752 6: 1.411372 
6 1: 2.657179 2: 2.613409 3: 2.687374 4: 1.671357 5: 1.650515 6: 1.6687 
6 1: 2.661374 2: 2.613395 3: 2.688907 4: 1.416786 5: 1.397752 6: 1.411372 
6 1: 2.657179 2: 2.613409 3: 2.687374 4: 1.671357 5: 1.650515 6: 1.6687 
6 1: 2.661374 2: 2.613395 3: 2.688907 4: 1.416786 5: 1.397752 6: 1.411372 
6 1: 2.657179 2: 2.613409 3: 2.687374 4: 1.671357 5: 1.650515 6: 1.6687 
6 1: 2.661374 2: 2.613395 3: 2.688907 4: 1.416786 5: 1.397752 6: 1.411372 
6 1: 2.657179 2: 2.613409 3: 2.687374 4: 1.671357 5: 1.650515 6: 1.6687 
7 1: 2.638303 2: 2.602147 3: 2.674996 4: 0.8074452 5: 0.7878412 6: 0.7996882 
7 1: 2.639261 2: 2.601776 3: 2.674889 4: 0.805906 5: 0.7861279 6: 0.7985954 
7 1: 2.637713 2: 2.600656 3: 2.673487 4: 0.8046407 5: 0.7842707 6: 0.7980604 
7 1: 2.637658 2: 2.600486 3: 2.673771 4: 0.8031466 5: 0.7825137 6: 0.7974771 
7 1: 2.638693 2: 2.600891 3: 2.673654 4: 0.8022083 5: 0.781319 6: 0.7956063 
7 1: 2.638221 2: 2.600729 3: 2.674951 4: 0.800188 5: 0.7798032 6: 0.7950842 
7 1: 2.638303 2: 2.602147 3: 2.674996 4: 0.8074452 5: 0.7878412 6: 0.7996882 
7 1: 2.639261 2: 2.601776 3: 2.674889 4: 0.805906 5: 0.7861279 6: 0.7985954 
7 1: 2.637713 2: 2.600656 3: 2.673487 4: 0.8046407 5: 0.7842707 6: 0.7980604 
7 1: 2.637658 2: 2.600486 3: 2.673771 4: 0.8031466 5: 0.7825137 6: 0.7974771 
7 1: 2.650827 2: 2.608411 3: 2.682292 4: 0.8562559 5: 0.83688 6: 0.8470134 
7 1: 2.652089 2: 2.609181 3: 2.682892 4: 0.8572801 5: 0.8370795 6: 0.8469804 
7 1: 2.650468 2: 2.608143 3: 2.682578 4: 0.8573355 5: 0.8376006 6: 0.8476639 
7 1: 2.64794 2: 2.606494 3: 2.680609 4: 0.857952 5: 0.838779 6: 0.8482822 
7 1: 2.648501 2: 2.606822 3: 2.681451 4: 0.858399 5: 0.8391316 6: 0.8490326 
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7 1: 2.649403 2: 2.607868 3: 2.680983 4: 0.8592447 5: 0.8385217 6: 0.8496575 
7 1: 2.650977 2: 2.609 3: 2.682617 4: 0.8567954 5: 0.836699 6: 0.8474185 
7 1: 2.653212 2: 2.609516 3: 2.683615 4: 0.8571332 5: 0.8363514 6: 0.8475973 
7 1: 2.649549 2: 2.607351 3: 2.681842 4: 0.8574618 5: 0.8381995 6: 0.848157 
7 1: 2.649483 2: 2.606308 3: 2.681787 4: 0.8580527 5: 0.8386351 6: 0.8490824 
7 1: 2.642 2: 2.605126 3: 2.678911 4: 0.8492008 5: 0.8297097 6: 0.8431634 
7 1: 2.640762 2: 2.603945 3: 2.678396 4: 0.8487684 5: 0.8301917 6: 0.8442751 
7 1: 2.64096 2: 2.604793 3: 2.678446 4: 0.8486399 5: 0.8300289 6: 0.843615 
7 1: 2.642 2: 2.605126 3: 2.678911 4: 0.8492008 5: 0.8297097 6: 0.8431634 
7 1: 2.640762 2: 2.603945 3: 2.678396 4: 0.8487684 5: 0.8301917 6: 0.8442751 
7 1: 2.64096 2: 2.604793 3: 2.678446 4: 0.8486399 5: 0.8300289 6: 0.843615 
7 1: 2.642 2: 2.605126 3: 2.678911 4: 0.8492008 5: 0.8297097 6: 0.8431634 
7 1: 2.640762 2: 2.603945 3: 2.678396 4: 0.8487684 5: 0.8301917 6: 0.8442751 
7 1: 2.64096 2: 2.604793 3: 2.678446 4: 0.8486399 5: 0.8300289 6: 0.843615 
7 1: 2.642 2: 2.605126 3: 2.678911 4: 0.8492008 5: 0.8297097 6: 0.8431634 
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