The Changing Demand for Culture: Estimation of "Cultural Elasticities"

Stephen L. J. Smith
University of Waterloo

Bryan J. A. Smale
University of Waterloo

Follow this and additional works at: https://scholarworks.bgsu.edu/visions

Recommended Citation

Smith, Stephen L. J. and Smale, Bryan J. A. (1982) "The Changing Demand for Culture: Estimation of "Cultural Elasticities"," Visions in Leisure and Business: Vol. 1 : No. 2 , Article 9.
Available at: https://scholarworks.bgsu.edu/visions/vol1/iss2/9

This Article is brought to you for free and open access by the Journals at ScholarWorks@BGSU. It has been accepted for inclusion in Visions in Leisure and Business by an authorized editor of ScholarWorks@BGSU.

THE CHANGING IIEMANI FOF CULTURE: ESTIMATION OF "CULTURAL ELASTICITIES"

EY

STEFHEN L. J. SMITH, ASSOCIATE FROFESSOR

IIEFARTMENT OF RECFEATION
UNIUEFSITY OF WATEFLOO
WATERLOO, ONTARIO N2L 3G1

ERYAN J. A. SMALE, RESEAFCH ASSOCIATE

Abstract

AESTRACT Much fast research on the nature of demand for recreation or cultural activities has been either economic models based ori unrealistic assumptions about willirisness-to-pay or sociolosical models that fail to provide ari iridefth arialysis of the forces actually affecting the decision to participate. This fafer fresents an attempt to combine some of the strensths of the traditional economic and sociolosical methods, while avoidins some of their weakriesses. The method developed produces ari iride\% called a "cultural elasticity" that casarititatively indicates how rates of particifation may be expected to chanse when certain economic and sociolosical characteristics ir the population change. A rumerical example is provided usiris a recerit Canadian riational survey on ferforming arts audiences. Strengths arid limitations iri the approach are also identified.

THE CHANGING IIEMANI FOR CULTURE:
ESTIMATION OF 'CULTUFAL ELASTICITIES'

EACKGROUNI

Maris current methods for the analysis of the demarid for cultural, leisure, arid recreational activities have been adapted from market flace econometrics orisinally designed for arialyziris the froduction and consumption of food, fibre, and industrial soods. Some riotable successes have been achieved with these methods, but there are also some shortcomiriss iri them that misht be overcome by develofing sufflemeritary methods to account for the effects of rion-economic variables on the demarid for culture, leisure and related soods.

The frimary measure of cultural arid leisure demarid is the poteritial customer's willinshess-to-fay. Willinshessto-fay may be measured by several different methods such as inferences from actual expenditures, deductions fromexpressions of willinsness-to-pay wheri faced with various hyfothetical frice changes, and deviations from surrogate measures for price such 35 distance travelled.

A few researchers workins durins the emersence of recreation ecoriomics, such as Seckler (1) and Hamond (2), criticized willinsness- to-fay methods as inaffrofriate for maris leisisre activities. Their concern was not directed at the market flace approach in seneral, but at the assumftion that the willinsriess-to-pay variable cari be iriterpreted as a measiure of the personal utility of participation. Simply pist, Seckler arid Hamond arsued that most attempts to measure willinsriess-to-ray actually measure only the ability to pay, variations ir the stility of farticipation amons consumers as imputed from demand schedules, and more frobably variations iri the unility of income amons those consumers. Eoth researchers concluded that
variations in the unility of income amons those consumers. Foth researchers concluded that some other demand arialysis techriaues should be developed, but they were riot able to sussest any workable alternatives.

Ferhars because of their failure to develof alternatives, criticisms by these two had little effect on the develofment of demand arialusis methods iri the last decade and a half. [iomiriarit methods of market arialysis, refresented by the work of Clawson arid kirietsch (3), Kalter (4), Smith (5), Cicchetti and Smith (6), arid Martiri and Gım (7), still centre on market flace forces. Mespite the frevalence of limited ecoriomic models, some work has beer, undertaken to iniclude nori-economic variables. The Cariadiari Outdoor Fiecreation Ilemarid (CORII) Study (8) made a mumber of sisnificarit contributions to the arialysis of individual farticifation fatterris, especially by develofiris several models that incorforated "demarid shifters" in forecastins models. [lemarid shifters include education, ase, family structure, and other fersonal, demosrafhic, and social variables that influence the amourit of a sood a fersori is willins to consume at aris siven frice. Uniforturiately, the CORII models are "ad hoce ir that they are frimarily multifle resression easations calibrated with historical data arid afflied to fore-castins future trends. This is a disadvaritase because multifle resression recessarily assumes that the indefendent variables combine limearly to ewplair (or fredict) the dependerit variable. Maris demarid shifters are riot liriearly related to ekpected farticifation arid, as a result, most COFI models do riot e凶rlairi even a third of the total variance infarticifation. Some explain less thari 10 fercent.

The inadealsacy of limited economic models and of linear socio-economic resression models has been recosrized for several years. Most attemfts to froduce riew models, however, have remairied theoretical. For example, [iriver and Erown (9) arsued for a social-fsycholosical demand arialysis, but their frofosed method has affarently riot been oferationalized for afflied economic forecastins because of difficulty iri acauirins objective data and iris developins a mathematical version of their model. Oritario's ambitious Tourismarid Outdoor Recreation F'lari (10)--a very larse systems model--has beeri oferationalized iri the serise that all components and relationshifs have been mathematically defined and extensive data have been collected tiroush the 1973 Oritario Fecreation Siurvey. However, the actual model has riever been used because the CFU reauiremerits exceed the limits of available computer systems. Furthery the data reauired for the model are so out of date it is urilikely the model will ever be נtilized.

Ori a more modest and successfıl level, kirisley and Cheney (ll) in Cariada and Marciri and Lime (12) in the Urited States have shown how changes in the ase structure of North Americari society misht be used to fredict chanses in the demarid for different types of cultural arid recreational activities. Kirisley arid Cheriey conclude with some sfecific forecasts based or the assumption that only charises iri ase and education affect cultural farticifation. Marciri and Lime conclude with some rather vasue and aualitative forecasts e\%ressed iri terms such as "extractive-symbolic activity."

A different affroach to understanding variations and chanses iri the fatterns of leisure activities has beer throush the develofmerit of leisure typologies. Activities are groured tosether on the basis of farticifation fatterns exhibited by a srouf of feofle. These srouss are then distinsuished from each other by reference to socio-economic characteristics of peofle who frequently farticifate iri the activities contained withiri each cluster. Ewamples of this affroach iriclude the works of Mckechrie (13), Iittori, Goodale, anid Johrisori (14), and Yı (15). An advaritage of this affroach is its ability to assign an individual to a leisure type accordiris to objective socio-economic attributes. Iri theory, therefore, a flarimer could fredict fatterns of farticifation by examiriris frojections iri the relevarit socio-ecoriomic characteristics of a forulation. This breaks down iri fractice, however, because of the omission of foteritially important economic variables and market flace forces, as well as inconsistencies amons the various leisure tyfolosies. Chase, Kasilis, and Lusch (lf) have drawn atterition to the foteritial variability amons leisure types across a sirisle forislation, betweer sexes, and over time. Their own e\%amination of the stability of leisure types is limited by their examination of only a small rimmer of activities, and their use of the simple incidence (yes/ria) of farticifation rather than freasericy of farticifation.

For all of these reasons, the sociolosical models just described are rarely used for prediction. They are used instead to describe the riature of particifation rather thar, to identify the forces affectiris its occurrence.

After reviewing the prosress to date in forecasting models of leisure demarid and participation, it arfears that the riext stef to be takeri is the developmerit of a model that will combine the advaritases of auarititative trend arid demarid arialysis as develofed iri economic models with the understanding sained from the study of demarid shifters, leisure typolosies arid activity clusterins.

The furfose of this froject, therefore, is to develof a method for estimatins chanises in farticifation iri selected activities (five cultural activities) that combines some of the strensths of frevious forecasting methods, yet moves a bit closer to the complexity of reality. The method develofed is esseritially one for estimatiris charises expected iri attendarice at selected activities by specific social grouss given a orie mercerit charige in the size of those social sroups. The expected chanse is expressed iri a percentase, and is a homology to the conceft of frice elasticity from economics. For this reasor, we call the derived measure a "cıltural elasticity." The formal defirition of a cultural elasticity will become clearer after the discussior of calculations.

FROCEIURE

Because the furfose of this project is to develof a method for calculatins cultural elasticities, the most relevarit resislts of the froject are riot estimates of elasticities, fer se, but the method by which these may be derived. The mumerical arialysis described below helps to illustrate both the types of ariswers one misht expect and the methods that orie employs to obtair those ariswers.

Cultural elasticities are calculated from fatterns of fast fartacifation of certair sroups iri selected activities. Before these calculations cari be done, however, one must empirically defirie the sroups of particifants. And before defiriris those srouss, one must be able to specify the characteristis that are to be used in defirins the srouss. The followiris discussion freserits methods of accomplishiris each of these steps: (1) Ideritification of Grous Characteristics, (2) Ideritification of Grours, arid 3) Calculation of Cultural Elasticities.

Data were obtained from a riationiwide survey of rion-iristitutionalized Canadiari adults, " 1978 Survey of Canadiaris arid the Arts." The survey was based on a clustered ranidom sample of 13,400 resfonidents drawn from 18 נrbani areas.

Ideritification of Grous Characteristics

Abstract

A sreat maris social, fersonal, demosrafhic, attitudinal, and economic variables car, be used to describe the preferences for and farticifation in cultural activities. It is desirable for a researcher to have a theoretical basis for specifiyins a precise arid relatively short list of variables for which data should be obtairied. However, theory is riot yet available to do this for forecastiris cisltural farticifation. Further, orie is usually limited, for eractical reasons, to working with secondary data. When usiris seconidary data, one is riot orily constrairied to the variables iricluded iri the orisirial survey, but one must firid some way to choose amons the mariy related variables to firid those most usefisl for the task. at harid. One way to do this, occasionally employed, is to arbitrarily (or or the basis of previous experience) select the most "iriteresting" or potentially meaninsfisl variables. This method, of course, is riot very valid or reliable. Arid it cari result iri the loss of foteritially importarit iriformation. A better tactic would be to try to combirie as mariy of the orisirial variables as fossible irito a small rumber of new characteristics. This allows a

compromise betweer, reducins the rumber of variables and mairitairiris maximum iriformation.
The method choseri to achieve this compromise was a form of factor arialysis called friricifal comporients arialysis (F'CA). F'CA besiris with the coristrisction of a correlation matrix in which the answers of these responderits to each question ori the survey are compared to their ariswers to every other asestion. The form of the matri\% is a salsare with the rows and columis refresenting individual variables (the questions in the survey). The correlations betweer variables rarise betweer, 1.0 (ferfect fositive correlation) arid -1.0 (rerfect inverse correlation). Most values are rot very close to these extremes, indicatins some desree of imperfect correlation. Usisally the diasonal of a correlation matri\% is composed of 1.0 's, because each variable is perfectly correlated with itself. For FCA, however this diasorial is reflaced by ari estimate of the correlation betweer each individual variable arid all other variables. This estimate is called a commoriality. Variables with hish commonalities are desired. Variables with low commorialities do riot coritribute much to the results of a F'CA and are therefore freaueritly discarded from further arialysis. Iri this froject, 0.4 was used as the commoriality threshold for retairiris a variable iri the fCA.

After the correlation matri\% is computed, F'CA examines the fatterr of correlations to try to firid the best combiriation of variables that will summarize that ratterr. A riew set of variables, "componerits," are defiried. Each componerit is a set of the orisinal variables, each mutliflied by a weisht (called a 'loadiris') that summarizes as much of the correlation matrix as possible. There are as mariy comporierits produced by F'CA as there are original variables, but orily a small rimmer of these are mearingfisl. Hecause there is rio farticular number of componerits expected in this farticular froject, some objective sulde should be used to suide the selection of the "frofer" rimmer of componerits. A commori sulide is the use of "eiserivalues." Ari eiserivalue is a measure of the variance explairied by a particular componerit. The first comporient froduced usually explairis the most variarice, with subseruerit componerits explairiris successively less variarice. Similarly, the first comporierit has ari eiserivalue well above 1.0; successive comforients have eiserivalues successively smaller, uritil they drof below 1.0 . It is at this poirit that one misht stop producing componerits. Eisenvalises sreater thari 1.0 indicate that the componerit explains more thari the "averase" orisirial variable, and thus coritains much useful information; eiserivalues below 1.0 iridicate the componerits contain less information than the orisirial variables, and thus can be ignored. This frocedure was used to select the rimmer of componierits froduced by F.CA.

After the rimmer of componerits has beeri selected, orie cari try to simplify the iriterfretation of the componerits by rotatins them. The orisinal comporients are orthosorial, or indefenderit of each other. It is fossible to rotate them mathematically to charige the loadinss of different variables on each componerit without alterins the basic comporient striscture or affecting the iriformation explained by the orisirial componerits. Varimaw rotation, the most commori method, was used to ferform this oferation. Varimax rotation seeks a comporient solution that mares the loadiriss as close to ± 1.0 or 0.0 as possible ori each componierit. Fecause the interfretation of a comporierit is based ori which of the orisirial variables load hishly ori it (i.e., close to ± 1.0) varima\% rotation makes the iriteraretation simpler.

Table is a summary of the results of the priricifal comporierits arialysis. Twelve componerits were identified. Orily those variables with relatively hish loadiriss are showri.

Ideritification of Grours

Groufs of relatively similar respondents are defiried on the basis of their observed characteristics. The basic fisfose is to derive a relatively small rimmer of srouss coritairing individuals who are very similar to each other and very different from individual srouss.

The first task is to calculate the scores of each responderit on each of the 12 componerits. "Componerit scores" are the values each responiderit has ori each of the comporierits. They are calcılated in the following maniner.

Fiecall that each comporient is made us of a series of weishts or loadiriss associated with each of the orisirial variables. To calcislate a resporiserit's score ori onie of the comporierits, the loadiris of a variable from that componerit is multiflied by the resforiderit's orisinal value associated with that orisirial variable. Thus, if the loadiris of "Number of times attendiris classical music iri the last 12 moriths' was 0.9 , and the responderit's ariswer to that Question was "S times" his score would be (0.9) $\%(4)=4.5$. This is refeated for all variables on the componerit and the individual scores are totaled for that componerit. Scores are theri comfisted for all other componerits for that resforiderit. Ne\%t, the whole frocess is refeated for all other resporiderits. Firially, the scores are coriverted to staridardized scores (meari of 0 , staridard deviation of 1). The resillt is a matri\% of 12 comporierits by N resporiderits.

Fecaıse the componerits are indefenderit of each other, they can be iriterfreted as defirins a l2-dimerisional mathematical sface. The set of 12 comporient scores locates each resforiderit iri that space, just as a set of latitude arid lorisitude "scores" cari locate a fersori iri seosrafhical sface. The scores are also a measure of 'similarity." The more similar two resfonderits are ori orie componerit, the more similar their comporient scores will be. Groufs may be defiried by locatiris 'clusters' of resforiderits iri the 12 dimerisional space. The method choser to do this is 'Ward's Method' (16).

Ward's Method is based on a semeralization of the Fythasoreari theorem. The role of the Fythasorear, theorem is to measure the distarice betweer aris two foirits. This distarice cari ther, be compared to the distances between all other fairs of foirits. The alsorithm that oferationalizes Ward's Method irivolves the followiris tasks:

1. Calculate distances betweeri all fairs of foirits.
2. Ideritify the smallest distarice.
3. Reflace the fair of foirits associated with the smallest
distarice by a niew roirit midway between them.
4. Kie-calcislate distances between all remairiris fairs of
foirits, iricludiris the new foirit.
5. Coritirise the frocess to some cul-off foirit.

For the 13,400 responderits to the " 1978 Cariadiaris arid the Arts" survey, this frocess would besir, with 13,400 srouss of one responderit each and end with onie grous of 13,400 resfondents. The iritial solution has ferfect homoseneity iri each grous, but too maris grours. The ultimate solution has a minimum riumber of grours, l, but maximum heteroserieity. A compromise is needed. The tactic chosen to firid the compromise iri this froject was to flot ari 'iriformation statistic' that cari be frovided by Ward's Method--a measure of the increase in heteroseneity as the membershif in the various srours increases. The flot was enamined to find some foint in the clusterins qrocess that shows a marked increase in the loss of iriformation caused by the combirinis of two relatively disfarate grouss. This is iridicated by
 between l2- and ll-cluster solutions was observed, so it was decided to termiriate the clusteriris at the l2- cluster solutiori.

Orice the clusters are formed, it is riecessary to characterize each cluster. This is done by first identifyins each resfondent irieach cluster by mearis of ari identification rimmer attached to the resfonses from each individual. It is theri fossible to examirie the individual's componerit scores iri detail iri each cluster. This arialysis corisists of the followins issues:

1. The rismber of individuals iri each cluster who have comforierit scores sreater thari ± 1.0 (refreseritiris a comporient score more thari l staridard deviation from the meari) for each comforierit are tahılated. If a clıster has mariy feofle with sıch e⿻treme comporierit scores ori a farticular comforierit, this cari be iriterfreted as eviderice that comforierit is imfortarit iri both creatiris and in identifyiris the cluster.

Abstract

2. F-ratios aris t-tests are compıted for each comporierit iri each clıster. The F-ratio eঞpresses the desree of variarice iri each comporierit; orie hofes to firis several comporierits with a shall desree of variarice iri each cluster. These iridicate those resforiderit characteristics that are relatively similar amoris resforigerits iri that farticılar clıster. T-tests comfare mearis betweeri the meari of comforierit scores of cluster iridividuals arid all other iridividuals; orie hofes to firis several fairs of comporierits withiri each cluster whose t-tests irisicate a fairly sreat differerice betweeri averase comforierit scores. To iriterfret each cluster, orie looks for those comforierits whose F-ratios are small, iridicatiris homoserity iri that cluster arid whose t-tests are larse, iridicatiris sisnificarit characteristics for that cluster. Tables 2 and 3 sımmarize this fhase of the arialysis. Ori the basis of this e:amirıation, clıster Jescriftions irı Table 4 were derived.

It should be meritioried that because of techrical limitations iri the frosramme used to form these clusters, orily 500 resporijerits could be used for this stase of the arialysis. Caıtion should be exercised irı serieraliziris from these srouss to the entire Cariadian fofulation. Groufs ll arid la, esfecially, are based on very simall absolıte samfles. Comforierit scores for the subsamfle of 500 were comfared to the comforierit scores for the eritire samfle. No sishificarit differerices were fourid. We coriclufed that the clusters based ori the 500 resfonderits are adeauately reliable for the fisfooses of this froject.

Calculation of Elasticities

Orice clusters of similar resforiderits are ideritified, it is fossible to calculate cıltural elasticities. The frocedure for doiris this is based ori a techriausemfloyed by Gım aris Martiri (17). It is freserited iri a stef-by-stef fashion here for the sake of clarity.

1. Select those activities for which cıltıral elasticities are desired. Irı this stıdy, five were choseri: (l) Atterioarice at Live Theatre, (2) Atteridarice at Classical Mısic/Eallet/Ofera/Moderi Ilarice, (3) Atteridarice at Folk/Fock/Fofislar/Couritry aris Western Music, (4) Atteridarice at "Other Music," arid (5) Uisits to Art Galleries.

The rumber of "atteridarices" at each activity hy the iridividuals irı each cluster is obtairied. "Atteridarice" is defiried as self-reforted atteridarice iri the le moriths frecediris the time of the survey. The rimmber of atteribarices for each activity is theri simmed across all groufs to set the total rimmber of atteridarices by the samfle resporiderits.
2. Ilivide the rimmber of atteridarices at a siveri activity by the iridividuals iri each cluster by the total atteridarices to obtairi the ferceritase of atteridarices serierated by each cluster. Table 5 is a summary of the rumerical results of Stefs limeosh 3 . The summation at the bottom of each of the activity colımris refreserits the rimmber of self-reforted atteridarices at each activity by the 500 resforicierits on which the clusters are based. for examfle, those 500 feofle reforted a total of lilateridarices at live theatre iri the le moriths frecediris the survey. The fisures withiri the activity collumis refreserit the perceritase distribıtion of the total atteridarice acruss all clısters. Iri the case of \quad ive theatre, asairi, 1.2 fercent of lil trifs to live theatre are associated with Cluster l.
3. Firially, cıltıral elasticities may be comfıted by dividiris the ferceritases iri Table 5 by loo. Thus, the cultural elasticity of Cluster lior live theatre is l. 2/loo 0.012. Cultural elasticities for all clusters aris all activities are freserited iri Table b.

An illustration of the use of cultural elasticities may helf to clarify their iriterfretation arid to hishlisht some of the fotential uses of the elasticities.

Kinsley (18) ir Arts and Culture Monosrafh IV, "Cultural Farticifation" forecasts a chanse $i r_{\text {i }}$ the number of peofle 65 years of ase and older from about 9 percent currently to about 11 fercent in the year 2000. This chanse refresents a relative increase of 22 fercent. Eased on the clusters defined freviously, it can be assumed that the majority of this grous belons to Cluster 9, older, eredominaritly maried feofle with averase cultural iriterests, flus a few iri Cluster 12, a small, hishly diverse sroup of predomiriaritly retirees. Let us further assume that the relative frofortions between Cluster 9 and 12 will remair the same uritil at least the year 2000. Firially, let us assume that the percentases and relationships refresented by this small sample of 500 respondents are truly represenitative of the enitire niational qoiflation. Thus, the 171 theatre visits resistered by the 500 respondents of a total fofulation of about $23,000,000$ refresents a total of about $7,800,000$ theatre visits for the counitry's fofulation in the year frior to the survey. With these assumptions and data, one can forecast chanses in theatre attendance to be expected from a shift in the ase distribution as forecast by kinisley.

If both Cluster 9 and 12 increase at the same percentase rate, 22 percent, they will refresent about 7.8 fercent and 1.2 percent of the fofislation respectively in 2000 . The cultural elasticity for live theatre for Cluster 9 is 0.053 . Ari iricrease of 22 fercent in the size of Cluster 9 will thus translate into a $(0.53 \% 22)=1.166$ percent increase in theatre visits. Cluster 9 feofle were responsible for 5.3 percent of the $7,800,000$ theatre visits, or about 400,000 theatre visits. A 1.166 fercent increase in this fisure is eaual to affro:imately 4,700 theatre visits.

Cluster 12 has a cultural elasticity for theatre trifs of 0.117 . A 22 fercent iricrease iri the size of Cluster 12 will cause a (0.117×22) $=2.574$ fercent increase in total theatre trifs. Cluster 12 serierate 11.7 fercent of the $7,800,000$ theatre trifs reforted or about 858,000 trifs. A 2.574 percent increase in that number is affroximately eaual to ariminease of 22,000 theatre trifs.

The increase in the number of seofle over 65, indicated by increases in Clusters 9 and 12, necessarily mearis that some feofle have "left" other clusters. To simplify the analysis of this effect, let us make the unrealistic assumption that all the increases in Clusters 9 and 12 came at the expense of Cluster 4, the most averase srous of peorle. Iri real life, of course, increases in any cluster would be sufforted by "transfers" from several clusters, and these clusters would be affected by still other "transfers".

The 22 fercent increase in Cluster 9 and 12 refresent an absolute increase of about 374,000 feofle. If all these came from Cluster 4, orisinally $3,800,000$ feofle, Cluster 4 decreases by about 374,000 or about 9.8 percent.

The cultural elasticity of Cluster 4 for live theatre is . 146 . A 9.8 percerit decrease mearis theatre visits will drof by $(0.146 \% 9.8)=1.43$ percerit. Sirice 14.6 percent of all theatre visits or $1,100,000$ trifs, were made by Cluster 4 peofle, a 1.43 fercerit declirie refresents ari absolute decline of about 14,700 visits.

The net effect of a chanse in the ase structure on theatre attendance can thus be estimated by examinins changes associated with increases in older ase groups adjusted for decreases in younser ase sroufs. Increases in Cluster 9 and 12 frocuded a total of 26,700 additional theatre visits; decreases iri Cluster 4 created a loss of 15,700 visits for a riet increase of 11,000 visits.

The calculation of cultural elasticities offers several advaritases over other forecastiris techrianses. First, because they are based ori a rather comple\% way of combirins different variables, their develofment can reveal riew and uriekpected aspects of the structure of demarid for cultural activities. Elasticities are thus coristriscts of foteritially major theoretical interest.

Elasticities assist a forecaster or flarimer ir estimatins charises in likely future farticipation with sreater valifity thar, has previously been fossible. Eecause these measures are based ori more realistic assumptions about relationships amonis variables, arid fermit including of more different variables, the forecasts based on them will tend to be more valid and accurate tharif those relationships and variables are isnored. Forecasts can riow be made for a sirisle srouf, or for several srouss simultaneously. This feature is esfecially desirable because a sirisle variable does riot usisally effect differerit peofle ir the same way. As we saw in the simple rumerical illustration of the use of elasticities above, the sirisle pheriomenori, asins, was resporisible for two different rates of iricrease ir, farticifation in two different srouss, and a decrease in particifation in a third srous.

Because the elasticities cari be constructed to take accourit of attitudinal and opinion variables, it is possible to use them to assess the effects of soverrimerit sporisored educational and fromotional prosrammes to charise various ofirions about cultural activities. If clusters car be defined on the basis, at least fartially, of ofirion variables, it would be fossible to develor forecast changes ir farticifation resultiris from shifts in ofirions as reflected throush shifts iricluster membershif. It is conceivable (althoush this is still a matter of speculation) that the developmerit of cultural elasticities from ofirioni-related data would helf ideritify which items of ofirion are the most influential in affecting participation rates. Easically, those opirion variables that showed up iri various clusters with hish t-test values and low F-ratios would be the most importarit ofirioni-related variables to irifluence.

The cultural elasticity model also helps to ideritify those srours most importarit irim seneratins husiriess for different cultural facilities arid orsarizations, as well as those who are least symfathetic to or least uririterested in cultural frosrammes. Cultural elasticities are, ir other words, a mearis for market sesmentation. For example, in the case of live theatre, Cluster 12 people are resporisible for about 11 percent of total theatre visits, althoush they make ur orily l fercent of the fercent of the fofulation. This sroup refresents one of the most important markets for live theatre and one of the sreatest foteritial sources of suffort for public prosrames to further live theatre. Ori the other harid, Cluster 6 feople refreserit 15 fercerit of the forislation, but froduce orily 5 percerit of all theatre visits. Fetter understanding of members of this sroup and their affarent dislike for live theatre may yield foteritially fruitful iriformation for cultural folicy and cultural rromotior.

Limitations to Elasticities

Several assimmetions underlyins the calculation and use of cultural elasticities have alreads been discussed. Some of these bear refeatins and a few other limitations should be meritioned.

1. The calculation of elasticities depends sreatly or the variables available for analysis. Ideally, information should be available resarfins social, ecoriomic, attitudirial, demosrafhic and particifation characteristics of the popllation.
2. The elasticities are also stronsly irifluenced by the statistical methods employed, especially f.CA. Stability of the comporients defiried over time as well as the reliability of the componerit structure estimated throush PCA rieeds to be tested more.

Abstract

3. Fefore one can use the elasticities to forecast change, one must have access to other forecasts about chanses in the sizes of the clusters. These clusters will freauently not match up with the usual ase cohort or other socio-economic or geosrafhic clusters for which forecasts are usually made. This misht be interpreted as evidence that the use of forecasts for traditional age cohorts or other social sroups is actually inappropriate. However, the fact remains that additional work will need to be done to develop forecasts for groups that are meaningful in the context of cultural elasticity clusters.

REFERENCES

1. [1. W. Seckler, On the Uses and Abuses of Economic Science in Evaluation of Public Outdoor Recreation, Land Economics, Vol. 42, fp. 485-494, 1966.
2. R. J. Hammond, Convention and Limitation in Fenefit-Cost Analysis, Natural Eesources Jourcal, Vol. 6, pp. 195-219, 1966.
3. M. Clawson and J. L. Knetsch, Ecocomics of Outdoor Eecreation, The John Hopkins Press, Baltimore, 1966.
4. R. J. Kalter, Recreational Demand Functions: Concepts, Froblems, arid Uses, Corcell Asricultural Ecocomics Staff Eaeer 44, Ithaca, New York, 1971.
5. U. K. Smith, The Estimation and Use of Models of the Demand for Outdoor Recreation, in Assessing Demand for Outdoor Recreation, Natiocal Eesearcb CoucillNational Academy of Sciecces, Washinston, D.C., 1975.
6. C.J. Cicchetti and U. K. Smith, Ibe Costs of Consestion: An Econometric Acalysis of Wilderness Eecreation, Rallinser Fress, Cambridse, Massachusetts, 1976.
7. W. E. Martin and R. C. Gum, Using Demand Functions for Rural Outdoor Recreation, Outdoor Gecreation: Adyances in Aeglications of Economics, General Technical Report WO-2, U.S. Department of Asriculture, Forest Service, Washinston, II.C., 1977.
8. Parks Canada, The Canadian Outdoor Recreation Demand Study, Oatario Eesearcb Couacil on Leisure, Toronto, 1976.
9. F. L. Driver and P. J. Brown, A Social-Psycholosical Definition of Recreation Demand, Assessing Ilemand for Outdoor Eecreation, National Research Council/National Academy of Sciences, Washington, D.C., 1975.
10. Tourism and Outdoor Recreation Flan Study, Iourism and Eecreation in Oatario, Kates, Peat, Marwick, and Company, Toronto, 1970.
11. F. L. Kinsley and T. Cheney, Ibe Cbansios Ase and Educational Vake=ue of the Canadian Adult Eoeulation and its Imelications for Arts and Cultural Activitye 1922=1920, Arts and Cultural Branch, Department of Communications, Ottawa, 1978.
12. T. C. Marcin and D. W. Lime, Our Chansing fopulation Structure: What Will it Mean
for Fisture Outdoor Fecreation Use?, Dutdoor Becreation: Adyances in Aeslication of Ecocowics, Gerieral Technical Ferort WO-2, U.S. Llepartmerit of Asricılture, Forest Service, Washinstor, [I.C., 1977.
13. G. E. McKechrie, The Fsychological Structure of Leisure: Fiast kehaviour, Jouraal of Leisure Eiesearcb, Vol. 6, 27-45, 1974.
14. K. E. Ilittori, T. L. Goodale, and F. K. Johriseri, A Cluster Arialysis of Activity, Freasency, and Environment Variables to Identify Water-Fased Fecreation Types, Jourcal of Leisure E'esearcb, Vol. 7, ff. 282-295, 1975.
15. Jih-Min Yı, The Emfirical [levelofmerit of a Tyfolosy for flescribins Leisisre Fehaviour on the Fasis of F'articifatiori Fatterris, Jouraal of Leisure Eesearcb, Vol. 12, 309-320, 1980.
16. [I. K. Chase, J. J. Kasılis, arid F. F. Lusch, Factor Irivariarice of Noriwork. Activities, Jouraal of Leisure Gesearcb, Vol. 12, ff. 55-68, 1980.
17. K. L. Gım and W. E. Martirı, Striscture of [iemarid for Outdoor Fiecreation, Land Econowics, Vol. 53, ff. 43-55, 1977.
18. F. L. Kirisley, Cultural Earticieation, Moriosrafh IV, Arts arid Culture Erarich, [lerartmerit of Commuricatioris, Ottawa, 1980.

Table 1: Detailed Definition of 12 Components

1

"Reading"
How often read science fiction
How of ten read mysteries
How of ten read romances
How of ten read westerns
How of ten read classics
How of ten read other novels
How often read drama, short stories
How often read poetry
How of ten read biography
How often read philosophy
How often read how-to-do-it
How of ten read other non-fiction

3

"Educational T.V."
How often watch TV interviews
How often watch TV newscasts
How often watch TV public affairs How often watch TV plays How often watch TV classical music How often watch TV instructional shows

5

"Popular T.V.'
How of ten watch TV variety
How often watch TV soap operas
How of ten watch TV movies
How often watch TV game shows How of ten watch TV police shows

7
"Popular Radio"
How often listen to radio at home How often listen to radio popular music How often listen to radio local news How often listen to radio national news How of ten listen to radio interviews

2

"Attendance"
Times attended cinema
Times attended theatre
Times attended classical music
Times attended popular music
Times attended cultural festivals
Times attended arts and crafts
Times attended museums
Times attended art galleries

4

"Popular Records"
How often listen to records at home How of ten listen to popular, folk, rock records
How of ten listen to jazz, blues records

6

"Life Cycles I"
Retired or not
Age
Number in household
Married or not

8
"Classical Music"
How often listen to radio classical music
How often listen to opera on records How often listen to classical records
"Sport Viewing"
Times attended sports How of ten watch TV sports How often listen to radio sports Sex

11
"Education"
Level of education
Professional or not

10
"Life Cycle II"
Student or not
Homemaker or not
Number of school age children at home
Single or not

12

"Sport Participation"
Number of years playing sports
Money spent on sports

Table 2: Sumary of Component Scores by Cluster for Each Component

						Comp						
Cluster	$\underline{1}$	$\underline{2}$	$\underline{3}$	4	$\underline{5}$	6	7	8	$\underline{9}$	10	11	12
1			+	-	+					-		
2											+	
3								-				
4												
5			$+$				-					+
6				+					-			
7										+		
8				+	-							
9			-	$+$		+						
10							+					
11	-		+					+	+			
12		$+$							+			
$(+)=$ majority of			po	nt	8	p ha	c	ne	scor	$+1.0$		
$(-)=\mathrm{ma}$			spo	nt	8	p ha	c	ne	scor	-		

Table 3: F-ratios and t-values for 12 Clusters

Clusters	$\underline{1}$	$\underline{2}$	3	4	5	6
1	$\begin{gathered} 0.2901 \\ (0.4423) \end{gathered}$	$\begin{aligned} & -0.2970 \\ & (0.3012) \end{aligned}$	$\begin{gathered} 1.4691 \\ (0.0329) \end{gathered}$	$\begin{aligned} & -0.7159 \\ & (1.6705) \end{aligned}$	$\begin{gathered} 1.6423 \\ (0.0835) \end{gathered}$	$\begin{aligned} & -0.3048 \\ & (1.2228) \end{aligned}$
2	$\begin{aligned} & -0.1267 \\ & (0.6486) \end{aligned}$	$\begin{gathered} 0.3985 \\ (0.7950) \end{gathered}$	$\begin{gathered} 0.1543 \\ (0.9951) \end{gathered}$	$\begin{aligned} & -0.0536 \\ & (0.6861) \end{aligned}$	$\begin{gathered} 0.4695 \\ (0.7600) \end{gathered}$	$\begin{gathered} 0.0288 \\ (0.6020) \end{gathered}$
3	$\begin{aligned} & -0.4705 \\ & (0.3938) \end{aligned}$	$\begin{gathered} 0.5094 \\ (0.7659) \end{gathered}$	$\begin{aligned} & -0.3346 \\ & (0.8713) \end{aligned}$	$\begin{aligned} & -0.4049 \\ & (0.8180) \end{aligned}$	$\begin{gathered} 0.4992 \\ (0.4547) \end{gathered}$	$\begin{aligned} & -0.4255 \\ & (0.4444) \end{aligned}$
4	$\begin{gathered} 0.0259 \\ (0.7262) \end{gathered}$	$\begin{gathered} 0.0162 \\ (0.2909) \end{gathered}$	$\begin{gathered} 0.1352 \\ (0.7794) \end{gathered}$	$\begin{aligned} & -0.5539 \\ & (0.4316) \end{aligned}$	$\begin{aligned} & -0.6459 \\ & (0.5936) \end{aligned}$	$\begin{aligned} & -0.9113 \\ & (0.2941) \end{aligned}$
5	$\begin{aligned} & -0.2262 \\ & (0.5445) \end{aligned}$	$\begin{aligned} & -0.3303 \\ & (0.3444) \end{aligned}$	$\begin{gathered} 0.6514 \\ (1.0768) \end{gathered}$	$\begin{aligned} & -0.2022 \\ & (0.9095) \end{aligned}$	$\begin{gathered} 0.4681 \\ (0.6085) \end{gathered}$	$\begin{gathered} 0.1233 \\ (1.0838) \end{gathered}$
6	$\begin{gathered} 0.1229 \\ (0.6114) \end{gathered}$	$\begin{aligned} & -0.3837 \\ & (0.2474) \end{aligned}$	$\begin{gathered} 0.0548 \\ (0.5453) \end{gathered}$	$\begin{gathered} 0.6999 \\ (0.6419) \end{gathered}$	$\begin{gathered} 0.4901 \\ (0.6517) \end{gathered}$	$\begin{gathered} 0.2544 \\ (0.6256) \end{gathered}$
7	$\begin{gathered} 0.7445 \\ (0.1867) \end{gathered}$	$\begin{gathered} 0.3844 \\ (1.2095) \end{gathered}$	$\begin{aligned} & -0.4215 \\ & (0.7812) \end{aligned}$	$\begin{aligned} & -0.8458 \\ & (0.5857) \end{aligned}$	$\begin{aligned} & -0.4432 \\ & (0.6123) \end{aligned}$	$\begin{aligned} & -0.0051 \\ & (0.4564) \end{aligned}$
8	$\begin{gathered} 0.0757 \\ (0.8381) \end{gathered}$	$\begin{aligned} & -0.3198 \\ & (0.2051) \end{aligned}$	$\begin{aligned} & -0.2422 \\ & (0.6429) \end{aligned}$	$\begin{gathered} 0.5409 \\ (0.8262) \end{gathered}$	$\begin{aligned} & -0.7994 \\ & (0.5699) \end{aligned}$	$\begin{aligned} & -0.2528 \\ & (0.4173) \end{aligned}$
9	$\begin{aligned} & -0.0079 \\ & (0.6441) \end{aligned}$	$\begin{aligned} & -0.0554 \\ & (0.5619) \end{aligned}$	$\begin{aligned} & -0.8247 \\ & (0.5957) \end{aligned}$	$\begin{gathered} 0.7555 \\ (0.6101) \end{gathered}$	$\begin{aligned} & -0.3579 \\ & (0.7333) \end{aligned}$	$\begin{gathered} 1.7519 \\ (0.3332) \end{gathered}$
10	$\begin{gathered} 0.3066 \\ (0.3983) \end{gathered}$	$\begin{aligned} & -0.3443 \\ & (0.2960) \end{aligned}$	$\begin{aligned} & -0.3691 \\ & (1.1981) \end{aligned}$	$\begin{gathered} 0.0330 \\ (0.8743) \end{gathered}$	$\begin{aligned} & -0.0229 \\ & (0.9264) \end{aligned}$	$\begin{gathered} 0.4595 \\ (1.2982) \end{gathered}$
11	$\begin{aligned} & -6.5097 \\ & (1.3674) \end{aligned}$	$\begin{aligned} & -0.9148 \\ & (0.1785) \end{aligned}$	$\begin{gathered} 0.9539 \\ (0.7840) \end{gathered}$	$\begin{aligned} & -0.1678 \\ & (1.2911) \end{aligned}$	$\begin{aligned} & -0.1199 \\ & (0.6115) \end{aligned}$	$\begin{gathered} 0.5861 \\ (0.2334) \end{gathered}$
12	$\begin{aligned} & -0.7823 \\ & (0.2676) \end{aligned}$	$\begin{gathered} 6.3807 \\ (4.0691) \end{gathered}$	$\begin{gathered} 0.7887 \\ (2.1607) \end{gathered}$	$\begin{gathered} 0.6401 \\ (0.9220) \end{gathered}$	$\begin{aligned} & -0.0310 \\ & (1.9380) \end{aligned}$	$\begin{gathered} 0.8736 \\ (0.3296) \end{gathered}$

Table 3: F-ratios and t-values for 12 Clisters

Components

7	8	$\underline{9}$	10	11	12
$\begin{gathered} 0.8902 \\ (0.6710) \end{gathered}$	$\begin{gathered} 0.1931 \\ (0.1989) \end{gathered}$	$\begin{gathered} 0.5753 \\ (0.4442) \end{gathered}$	$\begin{aligned} & -0.7089 \\ & (0.9051) \end{aligned}$	$\begin{aligned} & -0.4919 \\ & (0.0701) \end{aligned}$	$\begin{aligned} & -0.2276 \\ & (0.4990) \end{aligned}$
$\begin{gathered} 0.0080 \\ (0.5625) \end{gathered}$	$\begin{aligned} & -0.2761 \\ & (1.4568) \end{aligned}$	$\begin{gathered} 0.2574 \\ (0.6708) \end{gathered}$	$\begin{aligned} & -0.0267 \\ & (0.6550) \end{aligned}$	$\begin{gathered} 2.3743 \\ (0.1147) \end{gathered}$	$\begin{gathered} 0.1522 \\ (0.9502) \end{gathered}$
$\begin{gathered} 0.3259 \\ (1.1217) \end{gathered}$	$\begin{aligned} & -1.5755 \\ & (1.6961) \end{aligned}$	$\begin{gathered} 0.3747 \\ (0.3288) \end{gathered}$	$\begin{gathered} 0.1101 \\ (0.9016) \end{gathered}$	$\begin{aligned} & -0.6680 \\ & (0.1580) \end{aligned}$	$\begin{aligned} & -0.1662 \\ & (0.8151) \end{aligned}$
$\begin{gathered} 0.1147 \\ (0.7097) \end{gathered}$	$\begin{gathered} 0.1758 \\ (0.4966) \end{gathered}$	$\begin{aligned} & -0.2500 \\ & (0.8504) \end{aligned}$	$\begin{aligned} & -1.0542 \\ & (0.3910) \end{aligned}$	$\begin{aligned} & -0.2075 \\ & (0.1102) \end{aligned}$	$\begin{aligned} & 0.1476 \\ & (0.6469) \end{aligned}$
$\begin{aligned} & -0.7990 \\ & (0.2603) \end{aligned}$	$\begin{gathered} 0.1314 \\ (0.7200) \end{gathered}$	$\begin{gathered} 0.6695 \\ (0.4079) \end{gathered}$	$\begin{gathered} 0.2249 \\ (0.6540) \end{gathered}$	$\begin{aligned} & -0.3558 \\ & (0.2468) \end{aligned}$	$\begin{gathered} 0.5392 \\ (1.6742) \end{gathered}$
$\begin{aligned} & -0.3994 \\ & (0.3784) \end{aligned}$	$\begin{gathered} 0.1734 \\ (0.4138) \end{gathered}$	$\begin{aligned} & -0.9859 \\ & (1.0537) \end{aligned}$	$\begin{aligned} & -0.0286 \\ & (0.3988) \end{aligned}$	$\begin{aligned} & -0.3033 \\ & (0.1856) \end{aligned}$	$\begin{gathered} 0.1635 \\ (0.7878) \end{gathered}$
$\begin{aligned} & -0.6112 \\ & (0.4248) \end{aligned}$	$\begin{aligned} & -0.0706 \\ & (1.7230) \end{aligned}$	$\begin{aligned} & -0.6565 \\ & (0.9279) \end{aligned}$	$\begin{gathered} 0.7963 \\ (0.9605) \end{gathered}$	$\begin{aligned} & -0.2763 \\ & (0.1898) \end{aligned}$	$\begin{gathered} 0.2069 \\ (1.4410) \end{gathered}$
$\begin{aligned} & -0.3261 \\ & (0.5455) \end{aligned}$	$\begin{gathered} 0.2383 \\ (0.4070) \end{gathered}$	$\begin{gathered} 0.3250 \\ (0.6471) \end{gathered}$	$\begin{gathered} 0.5096 \\ (0.6281) \end{gathered}$	$\begin{aligned} & -0.3372 \\ & (0.0574) \end{aligned}$	$\begin{gathered} 0.6515 \\ (0.4909) \end{gathered}$
$\begin{aligned} & -0.5319 \\ & (0.3500) \end{aligned}$	$\begin{gathered} 0.2716 \\ (0.3248) \end{gathered}$	$\begin{gathered} 0.5474 \\ (0.5323) \end{gathered}$	$\begin{aligned} & -0.4757 \\ & (0.3083) \end{aligned}$	$\begin{aligned} & -0.3993 \\ & (0.0981) \end{aligned}$	$\begin{aligned} & -0.4915 \\ & (0.5130) \end{aligned}$
$\begin{gathered} 1.7341 \\ (0.3352) \end{gathered}$	$\begin{gathered} 0.2065 \\ (0.5063) \end{gathered}$	$\begin{gathered} 0.2839 \\ (0.5389) \end{gathered}$	$\begin{gathered} 0.8049 \\ (1.0785) \end{gathered}$	$\begin{aligned} & -0.2682 \\ & (0.3495) \end{aligned}$	$\begin{gathered} 0.0564 \\ (1.0061) \end{gathered}$
$\begin{gathered} 0.4005 \\ (1.7806) \end{gathered}$	$\begin{gathered} 1.5489 \\ (0.3904) \end{gathered}$	$\begin{aligned} & -0.7496 \\ & (1.4253) \end{aligned}$	$\begin{gathered} 1.0190 \\ (1.1473) \end{gathered}$	$\begin{aligned} & -1.0268 \\ & (0.0952) \end{aligned}$	$\begin{gathered} 0.5025 \\ (1.7966) \end{gathered}$
$\begin{gathered} 0.5704 \\ (2.3808) \end{gathered}$	$\begin{aligned} & -0.5052 \\ & (3.7702) \end{aligned}$	$\begin{gathered} 1.0398 \\ (0.3239) \end{gathered}$	$\begin{gathered} 0.4659 \\ (1.3566) \end{gathered}$	$\begin{aligned} & -0.0762 \\ & (3.9954) \end{aligned}$	$\begin{aligned} & -0.4691 \\ & (5.1580) \end{aligned}$

CLUSTER
OFER

RESPONDENTS \quad| \% OF |
| :--- |

9	32	6.4	Older, married people with average cultural interests, except for below average viewing of educational television. A few also report frequently listening to records and tapes.
10	47	9.4	A diverse group socially, who are alike in that they listen to the radio more than they do anything else.
11	4	0.8	A small group of primarily homemakers and non-professional workers, with below average educations, who do not read much, but spend a lot of time watching educational上elevision and listening to classical music.
12	5	1.0	A small, highly diverse group. They tend to be older, retired people. They generally read little, but go to performing arts frequently and watch televised sports regularly.

Table 5: Distribution of "Attendances" at Each Cultural Activity by Cluster

\% Cluster	$\%$ Theatre	$\begin{gathered} \% \\ \text { Classical } \\ \text { Music } \end{gathered}$		\% Other Music	$\begin{gathered} \% \\ \text { Art } \\ \text { Galleries } \end{gathered}$
1	1.2	3.0	4.7	0.0	0.6
2	21.1	25.8	18.3	21.1	20.5
3	15.8	16.7	9.9	9.9	20.5
4	14.6	12.9	16.0	23.9	4.6
5	4.1	6.1	4.7	4.2	4.6
6	5.3	4.5	4.2	7.0	3.4
7	5.8	8.3	19.2	9.9	8.6
8	8.2	3.8	6.1	7.0	8.0
9	5.3	3.8	3.8	5.6	2.3
10	6.4	3.0	2.8	7.0	8.0
11	0.6	0.0	0.0	2.8	0.6
12	11.7	12.1	8.9	1.4	18.3
	100\%	100\%	100\%	100\%	100\%
Total Actual Attendances	171	132	213	71	175

Table 6: Cultural Elasticities

Cluster	Theatre	Classical Music	Popular Music	Other Music	Art Galleries
1	. 012	. 030	. 047	. 000	. 006
2	. 211	. 258	. 183	. 211	. 205
3	. 158	. 167	. 099	. 099	. 205
4	. 146	. 129	. 160	. 239	. 046
5	. 041	. 061	. 047	. 042	. 046
6	. 053	. 045	. 042	. 070	. 034
7	. 058	. 083	. 192	. 099	. 086
8	. 082	. 038	. 061	. 070	. 080
9	. 053	. 038	. 038	. 056	. 023
10	. 064	. 030	. 028	. 070	. 080
11	. 006	. 000	. 000	. 028	. 183
12	. 117	. 121	. 089	. 014	. 183

