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The Kumaraswamy Skew-t Distribution and Its

Related Properties

Khamis K. Said1, Doaa Basalamah2,3, Wei Ning3∗, Arjun Gupta3

1 School of Mathematics and Statistics

Beijing Institute of Technology, Beijing, China
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Abstract: Skew normal distribution has been introduced by Azzalini (1985) as an al-

ternative to the normal distribution to accommodate asymmetry. Since then extensive

studies have been done on applying Azzalini’s skewness mechanism to other well-known

distributions, such as skew-t distribution which is more flexible and can better accommo-

date long tailed data than the skew normal one. Cordeiro and de Castro (2011) proposed

a new class of distribution called the Kumaraswamy generalized distribution (Kw � F )

which is capable of fitting skewed data that cannot be fitted well by existing distributions.

Since then, the Kw�F distribution has been widely studied and various versions of gen-

eralization of this distribution family have been introduced. In this paper we introduce a

new generalization of the skew-t distribution based on the Kumaraswamy generalized dis-

tribution. The new class of distribution which we call the Kumaraswamy skew-t (KwST )

has the ability of fitting skewed, long and heavy tailed data and is more flexible than

the skew-t distribution as it contains the skew-t distribution as a special case. Related

properties of this distribution family such as mathematical properties, moments, and order
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statistics are discussed. The proposed distribution is applied to a real data set to illustrate

the estimation procedure.

Keywords: Skew-t distribution; Kumaraswamy distribution; Kumaraswamy skew-t dis-

tribution; Maximum likelihood estimation.

1 Introduction

Kumaraswamy (1980) introduced a distribution on (0, 1) called a distribution of double

bounded random process (DB) which has been used widely in hydrological applications.

The DB distribution shares many similarities with the beta distribution, while the DB

distribution has the advantage of the tractability of its distribution function and its den-

sity function does not depend on some special function which makes the computation of

the MLE’s easier. Jones (2009) provided detailed survey of the similarities and di↵erences

between the beta distribution and the distribution of double bounded random process

(DB). Based on the double bounded random process (DB) distribution, Cordeiro and de

Castro (2011) proposed a new class of distribution which is called the Kumaraswamy gen-

eralized distribution denoted as (Kw�F ). They extended this class of distributions to the

normal, Weibull, gamma, Gumbel, and inverse Gaussian distributions by choosing F to

be the corresponding distribution functions of these distributions. A major benefit of the

Kumaraswamy generalized distribution is its ability of fitting skewed data that can not be

fitted well by existing distributions. Since then, the Kumaraswamy generalized distribu-

tion has been widely studied and many authors have developed various generalized versions

based on this distribution. Nadarajah et al. (2011) studied some new properties of the

Kumaraswamy generalized distribution including asymptotes, shapes, moments, moment

generating function, and mean deviations. Cordeiro et al. (2015) studied moments for the

various classes of Kumaraswamy generalized distributions such as Kumaraswamy normal,

Kumaraswamy Student-t, Kumaraswamy beta, and Kumaraswamy snedecor F distribu-

tion. Mameli (2015) introduced the Kumaraswamy skew normal distribution, KwSN ,

and derived the moments, moments generating function, and the maximum likelihood

estimators for special values of the parameters, to name a few.
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Among all the skew distributions proposed in literature, the skew-t distribution receives

special attention after the introduction of the skew multivariate normal distribution by

Azzalini and Dalla Valle (1996). Gupta (2000) defined a skew multivariate t distribution

using a pair of independent standard skew normal and chi-squared random variables. Az-

zalini and Capitanio (2002) defined a skew-t variate as a scale mixture of skew normal

and chi-squared variables. Several authors studied possible extensions and generalizations

of the skew-t distribution. Arellano-Valle et al. (2005) discussed generalized skew distri-

butions in the multivariate setting including the skew-t one. Huang et al. (2007) studied

generalized skew-t distributions and used it in data analysis. Hasan (2013) proposed a new

approach to define the non-central skew-t distribution. Shafiei and Doostparast (2014) in-

troduced the Balakrishnan skew-t distribution and its associated statistical characteristics,

to name a few.

In this paper we introduce a new generalization of the skew-t distribution based on

the Kumaraswamy generalized distribution. The new class of distribution which we call

the Kumaraswamy skew-t (KwST ) has the ability of fitting skewed and heavy tailed data

and is more flexible than the skew-t distribution as it contains the skew-t distribution and

other important distributions as special cases. Related properties of the KwST such as

mathematical properties, moments, and order statistics are discussed. Furthermore, the

proposed distribution is applied to a real data to illustrate the fitting procedure.

The rest of the paper is organized as follows. The distribution function, the probability

density function and some expansions of probability density function of the Kumaraswamy

skew-t (KwST ) are given in section 2. We establish some mathematical and distributional

properties and provide several methods to simulate a sample of KwST in section 3. We

derive explicit expressions for the moments in section 4. A new representation for the

density of order statistics of KwST and Kumaraswamy generalized distributions are given

in section 5. Maximum likelihood estimators (MLEs) of the KwST parameters are given

in section 6. In section 7, the proposed distribution is applied to a well-known data set to

illustrate the fitting superiority as well as the comparison to other existing distributions

to indicate its advantage. Some discussion is provided in section 8.
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2 Distribution and Density Functions

Let F (x), f(x) be the cdf and pdf of a continuous random variable X. Cordeiro and

de Castro (2011) proposed the Kumaraswamy generalized distribution denoted by Kw �

F (a, b) with pdf g(x; a, b) and cdf G(x; a, b) given by:

g(x; a, b) = abf(x)F (x)a�1(1� F (x)a�1)b�1
, (1)

G(x; a, b) = 1� {1� F (x)a}b, (2)

where a > 0 and b > 0 are parameters to control the skewness and tail weights. By

taking F (x) to be the cdf of the normal, Weibull, gamma, Gumbel, and inverse Gaussian

distributions, Cordeiro and de Castro (2011) defined the Kw-normal, Kw-Weibull, Kw-

gamma, Kw-Gumbel, and Kw-inverse Gaussian distributions, respectively.

We take F (x) in (2) to be the distribution function of the skew-t distribution and

we introduce a new distribution called the Kumaraswamy skew-t distribution denoted by

KwST (a, b,�, r) with pdf g(x; a, b,�, r) and cdf G(x; a, b,�, r) given by:

g(x; a, b,�, r) = abf(x;�, r)F (x;�, r)a�1(1� F (x;�, r)a)b�1
, (3)

G(x; a, b,�, r) = 1� {1� F (x;�, r)a}b, (4)

where a > 0 and b > 0, x 2 <, f(x;�, r) and F (x;�, r) are the pdf and cdf of the skew-t

distribution given by Azzalini and Capitanio (2014) as follows:

f(x;�, r) = 2t(x; r)T (�x

r
r + 1

x

2 + r

; r + 1),

where T (x; r) and t(x; r) denote the cdf and pdf of the Student-t distribution with degrees

of freedom r > 0 and the shape parameter � 2 <.

The KwST distribution can be extended to include location and scale parameters

µ 2 < and � > 0. If X ⇠ KwST (a, b,�, r), then Y = µ + �X leads to a six parameters

KwST distribution with the parameter vector ⇠ = (a, b, µ,�,�, r). We denote it by Y ⇠
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KwST (a, b, µ,�,�, r).

Throughout this paper we will denote t
r

the Student-t distribution with pdf t(x; r) and

cdf T (x; r), st
r

(�) the skew-t with pdf f(x;�, r) and cdf F (x;�, r), and KwST (a, b,�, r)

the Kumaraswamy skew-t distribution with pdf g(x; a, b,�, r) and cdf G(x; a, b,�, r).

2.1 Expansion of the Density Function

According to Cordeiro and Castro (2011), using the binomial expansion for b 2 <+, the

pdf of KwST (3) can be rewritten as

g(x; a, b,�, r) = f(x;�, r)
1X

i=0

w

i

F (x;�, r)a(i+1)�1
, (5)

where the binomial coe�cient w
i

is defined for all real numbers with, w
i

= (�1)iab
�
b�1
i

�
.

If b is an integer, the index i in the sum of (5) stops at b� 1. If a is an integer, then (5)

is the density of st
r

multiplied by infinite weighted power series of the cdf of st
r

. On the

other hand, if a is not an integer, we can expand the term F (x;�, r)a(i+1)�1 as follows

F (x;�, r)a(i+1)�1 = [1� (1� F (x;�, r))]a(i+1)�1

=
1X

j=0

(�1)j
✓
a(i+ 1)� 1

j

◆
(1� F (x;�, r))j

=
1X

j=0

jX

k=0

(�1)j+k

✓
a(i+ 1)� 1

j

◆✓
j

k

◆
F (x;�, r)k.

Further, the density g(x;�, r, a, b) in (3) can be rewritten as

g(x;�, r, a, b) = f(x;�, r)
1X

i=0

1X

j=0

jX

k=0

w

i,j,k

F (x;�, r)k, (6)

where the coe�cient w
i,j,k

is defined for as,

w

i,j,k

= (�1)i+j+k

✓
b� 1

i

◆✓
a(i+ 1)� 1

j

◆✓
j

k

◆
ab.
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3 Properties and Simulation

In this section we study some theoretical properties of KwST distribution. Then we

provide graphical illustrations of these properties. Finally, we present di↵erent approaches

to generate a sample from KwST distribution.

3.1 Properties

Property 3.1.1 Let X ⇠ KwST (a, b,�, r),

(a) If a = b = 1, then X ⇠ st

r

(�).

(b) If � = 0 and a = b = 1, then X ⇠ t

r

.

(c) If � = 0 and a = b = r = 1, then X ⇠ Cauchy(0, 1).

(d) If � = 0, then X ⇠ Kw � t

r

(a, b).

(e) If � = 0 and r = 1, then X ⇠ Kw � Cauchy(a, b).

(f) If Y = F (x;�, r), then X ⇠ Kw(a, b) .

The proof of Property 3.1.1 follows from (3) and from elementary properties of the skew-t

distribution. Note that in part (d) and (e), the distribution function of Kw � t

r

(a, b)

and Kw � Cauchy(a, b) are given by substituting the F (x) in (2) by the the distribution

function of the Student-t with degrees of freedom r and the Cauchy (0,1) respectively.

The following two properties are based on properties 5 and 6 in Mameli (2015).

Property 3.1.2 Let X ⇠ KwST (a, b,�, r) and Y ⇠ KwST (a, d,�, r) be two independent

random variables. Then, (X|Y � X) ⇠ KwST (a, b + d,�, r), where a, b, and d > 0.

Property 3.1.3 Let X ⇠ KwST (a, 1,�, r) and Y ⇠ KwST (c, 1,�, r) be two independent

random variables. Then, (X|Y  X) ⇠ KwST (a+ c, 1,�, r), where a and c > 0.

The following property studies the limiting distribution of KwST (a, b,�, r) as one of

the parameters approaches 1 while the others remain fixed.

Property 3.1.4 Let X ⇠ KwST (a, b,�, r) be a random variable with pdf g(x; a, b,�, r)

defined in (3). Then,
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(a) As a ! 1 or b ! 1, the probability distribution function g(x; a, b,�, r) degenerates

to zero.

(b) As r ! 1, X ⇠ KwSN(a, b,�).

(c) As � ! 1, X ⇠ Kw-|t
r

|(a, b, r).

Part (a) in property 3.1.4 can be generalized to the class of the Kumaraswamy gener-

alized family Kw � F (a, b) with pdf g(x; a, b) defined in (1) as follows.

Property 3.1.5 Let X ⇠ Kw � F (a, b). As a ! 1 or b ! 1, then the probability

distribution function g(x; a, b) degenerates to zero.

3.2 Graphs

To understand the e↵ect of each parameter in determining the overall shape of the KwST

density, we present some graphs with five fixed parameters and the sixth one varying. For

simplicity, we fix the location parameter µ to be zero and the scale parameter � to be one

in all graphs. In Figure 1 we fixed the parameters (b = 3,� = 1, r = 3) and we graph

the density of KwST (a, 3, 1, 3) density for di↵erent values of a. Figure 1 shows that as a

increases the left tail of the KwST density gets lighter.

Figure 1: KwST (a, 3, 1, 3) density as the parameter a varies.

On the other hand, we note that the parameter b controls the right tail weight of the

KwST density when b varies and all other parameters are fixed (a = 5,� = �1, r = 3) as
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shown in Figure 2. In addition, Figures 1 and 2 show that as a or b approach infinity the

KwST density degenerate to zero.

Figure 2: KwST (5, b,�1, 3) density as the parameter b varies.

Figure 3 studies the e↵ect of the parameter � on the shape of the KwST density by

fixing the parameters (a = 5, b = 3, r = 3) and taking the parameter � ranging from �5 to

100. Then, we compare the density curves of KwST (5, 3,�, 3) with the curve of Kw� |t
r

|

(a = 5, b = 3, r = 3). As expected, the graph is skewed to the right for positive values of �

and skewed to the left for negative values of �. Moreover, we observe that as � increases

the KwST density curve overlaps the Kw � |t
r

| density curve which graphically proves

part (c) of property 3.1.4.
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Figure 3: KwST (5, 3,�, 3) density as the parameter � varies.

In Figure 4, we study the e↵ect of the degrees of freedom r on the shape of the KwST

density by fixing the parameters (a = 5, b = 3,� = �1) and taking the degrees of freedom

r = 1, 5, 15 and 50. We observe that the shape of the KwST (5, 3,�1, r) density gets

closer to the one of the KwSN(5, 3,�1) as the degrees of freedom r increases, which

agrees with the part (b) of property 3.1.4. The tail gets thicker as the decreases of the

degrees of freedom. Properties in the last two graphs are inherited from the baseline skew-

t distribution. Furthermore, Figures 1-4 show that the KwST inherited the unimodality

from its baseline distribution.

Figure 4: KwST (5, 3,�1, r) density as the degrees of freedom r varies.
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3.3 Simulation

In this section, we provide several methods to generate samples from KwST (a, b,�, r)

distribution. The KwST quantile function is obtained by inverting (4)

x = Q(u) = G

�1(u) = F

�1[1� (1� u)1/b]1/a, (7)

where U is a uniform random variable on (0, 1) and F

�1 is the inverse function of the

distribution function of st
r

(�). Then, applying the inverse transformation technique we

generate KwST random sample using (7).

An alternative method to generate a KwST (a, b,�, r) random sample is to use the algo-

rithm of the acceptance rejection method proposed by Nadarajah et al. (2012) as follows.

Define a constant M by M = a

b
b(a�1)1�1/a(b�1)b�1

(ab�1)b�1/a for given a � 1 and b � 1.

Then the following scheme holds for generating KwST (a, b,�, r) variable:

(a) Generate X = x from the pdf of skew-t.

(b) Generate Y = UMx, where U is a uniform variate on (0,1).

(c) Accept X = x as KwST variable if Y < f(x,�, r). Otherwise, return to step (b).

Additional method to generate KwST (a, b,�, r) random sample is to directly apply part

(f) in property 3.1.1.

Figure 5 shows the histograms of two random samples with size 500 simulated from

KwST (⇠) distribution using the acceptance rejection method, with the parameter vectors

⇠1 = (a = 5, b = 2, µ = 0,� = 1,� = �2, r = 2) and ⇠2 = (a = 2, b = 4, µ = 0,� = 1,� =

1, r = 2) respectively.

4 Moments

In this section we derive explicit expressions for the moments of KwST random variable

using di↵erent techniques. Further, we present some numerical moments estimation of

10



(a) ⇠1 = (a = 5, b = 2,� = �2, r = 2) (b) ⇠2 = (a = 2, b = 4,� = 1, r = 2)

Figure 5: Histogram for KwST random samples of size 500.

the mean (µ
KwST

), variance(�2
KwST

), skewness(�1), and kurtosis(�2) of KwST (a, b,�, r)

random variable for selected values of the parameters a, b,�, and r.

Theorem 4.1.1 Let X ⇠ KwST (a, b, µ,�,�, r) where a, b and n are positive integers and

r � n, then

E

X

(Xn) = abµ

n

nX

i=0

✓
n

i

◆
(
�

µ

)i
b�1X

j=0

(�1)j
✓
b� 1

j

◆
E

Y

(Y i

F (Y ;�, r)a(j+1)�1), (8)

where Y ⇠ st

r

(�).

Further, the n

th moment of X with the pdf g(x; a, b,�, r) in (6) can be expressed in

terms of the probability weighted moments of the baseline distribution st

r

(�) as follows

Proposition 4.1.1 Let X ⇠ KwST (a, b,�, r) be a random variable where a and b are

positive real numbers, n is a positive integer, n � 1 and r � n, then

E

X

(Xn) =
1X

i,j=0

jX

k=0

w

i,j,k

E

Y

(Y n

F (Y ;�, r)k), (9)

where Y ⇠ st

r

(�) and w

i,j,k

= (�1)i+j+k

�
b�1
i

��
a(i+1)�1

j

��
j

k

�
ab.

If a is an integer, then we use the pdf (5) to derive the the n

th moments of X ⇠

11



KwST (�, r, a, b) as follows.

E

X

(Xn) =
1X

i=0

w

i

E

Y

(Y n

F (Y ;�, r)a(i+1)�1), (10)

where Y ⇠ st

r

(�) and w

i

= (�1)i
�
b�1
i

�
ab.

If b is an integer, the index i in the first sum in (9) and the sum in (10) stop at b� 1.

Alternatively, the n

th moment of X ⇠ KwST (a, b,�, r) random variable with integers

a � 2 and b � 2 can be expressed in terms of the n

th moment of the st

r

(�) multiplied by

a constant as presented in the following proposition.

Proposition 4.1.2 Let X ⇠ KwST (a, b,�, r) with integers n, a and b where a and b � 2

n � 1 and r � n.

E

X

(Xn) = E

Y

(Y n)c(a, b), (11)

where c(a, b) = ab

P
b�2
i=0

(�1)i

B(i+1,b�i�1)

h
a

a(2+i)�1 � (a�1)
(b�i�1)(a(1+i)�1)

i
� (�1)b�1 (a�1)

ab�1

�
,

B(a, b) is the complete beta function and Y ⇠ st

r

(�).

According to Azzalini and Capitanio (2014), the n

th moment of Y ⇠ st

r

(�) is given by

E

Y

(Y n) = E

V

(V n/2)E
Z

(Zn)

=
(r/2)n/2�( r�n

2 )

�( r2)
E(Zn),

where Z ⇠ SN(0, 1,�).

The mean, variance, skewness and kurtosis measures can be computed numerically

using existing softwares. Table 1 shows numerical estimations of these measures by com-

puting the first four moments for various values of the parameters a, b, �, and r with fixed

µ = 0 and � = 1, where Table 1(a) presents the numerical estimations of KwST (a, b,�, r)

random variable for di↵erent values of a, b, and � and fixed degrees of freedom r = 5,

while in Table 1(b) the parameter � = 2 is fixed and the parameters a, b, and the degrees

of freedom r vary. Skewness and kurtosis are calculated using the well-known relations

�1(X) = E

X

h⇣
X � E(X)

V ar(X)1/2

⌘3i
,
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and

�2(X) = E

X

h⇣
X � E(X)

V ar(X)1/2

⌘4i
.

Table 1(a): moments estimation of the mean (µ
KwST

), variance(�2
KwST

), skewness(�1),
and kurtosis(�2) of KwST (a, b,�, r) random variable for di↵erent values of a, b, and �

a b � r µ

KwST

�

2
KwST

�1 �2

KwST 1 .50 -10 5 -0.563 0.616 -2.419 28.051
-1 0.119 2.842 4.919 119.904
0 1.107 6.303 5.757 97.085
1 1.753 6.804 6.674 108.903
10 1.927 6.321 7.448 125.575
50 1.929 6.312 7.463 125.904

Kw � |t
r

| 1 .50 - 5 1.929 6.311 7.465 125.943
KwST 5 3 -1 5 -0.055 0.157 -0.005 3.465

0 0.676 0.281 0.298 3.623
1 1.197 0.251 0.542 3.934
10 1.288 0.213 0.761 4.248
50 1.288 0.213 0.761 4.247

Kw � |t
r

| 5 3 - 5 1.288 0.213 0.761 4.247
KwST 10 1 -1 5 0.850 0.463 2.161 19.937

0 2.003 1.270 2.462 25.524
1 2.545 1.477 2.737 30.106
10 2.591 1.457 2.812 31.254
50 2.591 1.457 2.812 31.655

Kw � |t
r

| 10 1 - 5 2.591 1.457 2.812 31.655
KwST 10 2000 -10 5 0 0 NA NA

0 0 0 NA NA
10 0 0 NA NA

From the numerical results in Table 1, we observe that theKwST (a, b,�, r) distribution

degenerates to zero as the increase of a or b. Thus, the skewness and kurtosis do not exist,

and their values are replaced by NA. Further, the KwST (a, b,�, r) moments estimates

get closer to the KwSN(a, b,�) ones as the degrees of freedom r increases and to the

Kw � |t
r

|(a, b, r) as the parameter � increases, where the numerical estimations of the

KwSN and Kw � |t
r

| are presented on the last line of each block. Numerical results in

Table 1 agree with the property 3.1.4.
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Table 1(b): moments estimation of the mean (µ
KwST

), variance(�2
KwST

), skewness(�1),
and kurtosis(�2) of KwST (a, b,�, r) random variable for di↵erent values of a, b, and r

a b � r µ

KwST

�

2
KwST

�1 �2

KwST 1 1 2 5 0.849 0.946 1.791 16.428
10 0.773 0.652 0.865 5.042
50 0.767 0.453 0.661 4.053
300 0.758 0.412 0.873 3.547

KwSN 1 1 2 - 0.714 0.491 0.453 3.301
KwST 10 1 2 5 2.587 1.461 2.800 31.086

10 2.176 0.574 1.283 6.703
50 1.932 0.304 0.683 3.856
300 1.889 0.269 0.588 3.587

KwSN 10 1 2 - 0.714 0.491 0.453 3.301
KwST 2 5 2 5 0.447 0.137 0.158 3.495

10 0.432 0.124 0.090 3.257
50 0.422 0.115 0.040 3.109
200 0.420 0.113 0.031 3.109

KwSN 2 5 2 - 0.419 0.113 0.028 3.073
KwST 2000 15 2 5 0 0 NA NA

10 0 0 NA NA
20 0 0 NA NA

5 Order Statistics

Order statistics make their appearance in many areas of statistical theory and practice.

Cordeiro and de Castro (2011) derived the density of order statistics of the Kw � F

distribution as a function of the baseline density multiplied by infinite weighted sums of

powers of the distribution function F (x) as given by

g

i:n(x) =
f(x)

B(i, n� i+ 1)

n�iX

j=0

(�1)j
✓
n� i

j

◆ 1X

r,u,v=0

vX

t=0

w

u,v,t

p

r,i+j�1(a, b)F (x)r+t

,

where a is a positive real number,

w

u,v,t

= w

u,v,t

(a, b) = (�1)u+v+t

ab

✓
a(u+ 1)� 1

v

◆✓
b� 1

u

◆✓
v

t

◆
,
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and

p

r,i+j�1(a, b) =
i+j�1X

k=0

✓
i+ j � 1

k

◆
(�1)k

1X

m=0

1X

l=0

(�1)mr+l

✓
kb

m

◆✓
ma

l

◆✓
l

r

◆
.

If a is a positive integer, then density of order statistics of the Kw � F distribution is

given by

g

i:n(x) =
f(x)

B(i, n� i+ 1)

n�iX

j=0

(�1)j
✓
n� i

j

◆ 1X

r,u=0

w

u

p

r,i+j�1(a, b)F (x)a(u+1)+r�1
,

where w

u

= w

u

(a, b) = (�1)uab
�
b�1
u

�
.

We derive a new and simpler representation for the density of the order statistics of

KwST random sample and we generalize the result to the order statistics of the Ku-

maraswamy generalized family Kw � F .

Theorem 5.1 Let X1, ..., Xn

be a random sample from a KwST distribution with

the defined probability density function g(x; a, b,�, r) in (3) and distribution function

G(x; a, b,�, r) in (4). Let X1:n  X2:n  ...  X

n:n be the order statistics of the random

sample. The density function g

i:n(x; a, b,�, r) of the ith order statistic X
i:n, for i = 1, ..., n,

is given by

g

i:n(x; a, b,�, r) =
i�1X

k=0

s

i,n,k

g(x; a, b(n� i+ k + 1),�, r), (13)

where s

i,n,k

= (�1)k
�
n�i+k

k

��
n

i�k�1

�
. Formula (13) immediately yields the density of order

statistics of the KwST distribution as a function of finite weighted sums of the density

of the same class of KwST distribution with a new parameter b

⇤ = b(n � i + k + 1),

which is written as a function of the sample size n, the order i and a constant k, where

0  k  i� 1. Hence, the ordinary moments of order statistics of the KwST distribution

can be written as finite weighted sums of moments of the KwST distribution with a new

parameter b⇤.

From Theorem 5.3, the density of the smallest and largest order statistic are as follow.
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Proposition 5.1

(a) The density of the largest order statistic X

n:n(x) is given by

g

n:n(x; a, b,�, r) =
n�1X

k=0

s

k

g(y; a, b(k + 1)�, r), (14)

where s

k

= (�1)k

B(k+1,n�k) .

(b) The density of the smallest order statistic X1:n(x) is simply g(y; a, nb�, r) which is

the density of Y ⇠ KwST (a, bn,�, r).

The result in theorem 5.1 can be generalized to the class of the Kumaraswamy gener-

alized family Kw � F , defined in (1).

Theorem 5.2 Let X1, ..., Xn

be a random sample from a Kumaraswamy generalized fam-

ily Kw�F distribution with the defined probability density function g(x; a, b) in (1) and

distribution function G(x; a, b) in (2). Let X1:n  X2:n  ...  X

n:n be the order statistics

of the random sample. The density function g

i:n(x; a, b) of the i

th order statistic X

i:n, for

i = 1, ..., n , is given by

g

i:n(x; a, b) =
i�1X

k=0

s

i,n,k

g(x; a, b(n� i+ k + 1)), (15)

where s

i,n,k

= (�1)k
�
n�i+k

k

��
n

i�k�1

�
.

6 Maximum Likelihood Estimation

The likelihood-based inference is a primary approach to statistical methodology. The

maximum likelihood inference is a well-known concept with a quite standard notation. In

this section, the maximum likelihood estimators (MLE’s) of the KwST parameters are

given.

Consider a sample x1, x2, ....., xn from the KwST (a, b, µ,�,�, r) distribution. The log-
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likelihood function l(⇠) for the parameter vector of ⇠ = (a, b, µ,�,�, r) is

l(⇠) = n log(a) + n log(b)� n log(�) +
nX

i=1

logf(z
i

;µ,�,�, r) + (a� 1)
nX

i=1

log(F (z
i

;µ,�,�, r))

+ (b� 1)
nX

i=1

log(1� F (z
i

;µ,�,�, r)a), (16)

where z

i

= xi�µ

�

. The components of the score vector U(⇠) are given by

U

a

(⇠) =
n

a

+
nX

i=0

log(F (z
i

;µ,�,�, r))� (b� 1)
nX

i=1

F (z
i

;µ,�,�, r)alog(F (z
i

;µ,�,�, r))

1� F (z
i

;µ,�,�, r)a
.

U

b

(⇠) =
n

b

+
nX

i=0

log(1� F (z
i

;µ,�,�, r)a).

U

µ

(⇠) =
nX

i=0

�1

�f(xi�µ

�

;µ,�,�, r)

df(xi�µ

�

;µ,�,�, r)

dµ

� (a� 1)

�

nX

i=0

1

F (xi�µ

�

;µ,�,�, r)

dF (xi�µ

�

;µ,�,�, r)

dµ

+
(b� 1)

�

nX

i=0

1

(1� F (xi�µ

�

;µ,�,�, r)a)

d(1� F (xi�µ

�

;µ,�,�, r)a)

dµ

.

U

�

(⇠) = �n

�

+
nX

i=0

1

�f(xi�µ

�

;µ,�,�, r)

df(xi�µ

�

;µ,�,�, r)

d�

� (a� 1)

�

nX

i=0

1

F (xi�µ

�

;µ,�,�, r)

dF (xi�µ

�

;µ,�,�, r)

d�

+
(b� 1)

�

nX

i=0

1

(1� F (xi�µ

�

;µ,�,�, r)a)

d(1� F (xi��

�

;µ,�,�, r)a)

d�

.

U

�

(⇠) =
nX

i=0

1

f(xi�µ

�

;µ,�,�, r)

df(xi�µ

�

;µ,�,�, r)

d�

+ (a� 1)
nX

i=0

1

F (xi�µ

�

;µ,�,�, r)

dF (xi�µ

�

;µ,�,�, r)

d�

+ (b� 1)
nX

i=0

1

(1� F (xi�µ

�

;µ,�,�, r)a)

d(1� F (xi��

�

;µ,�,�, r)a)

d�

.
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U

r

(⇠) =
nX

i=0

1

f(xi�µ

�

;µ,�,�, r)

df(xi�µ

�

;µ,�,�, r)

dr

+ (a� 1)
nX

i=0

1

F (xi�µ

�

;µ,�,�, r)

dF (xi�µ

�

;µ,�,�, r)

dr

+ (b� 1)
nX

i=0

1

(1� F (xi�µ

�

;µ,�,�, r)a)

d(1� F (xi��

�

;µ,�,�, r)a)

dr

.

Solving the components of the score vector simultaneously yield the maximum like-

lihood estimates (MLEs) of the six parameters. Estimation of each parameter can be

carried out using one of the numerical procedures available on computational software.

We used the optim function which is available in R software to do so.

6.1 Illustrative examples

We illustrate the superiority of the KwST distribution proposed here as compared with

some of its sub-models using the Akaike Information Criterion (AIC) and Schwarz infor-

mation criterion (SIC). We give an application using well-known data set to demonstrate

the applicability of the proposed model. Table is used to display the six parameters

⇠ = (µ,�,�, r, a, b) estimate for each model with the stander error of estimation in paren-

thesis as will as the negative log-likelihood, the AIC and the SIC values.

The data set used here is the U.S. indemnity losses used in Frees and Valdez (1998) and

Eling (2012), to name a few. This data set contains 1500 general liability claims giving for

each the indemnity payment, denoted by “loss”. For scaling purposes, we divide the data

set by 1000. The U.S. indemnity losses data set can be found in the R packages copula

and evd.

Figure 6 presents the histogram for the U.S. indemnity losses data set, as well as the

corresponding normal Q-Q plot. The histogram shows that we have a large number of

small losses and a lower number of very large losses which is a typical feature of insurance

claims data.

Table 2: Summary description of the U.S. indemnity losses data set.

N Min. Median Mean sd Max. skewness kurtosis
1500 0.01 12.00 41.21 102.74 2174.00 9.154 141.978
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Figure 6: Histogram and Q-Q plot for U.S. indemnity losses data set.

Table 2 shows descriptive statistics for the U.S. indemnity losses data set. It presents

the number of observations, indicators for the first four moments (mean, standard de-

viation, skewness, excess kurtosis), and the minimum and the maximum observation of

the data. The descriptive statistics indicate that the U.S. indemnity losses data set is

significantly skewed to the right and exhibit high kurtosis.

To illustrate the fitting superiority of the KwST distribution as well as the comparison

to other existing distributions to indicate its advantage, the Akaike Information Criterion

(AIC) and Schwarz information criterion (SIC) are used. The calculation results are

presented in Table 3. We observe that the KwST distribution is a competitive candidate

to fit the data as its AIC and SIC values are very close to the AIC and SIC of the St

r

distribution. Further, note that for the St
r

distribution the estimated skewness parameter

� is very large while the KwST distribution produced a reasonable estimated values of

its parameters. On the other hand, we note that the SN distribution fails to fit this data

as it has the largest AIC and SIC values and the estimated skewness parameter is out of

the range (-20,20) suggested by Azzalini (1986). Therefore, we suggest using the KwST

distribution to fit this data set.

The following figures are graphical display of the fitted density curves to the histogram

of the U.S. indemnity losses data where the ( ) line presents the KwST model, the

( ) line presents the skew-t model and the ( ) line presents the skew normal one.

1
The stander error of estimations are reported in parenthesis.
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Table 3: Parameter estimations for the U.S. indemnity losses data set. 1

Dist. µ � � r a b �log(⇠) AIC SIC
KwST -0.0652 4.936 5.337 0.078 2.754 38.776 6595.183 13202.37 13234.24

(0.00005) (0.0001) (0.0001) (2.296x10�07) (0.0067) (3.358)
St

r

0.0096 10.687 80448.45 0.859 - - 6594.952 13197.99 13219.16
(0.0418) (0.5583) (17.263) (0.0486)

SN 9.53x10�03 1.1064x1002 8.378x1005 - - - 8148.48 16302.98 16318.92
(0.00002) (2.020) (1.482x103)

We take a closer look to the fitting density curves in Figure 8 to show the advantage of

our new model.

Figure 7: Histogram and fitted density curves to the U.S. indemnity losses data set.
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Figure 8: Closer look for fitted density curves to the U.S. indemnity losses data set.

7 Final remarks

A new statistical distribution, The Kumaraswamy skew- t distribution, has been intro-

duced and denoted as KwST with some structural properties. The KwST distribu-

tion provides flexibility in modeling heavy-tailed and skewed data and it is more general

than the skew-t distribution as it includes the t

r

, st

r

(�), Kw � t, KwSN and some

other important distributions as special cases of its parameters. The n

th moment of

X ⇠ KwST (a, b,�, r) random variable with integers a � 2 and b � 2 can be expressed in

terms of the n

th moment of the st

r

(�) multiplied by a constant. The density of the order

statistics of the KwST can be written as a function of finite weighted sum of the density

of the same KwST distribution with parameter b

⇤ which is written as a function of the

sample sizen, the order i and a positive constant k, where 0  k  i�1. The density of the

smallest order statistic is nothing but the pdf of Y ⇠ KwST (a, bn,�, r). We provide an

application using a well-known data set to demonstrate the applicability of the proposed

model by comparing it with some of its sub-models using the Akaike Information Criterion

(AIC) and Schwarz information criterion (SIC). We conclude that the KwST distribution

is a promising model when modeling skewed and heavy tailed data.
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