
Bowling Green State University Bowling Green State University 

ScholarWorks@BGSU ScholarWorks@BGSU 

Mathematics and Statistics Faculty 
Publications Mathematics and Statistics 

2019 

Statistical Inference for the Transformed Rayleigh Lomax Statistical Inference for the Transformed Rayleigh Lomax 

Distribution with Progressive Type-II Right Censorship Distribution with Progressive Type-II Right Censorship 

Amani Alghami 

Wei Ning 
Bowling Green State University, wning@bgsu.edu 

Arjun K. Gupta 

Follow this and additional works at: https://scholarworks.bgsu.edu/math_stat_pub 

 Part of the Probability Commons 

Repository Citation Repository Citation 
Alghami, Amani; Ning, Wei; and Gupta, Arjun K., "Statistical Inference for the Transformed Rayleigh Lomax 
Distribution with Progressive Type-II Right Censorship" (2019). Mathematics and Statistics Faculty 
Publications. 75. 
https://scholarworks.bgsu.edu/math_stat_pub/75 

This Article is brought to you for free and open access by the Mathematics and Statistics at ScholarWorks@BGSU. 
It has been accepted for inclusion in Mathematics and Statistics Faculty Publications by an authorized 
administrator of ScholarWorks@BGSU. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bowling Green State University: ScholarWorks@BGSU

https://core.ac.uk/display/234761799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.bgsu.edu/
https://scholarworks.bgsu.edu/math_stat_pub
https://scholarworks.bgsu.edu/math_stat_pub
https://scholarworks.bgsu.edu/math_stats
https://scholarworks.bgsu.edu/math_stat_pub?utm_source=scholarworks.bgsu.edu%2Fmath_stat_pub%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/212?utm_source=scholarworks.bgsu.edu%2Fmath_stat_pub%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.bgsu.edu/math_stat_pub/75?utm_source=scholarworks.bgsu.edu%2Fmath_stat_pub%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages


Statistical Inference for the Transformed Rayleigh
Lomax Distribution with Progressive Type-II Right

Censorship

Amani Alghamdi, Wei Ning ∗ and Arjun K. Gupta
Department of Mathematics and Statistics

Bowling Green State University, Bowling Green, OH 43403, USA

Abstract

In this paper, we study the transformed Rayleigh Lomax (Trans-RL) distri-
bution which belongs to a certain family of two parameters lifetime distributions
given by Wang et al. (2010). Confidence intervals and inverse estimators of the
Trans-RL parameters are derived in terms of the order statistics. A simulation
study is conducted to report the coverage probabilities, the average biases and the
average relative mean square errors for the maximum likelihood, L-moments and
inverse estimators. We compare the performance of these methods under different
schemes of progressively Type-II right censoring. Finally, an illustrative example
is provided to demonstrate the proposed methods.

Keywords: L-moments; Confidence intervals; Inverse estimators; Order Statistics, Pro-
portional hazard family.

1 Introduction

Censoring is one of the useful sampling techniques in life test experiment which is used to
save time and cost of testing units, see (Lawless, 2011) and (Meeker and Escobar, 2014).
Type-I and Type-II censoring are the two most common censoring schemes, where in
Type-I censoring scheme, the total duration of the study is fixed and the number of
failures is random, whereas under censoring of Type-II, the number of failures is fixed
in advance and the total duration of the study is random.

∗Corresponding author. Email: wning@bgsu.edu
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One of the main extensions of Type-II censoring scheme is progressive Type-II right
censoring which has received great attentions. Herd (1956) was the first to study esti-
mation of the population parameters based on progressively censored samples. Cohen
(1963) studied the importance of progressive censoring in life-testing reliability exper-
iments. Balakrishnan and Aggarwala (2000) provided details about right progressive
censoring in theories and applications.

Let Y1, Y2, ..., Yn be independent and identically distributed (i.i.d) random lifetimes of
n units. A progressive Type-II right censored sample can be obtained in the following
way: Suppose that n units are placed on life test at time zero. Before we begin the test,
a number m(< n) is fixed and the censoring scheme R = (R1, ..., Rm) with Rj ≥ 0 and∑m

j=1Rj +m = n is specified. Immediately following the first failure, R1 surviving units
are removed from the test at random. Then, immediately following the second observed
failure, R2 surviving units are removed from the test at random . This process continues
until at the time of the m− th observed failure, the remaining Rm = n−R1−R2− ...−
Rm−1−m units are removed from the experiment and censored. This censoring scheme
includes as special cases the complete sample (when m = n and R1 = ... = Rm = 0).

Several lifetime distributions associated with censored sampling are available and have
wide applications in engineering, science, public health and medicine. For example,
the one parameter exponential distribution under censored sampling has received great
attention in the literature. See (Ehsan Saleh, 1967), (Pettitt, 1977), (Wright et al., 1978)
and (Sundberg, 2001).

According to Marshall and Olkin (2007), let G be a distribution function depending
only on the shape parameter α with hazard rate R = −log(1 − G). Suppose that
F (.;α, σ) is defined by the formula

F (y;α, σ) = 1− [1−G(y;α)]σ, (1)

Then, σ is called a frailty parameter and {F (.;α, σ);α, σ > 0} is a frailty parameter
family, or alternatively, a proportional hazard family. The Weibull distribution, the
Gompertz distribution and the Lomax distribution are examples included in family (1).
In this paper, we study the inference under progressively Type-II right censored sampling
for a new distribution belongs to the family (1) called the transformed Rayleigh Lomax
(Trans-RL) distribution. The rest of the paper is organized as follows. In section 2,
a new distribution named the Rayleigh Lomax (RL) distribution is defined, and the
definition of the transformed-RL distribution is followed by. Under progressively Type-
II right censoring, the confidence intervals as well as the inverse estimation for the
Trans-RL parameters are studied in section 3. In section 4, the coverage probabilities,
the average relative biases and average relative mean square errors for the MLE, the
method of L-moments and inverse estimators are calculated for different progressive
censoring schemes through a simulation study. Finally, a real dataset is provided to
illustrate the proposed method.
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2 The Rayleigh-Lomax Distribution

Lomax distribution is one of the well known distributions that is very useful in many
fields such as engineering, reliability and life testing. However, this distribution does not
provide great flexibility in modeling data. Thus, Lomax distribution can be generalized
by presenting additional parameters such as shape, scale or location in the distribution
and then observing the characteristic of the new distribution. Several generalized classes
of distributions are available such as exponentiated Lomax (Abdul-Moniem and Abdel-
Hameed, 2012), Beta-Lomax((Rajab et al., 2013), exponential Lomax distribution (El-
Bassiouny et al., 2015) and Gumbel-Lomax (Tahir et al., 2016).

El-Bassiouny et al. (2015) proposed a new generalization of Lomax distribution by
adding a scale parameter β > 0 to the Lomax distribution. Let G(x) denotes the
cumulative density function (cdf) of Lomax distribution and f(t) is the probability
density function (pdf) of the exponential distribution. Then the cdf for the exponential
Lomax (ELomax) distribution is given by the general expression

F (x;α, λ, β) =

∫ 1
1−G(x;α,λ)

0

f(t; β)dt. (2)

Therefore, the ELomax cdf is given by∫ 1

( λ
x+λ)

α

0

βe−βtdt = 1− e−β(
λ
x+λ)

−α

, α, λ, β > 0. (3)

Rayleigh Lomax (RL) distribution is another extension of Lomax distribution which
provides great fit in modeling wide range of real data sets. It is a very flexible distribution
that by changing its parameters, some different useful distributions can be obtained. The
RL distribution is defined using the general expression in (2) as

F (x;α, λ, σ) =

∫ 1

( λ
x+λ)

α

0

f(t;σ)dt, (4)

where f(t;σ) is the pdf of Rayleigh distribution given by

f(t;σ) =
t

σ2
e−

t2

2σ2 , t ≥ 0, σ > 0. (5)

From (4), The Rayleigh Lomax cdf is given by

F (x;α, λ, σ) = 1− e
−1

2σ2
(x+λλ )

2α

, (6)

The corresponding pdf is given by taking the derivative of (6)

f(x;α, λ, σ) =
α

λσ2

(
x+ λ

λ

)2α−1

e
−1

2σ2
(x+λλ )

2α

, x > −λ, α, λ, σ > 0, (7)
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where α is the shape parameter and λ and σ are scale parameters of Rayleigh Lomax
distribution. Rayleigh Lomax distribution behaves as a lifetime distribution by adding
the scale parameter λ to the RL random variable X. Particularly, let Y = X+λ

λ
, then

the pdf of the transformed RL distribution is

fY (y;α, σ) =
α

σ2
y2α−1e

−1

2σ2
y2α , y, α, σ > 0, (8)

and its cdf is given by

FY (y;α, σ) = 1− e
−1

2σ2
y2α . (9)

Regarding the Trans-RL distribution, (1) can be written as

F (y;α, σ) = 1− [1−G(y;α)]
1

2σ2 , y, α, σ > 0, (10)

where G(y;α) = 1− e−y2α .

3 Confidence Intervals and Inverse Estimation of

Parameters α and σ

The following results, which are also stated in Wang et al. (2010), are needed

Theorem 1. (I) If Vi:m:n = −log(1−F (Yi:m:n;α, σ)), i = 1, ...,m, then V1:m:n, ..., Vm:m:n

is a progressively type II right censored sample from the standard exponential distribution
with sample size n and censoring scheme R = (R1, ..., Rm). In the Trans-RL distribu-
tion, Vi:m:n = 1

2σ2Y
2α
i:m:n.

(II) If W1 = nV1:m:n, Wi =
[
n−

∑i−1
j=1 (Rj + 1)

]
(Vi:m:n − Vi−1:m:n), i = 2, ...,m, then

W1, ...,Wm are independent standard exponential random variates.
(III) If Si =

∑i
j=1Wj, i = 1, ...,m and U(i) = Si

Sm
, i = 1, ...,m−1, then U(1) < ... < U(m−1)

are order statistics from the uniform(0,1) distribution with sample size m-1.

Proof. (I) Balakrishnan and Aggarwala (2000) provided the joint pdf of all m pro-
gressively type II right censored order statistics as follows.

fY1:m:n,...,Ym:m:n(y1, ..., ym) = c

m∏
i=1

f(yi)[1− F (yi)]
Ri , y1 < ... < ym (11)

where c = n(n − R1 − 1)...(n − R1 − R2 − ... − Rm−1 − m + 1). For the Trans-RL
distribution, the joint pdf of all m progressively Type-II right censored order statistics
is

fY1:m:n,...,Ym:m:n(y1, ..., ym) = c
m∏
i=1

α

σ2
y2α−1
i

(
e

−1

2σ2
y2αi

)Ri+1

. (12)
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Then it is easy for us to obtain

fV1:m:n,...,Vm:m:n(v1, ..., vm) = ce−
∑m
i=1(Ri+1)vi , 0 < v1 < ... < vm <∞, (13)

which implies that V1:m:n, ..., Vm:m:n is a progressively Type-II right censored sample from
the standard exponential distribution.

(II) If

W1 = nV1:m:n,

W2 = (n−R1 − 1) (V2:m:n − V1:m:n) ,

...

Wm = (n−R1 − ...−Rm−1 −m+ 1) (Vm:m:n − Vm−1:m:n) .

Then,

V1:m:n =
W1

n
,

V2:m:n =
W1

n
+

W2

n−R1 − 1
,

...

Vm:m:n =
W1

n
+ ...+

Wm

n−R1 − ...−Rm−1 −m+ 1
.

Hence, from (13), we have

fW1,...,Wm(w1, ..., wm) = e−(R1+1)
w1
n .e

−(R2+1)
(
w1
n

+
w2

n−R1−1

)
...e

−(Rm+1)
(
w1
n

+...+ wm
n−R1−...−Rm−(m−1)

)
= e−

∑m
i=1(Ri+1)

w1
n .e

−
∑m
i=2(Ri+1)

w2
n−R1−1 ...e

−(Rm+1) wm
n−R1−...−Rm−1−(m−1) .

(14)

= e−
∑m
i=1 wi , wi ≥ 0.

Therefore, W1, ...,Wm are independent standard exponential random variates.

(III) The probability distribution function of the order statistic Ui, i = 1, ...,m − 1.
from the uniform(0,1) is given by

fU(i)
(u) =

(m− 1)!

(i− 1)!(m− i− 1)!
ui−1(1− u)m−i−1,

=
Γ(m)

Γ(i)Γ(m− i)
ui−1(1− u)m−i−1, 0 < u(1) < u(2) < ... < u(m−1) < 1 (15)

which implies that U(i) ∼ Beta(i,m− i).
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Given Si =
∑i

j=1Wj, i = 1, ...,m, we need to show that Ui = Si
Sm
, i = 1, ...,m− 1

is order statistic from the uniform (0,1) distribution with sample size m − 1. Since
W1, ...,Wm are independent standard exponential random variates, then Si =

∑i
j=1Wj

is a random variable from the gamma distribution with the shape parameter i > 0 and
the rate parameter equals 1. Let Si+1 = Wi+1 + Wi+2 + ... + Wm and Sm = Si + Si+1,
where Si+1 follows the gamma distribution with the shape parameter m− i > 0 and the
rate parameter equals 1.

Since Si and Si+1 are independent random variables, the joint pdf of of Si and Si+1 is
given as

f(si, si+1) =
si−1
i

Γ(i)
e−si .

1

Γ(m− i)
sm−i−1
i+1 e−si+1 , Si, Si+1 ≥ 0, i,m > 0. (16)

Let K = Si
Si+Si+1

and Sm = Si + Si+1, then Si = KSm and Si+1 = Sm(1−K) with

∂(Si, Si+1)

∂(Sm, K)
=

∣∣∣∣ K Sm
1−K −Sm

∣∣∣∣ = Sm.

Then, the joint pdf of K and Sm is given as

f(k, sm) =
Γ(m)

Γ(i)Γ(m− i)
ki−1(1− k)m−i−1 s

m−1
m

Γ(m)
e−sm . (17)

By factorization theorem, Si
Si+Si+1

= Si
Sm
∼ Beta(i,m− i).

Therefore, U(i) = Si
Sm
, i = 1, ...,m − 1, where U(1) < ... < U(m−1) are order statistics

from the uniform(0,1) distribution with sample size m− 1.

3.1 Interval estimation of parameter α

In order to construct the confidence interval of the parameter α, we consider the following
pivotal quantity

W (2α) =
m−1∑
i=1

(−2log(U(i))) = 2
m−1∑
i=1

log

(
Sm
Si

)

= 2
m−1∑
i=1

log

[ ∑m
j=1(Rj + 1)Vj:m:n∑i

j=1(Rj + 1)Vj:m:n + [n−
∑i

j=1(Rj + 1)]Vi:m:n

]

= 2
m−1∑
i=1

log

[ ∑m
j=1(Rj + 1)Y 2α

j:m:n∑i
j=1(Rj + 1)Y 2α

j:m:n + [n−
∑i

j=1(Rj + 1)]Y 2α
i:m:n

]
. (18)
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We notice that W (2α) is a function of α and does not depend on σ. Moreover, W (2α) =∑m−1
i=1 (−2logU(i)) =

∑m−1
i=1 (−2log(Ui)), and U1, ..., Um−1 = S1

Sm
, ..., Sm−1

Sm
is a random sam-

ple from the uniform(0,1) distribution which implies that W (2α) has the χ2 distribution
with 2(m− 1) degrees of freedom. To show that W (2α) is strictly monotonic function,
we write equation 18 as follows.

W (2α) = 2
m−1∑
i=1

log

(
1 +

Sm − Si
Si

)

= 2
m−1∑
i=1

log

(
1 +

∑m
j=i+1(Rj + 1)Vj:m:n − [n−

∑i
j=1(Rj + 1)]Vi:m:n∑i

j=1(Rj + 1)Vj:m:n + [n−
∑i

j=1(Rj + 1)]Vi:m:n

)

= 2
m−1∑
i=1

log

(
1 +

∑m
j=i+1(Rj + 1)P(j,i) − [n−

∑i
j=1(Rj + 1)]∑i

j=1(Rj + 1)P(j,i) + n−
∑i

j=1(Rj + 1)

)
, (19)

where P(j,i) =
Vj:m:n

Vi:m:n
=
(
Yj:m:n

Yi:m:n

)2α
is strictly increasing in α for j > i, and then W (2α)

is strictly increasing function of α. Therefore, W−1 exists and the confidence interval of
the parameter α is stated in the following theorem.

Theorem 2. Suppose X = (X1:m:n, ..., Xm:m:n) is a progressively Type II right censored
sample from the RL distribution with sample of size n and the censoring scheme R =
(R1, ..., Rm). Then, for any 0 < γ < 1,[

1
2
W−1[χ2

1−γ/2(2(m− 1))], 1
2
W−1[χ2

γ/2(2(m− 1))]
]

is a 100(1−γ)% confidence interval for the shape parameter α, where χ2
1−γ/2(2(m−1))

and χ2
γ/2(2(m−1)) are the lower and upper γ percentiles respectively of the χ2 distribution

with 2(m− 1) degrees of freedom.

3.2 Interval estimation of parameter σ

To obtain the confidence interval of σ, we consider the quantity, V = 2Sm. Note that
from part (III), Sm =

∑m
j=1Wj. Hence,

V = 2
m∑
j=1

Wj

= 2
m∑
j=1

(Rj + 1)Vj:m:n (20)

For the Trans-RL distribution, the quantity V can be written as

V =
1

σ2

m∑
j=1

(Rj + 1)Y
2g(W,Y )
j:m:n , (21)
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where g(W,Y ) = α = 1
2
W−1(t) obtained from (18) numerically and V has the χ2

distribution with 2m degrees of freedom. Hence, the 100(1− γ)% confidence interval of
σ is 

√√√√∑m
j=1(Rj + 1)Y

2g(W,Y )
j:m:n

χ2
γ/2(2m)

,

√√√√∑m
j=1(Rj + 1)Y

2g(W,Y )
j:m:n

χ2
1−γ/2(2m)


.

3.3 Inverse estimation of parameters α and σ

Since W (2α) has the χ2 distribution with 2(m−1) degrees of freedom and E(W (2α)) =
2(m − 1) < ∞, then by strong law of large numbers, W (2α̂)

a.s→ 2(m − 2) (or W (2α̂)
converges with probability one to 2(m−2)). Therefore, we can obtain the point estimator
α̂ of α from the following equation:

W (2α̂) = 2(m− 2). (22)

The inverse estimate of α is obtained by solving equation (22) numerically. From the
previous subsection, we know that V = 2Sm has the χ2 distribution with 2m degrees of
freedom. Hence, the inverse estimate of the parameter σ is

σ̂ =

√∑m
j=1(Rj + 1)Y 2α̂

j:m:n

2(m− 1)
. (23)

4 Simulation Results And Illustrative Example

4.1 Simulation Results

In this subsection, we conduct a simulation study for the Trans-RL distribution under a
variety of progressively Type-II right censored sampling schemes over 10000 replications.

We generate progressively Type-II censored samples from the Trans-RL distribution
for different choices of sample sizes and censoring schemes provided by Wang et al.
(2010). Table 1 shows the coverage probabilities of confidence intervals of α and σ at
0.90 and 0.95 confidence levels for the Trans-RL distribution. It illustrates that the sim-
ulated probabilities for 0.90 and 0.95 are very close to the 0.90 and 0.95 confidence levels.
We also obtain the inverse estimate of α and σ in Table 2 and Table 3 and compare their
performance with the maximum likelihood estimates (MLEs) and L-moment estimates
which are presented in Table 4-6, where L-moments can be estimated by linear com-
binations of order statistics (Hosking (1990)). We observe that the inverse estimation
provides a good alternative to the method of L-moments and MLE in terms of bias and
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MSE. Moreover, in almost all cases, the estimators of the parameters α and σ become
less biased as the censored units increase for a fixed sample size.

Table 1: The coverage probabilities of the confidence intervals in the transformed RL
distribution for α = 1 and σ = 1.

α σ

(n,m) (r1,...,rm) 0.90 0.95 0.90 0.95
(10,5) (0,...,0,5) 0.8500 0.9149 0.8416 0.9100
(10,5) (5,0,...,0) 0.8771 0.9368 0.8591 0.9223
(10,8) (0,0,...,2) 0.8288 0.8975 0.8781 0.9346
(10,8) (2,0,...,0) 0.8447 0.9102 0.8722 0.9334
(20,10) (0,0,...,10) 0.8401 0.9050 0.8755 0.9348
(20,10) (10,0,...,0) 0.8557 0.9190 0.8776 0.9364
(20,15) (0,0,...,5) 0.8385 0.9025 0.8877 0.9415
(20,15) (5,0,...,0) 0.8469 0.9125 0.8838 0.9403
(30,10) (0,0,...,20) 0.8520 0.9146 0.8790 0.9370
(30,10) (20,0,...,0) 0.8626 0.9234 0.8836 0.9393
(50,12) (0,...,0,38) 0.8694 0.9298 0.8881 0.9406
(50,12) (38,0,...,0) 0.8725 0.9293 0.8820 0.9366
(50,25) (0,0,...,25) 0.8457 0.9102 0.8872 0.9396
(50,25) (25,0,...,0) 0.8410 0.9056 0.8948 0.9446
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Table 2: The average bias and average MSE of the inverse estimators of the
parameters of the transformed RL distribution for α = 1 and σ = 1.

Bias MSE
(n,m) (r1,...,rm) α̂ σ̂ α̂ σ̂
(10,5) (0,...,0,5) -0.04258 0.27993 0.32956 0.75423
(10,5) (5,0,...,0) -0.03892 0.19442 0.162947 0.59069
(10,8) (0,...,0,2) -0.00334 0.20340 0.10729 0.31404
(10,8) (2,0,...,0) -0.02781 0.14724 0.10363 0.50432
(20,10) (0,0,...,10) -0.01636 0.10813 0.11379 0.18029
(20,10) (10,0,...,0) -0.03189 0.07033 0.05969 0.19855
(20,15) (0,0,...,5) 0.00031 0.09648 0.07304 0.22366
(20,15) (5,0,...,0) -0.01603 0.08205 0.04257 0.15048
(30,10) (0,...,0,20) -0.00912 0.13493 0.12528 0.16423
(30,10) (20,0,...,0) -0.01380 0.06646 0.05292 0.16163
(50,12) (0,...,0,38) 0.00532 0.11155 0.10696 0.14701
(50,12) (38,0,...,0) -0.00705 0.06631 0.04168 0.14275
(50,25) (0,...,0,25) -0.01335 0.04005 0.03567 0.04766
(50,25) (25,0,...,0) -0.00398 0.02737 0.02273 0.07204

Table 3: The inverse estimates of the parameters of the transformed RL distribution
for α = 1 and σ = 1.

(n,m) (r1,...,rm) α̂ σ̂
(10,5) (0,0...,5) 0.95742 1.27993
(10,5) (5,0,...,0) 0.96108 1.19442
(10,8) (0,...,0,2) 0.99666 1.20340
(10,8) (2,0,...,0) 0.97219 1.14724
(20,10) (0,0,...,10) 0.98364 1.10813
(20,10) (10,0,...,0) 0.96811 1.07033
(20,15) (0,...,0,5) 1.00031 1.09648
(20,15) (5,0,...,0) 0.98397 1.08205
(30,10) (0,...,0,20) 0.99088 1.13493
(30,10) (20,0,...,0) 0.98620 1.06646
(50,12) (0,...,0,38) 1.00532 1.11155
(50,12) (38,0,...,0) 0.99295 1.06631
(50,25) (0,...,0,25) 0.98665 1.04005
(50,25) (25,0,...,0) 0.99602 1.04342
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Table 4: The average bias of the L-moments and MLEs of the parameters of the
Transformed RL distribution

Biase
α̂ σ̂

(n,m) (r1,...,rm) L-mom MLE L-mom MLE
(10,5) (0,..,0,5) 0.55567 0.92258 -0.38858 -0.79442
(10,5) (5,0,...,0) -0.07781 0.15797 -0.07739 -0.10608
(10,5) (1,1,...,1) 0.15453 0.42711 -0.26749 -0.44135
(10,8) (0,...,0,2) 0.27196 0.45911 -0.11571 -0.3555
(10,8) (2,0,...,0) 0.01472 0.16016 0.00327 0.01753
(20,10) (0,...,0,10) 0.42648 0.61213 -0.42983 -0.61913
(20,10) (10,0,...,0) -0.05016 0.05026 -0.05732 -0.08407
(20,10) (1,1,...,1) 0.03664 0.14912 -0.28479 -0.48656
(20,15) (0,...,0,5) 0.28703 0.39965 -0.18612 -0.25265
(20,15) (5,0,...,0) 0.00450 0.07531 -0.00134 0.01254
(30,10) (0,...,0,20) 0.50733 0.70672 -0.60172 -0.64089
(30,10) (20,0,...,0) -0.10060 -0.01042 -0.08483 -0.11747
(30,10) (2,2,...,2) 0.07229 0.18551 -0.43015 -0.51704
(30,20) (0,...,0,10) 0.31000 0.41319 -0.28147 -0.31776
(50,12) (38,0,...,0) -0.11779 -0.05355 -0.09259 -0.10947
(50,25) (25,0,...,0) -0.03584 -0.00130 -0.02766 -0.01838
(50,25) (1,1,...,1) 0.02812 0.06811 -0.28931 -0.30948
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Table 5: The average MSE of the L-moments and MLEs of the parameters of the
Transformed RL distribution

MSE
α̂ σ̂

(n,m) (r1,...,rm) L-mom MLE L-mom MLE
(10,5) (0,..,0,5) 1.50534 2.34460 0.31145 1.13771
(10,5) (5,0,...,0) 0.16243 0.25583 0.07078 0.20065
(10,8) (0,...,0,2) 0.29683 0.51212 0.10391 0.70489
(10,8) (2,0,...,0) 0.12723 0.19352 0.08648 0.23226
(20,10) (0,...,0,10) 0.42118 0.68416 0.20333 0.56756
(20,10) (10,0,...,0) 0.06158 0.07473 0.04174 0.16764
(20,15) (0,...,0,5) 0.17883 0.28198 0.06654 0.22357
(20,15) (5,0,...,0) 0.04760 0.05868 0.02974 0.06064
(30,10) (0,...,0,20) 0.50528 0.83076 0.37277 0.42960
(30,10) (20,0,...,0) 0.05666 0.05525 0.03644 0.15508
(30,20) (0,...,0,10) 0.17262 0.26647 0.09526 0.16951
(50,12) (38,0,...,0) 0.04869 0.04024 0.03231 0.09948
(50,25) (25,0,...,0) 0.02286 0.02195 0.02030 0.01638
(50,25) (1,1,...,1) 0.03492 0.03903 0.09031 0.13263
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Table 6: The maximum likelihood and L-moment estimates of the parameters of the
Transformed RL distribution

Estimate
α̂ σ̂

(n,m) (r1,...,rm) L-mom MLE L-mom MLE
(10,5) (0,. . . ,0,5) 1.47614 1.97562 0.61142 0.20558
(10,5) (5,0,. . . ,0) 0.92219 1.15797 0.92261 0.89392
(10,5) (1,1,. . . ,1) 1.15454 1.42711 0.73251 0.55867
(10,8) (0,0,. . . ,2) 1.27196 1.45911 0.88428 0.64447
(10,8) (2,0,. . . ,0) 1.01472 1.16015 1.00327 1.01753
(20,10) (0,0,. . . ,10) 1.42648 1.61213 0.57017 0.38087
(20,10) (10,0,...,0) 0.94983 1.05026 0.94267 0.91593
(20,10) (1,1,. . . ,1) 1.03664 1.14912 0.71520 0.51344
(20,15) (0,0,. . . ,5) 1.28703 1.39965 0.81388 0.74734
(20,15) (5,0,. . . ,0) 1.00450 1.07531 0.99866 1.01254
(30,10) (0,0,. . . ,20) 1.50733 1.70672 0.39828 0.35910
(30,10) (20,0,. . . ,0) 0.89939 0.98958 0.91517 0.88253
(30,10) (2,2,. . . ,2) 1.07229 1.18551 0.56985 0.48296
(30,20) (0,0,. . . ,10) 1.31000 1.41319 0.71853 0.68223
(50,12) (38,0,. . . ,0) 0.88221 0.94645 0.90741 0.89053
(50,25) (25,0,. . . ,0) 0.96416 0.99869 0.97234 0.98162
(50,25) (1,1,. . . ,1) 1.02812 1.06811 0.71069 0.69052

4.2 An Illustrative Example

We consider the following general progressively Type-II censored data which represent
the time (in minutes) to breakdown of an insulating fluid between electrodes at voltage
30 kv. This data is taken from Nelson (1982, Table 6.1, p. 228). The complete data
set consist of n = 11 times to breakdown. The progressively censored data are given as
follows

ri 0 0 0 0 3 0 0 0
Yi 2.0464 2.8361 3.0184 3.0454 3.1206 4.9706 5.1698 5.2724

The experimenter removed three survival units from the test at the failure (breakdown)
of an insulating fluid which is occurred at 3.1206 minutes such that

∑8
i=1 ri+m = 3+8 =

11.

The maximum likelihood and inverse estimates of α and σ are computed and the
results are shown in Table 7.
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Table 7: The maximum likelihood and inverse estimates of α and σ

α σ
MLE Inverse MLE Inverse

Complete data 1.84201 1.63638 9.73321 7.45820
Progressive data 1.74957 1.67150 8.38262 8.53374

From Table 7, we observe that the inverse estimates of the Trans-RL parameters α
and σ in the case of progressively censored sample are closer to the ones based on the
complete sample (when m = n and R1 = ... = Rm = 0) than the MLEs. Hence, the
inverse estimation is preferable and is considered as a good alternative even for small
sample size. Moreover, the confidence intervals at 0.90 and 0.95 confidence levels for
each of α and σ are calculated and shown in Table 8 and Table 9.

Table 8: The 0.90 confidence intervals for the parameters α and σ.

90% confidence limits
α σ

Lower Upper Lower Upper
Complete data 1.07606 2.59416 6.27758 10.68066

Progressive data 1.05046 2.77078 6.56098 12.45661
Complete data (MLE) 1.07657 2.60781 -1.97060 21.44285

Progressive data (MLE) 1.02828 2.47307 -1.18758 17.98259

Table 9: The 0.95 confidence intervals for the parameters α and σ.

95% confidence limits
α σ

Lower Upper Lower Upper
Complete data 0.97022 2.78400 6.01879 11.36063

Progressive data 0.92780 2.98112 6.24778 13.45855
Complete data (MLE) 1.06161 2.62278 -2.19938 21.67163

Progressive data (MLE) 1.04213 2.45922 -1.00412 17.79886

Tables 8 and 9 show that the confidence intervals for both α and σ derived in sections
3.1 and 3.2 are shorter than the confidence intervals based on the maximum likelihood
estimation in almost all cases, which indicates that the confidence intervals using Wang
et al. (2010) method outperform those of maximum likelihood method.
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5 Discussion

In this paper, we introduce an inference under progressively Type-II censoring for a new
generalization of Lomax distribution after transformation, called Trans-RL distribution.
This distribution provides great fit in modeling wide range of real datasets. According to
Wang et al. (2010), we discuss some properties of order statistics and Poisson processes
as the Trans-RL distribution belongs to proportional hazard family. Therefore, we derive
the confidence intervals and inverse estimators of the proposed distribution. Simulation
study is performed to investigate the coverage probabilities, the average biases and
the average relative mean square errors for the maximum likelihood, the method of
L-moments and the inverse estimators. Therefore, we show that the performance of
the inverse estimation and the confidence intervals proposed in this paper perform quite
better than the ones derived from the maximum likelihood and the L-moments estimators
under different sample sizes and censoring schemes. Finally, a numerical example is
provided to explain the purpose of this study.
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