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Reliability of Peak Cardiorespiratory 
Responses During Aquatic 

Treadmill Exercise

William M. Silvers and Dennis G. Dolny

Twenty-four college-age participants took part in 2 protocols on an aquatic 
treadmill (ATM) submerged to the xiphoid process. ATM speed was increased 
to 212.2 ± 19.2 m/min, and water-jet resistance was increased 10% every minute 
thereafter. Rest between sessions was at least 6 days. Oxygen consumption (VO

2
), 

heart rate (HR), minute ventilation (V
E
), tidal volume (V

T
), breathing frequency 

(f), and respiratory-exchange ratio (RER) were measured continuously. Rating 
of perceived exertion (RPE) was recorded immediately after each test, and blood 
lactate (LA) was measured 3 min after. There were no significant differences 
for Trial 1 vs. Trial 2 for any variable. ICCs were very strong (r = .90–.99), and 
coefficients of variance (CVs) were low (1.3–4.7%) for VO

2peak
, HR, V

E
, and 

V
T,
; ICCs were moderate (r = .73–.76) and CVs were greater (2.5–9.3%) for f, 

RER, and LA. The ATM VO
2peak

 protocol used in this study produces consistent, 
reproducible VO

2peak
 values.

Keywords: water, hydrostatic, VO
2peak

,
 
cross-training, aerobic

The measurement of peak oxygen uptake (VO
2peak

) has been a staple of perfor-
mance testing in the field of exercise physiology for over 80 years. Not without its 
controversy (Howley, Bassett, & Welch, 1995; Noakes, 1997), this test is used to 
evaluate present aerobic capacity and adaptations to the cardiorespiratory system as 
a result of physical training. Many protocols for the maximal-oxygen-consumption 
test have been developed for the treadmill. With any physical test or performance 
measure the reproducibility, or reliability, of the measure should be examined 
(Atkinson & Neville, 1998; Hopkins, 2000). Performance-test reliability can be 
evaluated by testing for any significant changes in mean score, calculating the 
standard estimate of the mean (typical error), coefficient of variation (CV, typical 
error expressed as a percentage of the mean), intraclass correlation coefficients 
(ICC), and total error (TE) caused by technological or measurement error (Atkinson 
& Neville; Hopkins).

There have been numerous studies that established the reproducibility of 
VO

2peak
 testing on a land-based treadmill (TM; Froelicher et al., 1974; Harling, 
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Tong, & Mickleborough, 2003; Katch, Sady, & Freedson, 1982; McArdle, Katch, 
Pechar, Jacobson, & Ruck, 1972; Mitchell, Sproule, & Chapman, 1958; Taylor, 
1944; Wilmore et al., 1980, 1985). Test–retest reliability coefficients have ranged 
from .90 to .96, with CVs ranging from 2.3% to 6.5%. Reliability is considered to 
primarily be influenced by biological variability, usually accounting for >90% of 
variability according to Katch et al. (1982), and to a lesser extent by technological 
error of measurement (TE). Baumgartner and Jackson (1991) recommend that for 
psychomotor tests ICCs should reach or exceed .80 to demonstrate strong reliability. 
Furthermore, low CVs and TEs provide insights specific to what would be consid-
ered the smallest worthwhile change (SWC) whereby researchers who measured 
this or a greater magnitude of change from one test to the next would determine 
this difference to be meaningful beyond that of the expected variability (Hopkins, 
2000), thereby indicating the test performance to be unreliable.

Deep-water running and shallow-water running (SWR) have become popular 
as alternatives to land-based running, in part because of their potential to reduce 
repetitive strain and stress to the lower extremities from ground-reaction forces. 
Participants typically perform running actions in an indoor pool immersed to the 
level of the neck for deep-water running and around waist-deep for SWR. Under-
water or aquatic treadmills (ATMs) are becoming more available. ATMs present 
an SWR option that mitigates frontal water resistance by eliminating forward 
locomotion through a body of water. Consequently, a more natural walking or run-
ning gait pattern is possible, which might enhance the specificity of SWR training. 
Recent advances in technology have improved the functionality of ATMs, offering 
broader flexibility in treadmill speeds, water-submersion levels, and external fluid 
resistance via water jets. We have previously determined that peak cardiorespira-
tory responses on ATMs were similar to those on land-based treadmills (TMs) in 
recreationally active male and female participants (Silvers, Rutledge, & Dolny, 
2007). Less information is available regarding the reliability of aquatic VO

2peak
 

protocols, especially those incorporating an ATM.
Therefore, the purpose of this study was to determine the reliability of peak 

cardiorespiratory responses elicited during maximal-effort protocols using an 
ATM. We hypothesized that the variability in peak measures would be comparable 
to previously reported reliability scores for TM exercise (Froelicher et al., 1974; 
Harling et al., 2003; Katch et al., 1982; McArdle et al., 1972; Mitchell et al., 1958; 
Taylor, 1944; Wilmore et al., 1980, 1985). We believe this might be the first study 
to verify the reliability of the cardiorespiratory response to any form of aquatic 
exercise (SWR, deep-water running, or ATM) at any exercise intensity. For that 
reason, this study represents a particularly significant and important contribution 
to the physiology and aquatic-exercise literature.

Method

Participants

Twenty-four recreationally competitive male (n = 13) and female (n = 11) runners 
participated in this investigation (age 25 ± 3 years, height 174.9 ± 11.1 cm, weight 
68.8 ± 11.1 kg). Criteria for participation included at least 6 months of consistent 
aerobic training (≥3 sessions/week, ≥30 min/session). All participants completed 
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informed-consent waivers consistent with the policy statement regarding the use 
of human participants and written informed consent as reviewed and approved by 
the University of Idaho Human Assurance Committee.

Experimental Procedures

A test–retest research design was employed to investigate the effects of repeated 
maximal-effort ATM protocols on cardiorespiratory endurance, ratings of perceived 
exertion (RPE), and blood lactate (LA) measures. Each participant completed two 
maximal-exertion running protocols on an ATM and was asked to refrain from eating 
for at least 4 hr before testing. Rest between testing sessions was 7 ± 1 day.

Equipment

ATM protocols were performed on a HydroWorx 2000 (HydroWorx, Middletown, 
PA) that consisted of a small pool kept at 28 °C with a treadmill built into an 
adjustable-height floor. Water jets inset at the front of the pool provided an adjust-
able water-flow resistance.

Expired air was analyzed using an automated metabolic system (TrueOne 
2400, ParvoMedics, Sandy, UT) that was calibrated immediately before each testing 
session. The metabolic cart’s reliability and validity have been reported elsewhere 
(Crouter, Antczak, Hudak, DellaValle, & Haas, 2006). Participants wore water-
resistant chest-strap transmitters (Polar T31, Polar, Lake Success, NY) to monitor 
heart rate. We assessed perceived exertion immediately after each test using Borg’s 
15-point RPE scale (Borg, 1982). To measure postexercise LA, we used a handheld 
lactate analyzer (Lactate Pro, ARKRAY, Inc., Minami-Mu, Kyoto, Japan). 

Testing Protocols

Table 1 summarizes the ATM testing protocols. Male participants wore spandex 
shorts, and female participants wore spandex shorts and a sports bra. We established 
the initial and final treadmill speeds based on information solicited from individual 

Table 1  Descriptions of Both Aquatic-Treadmill Protocols

Trial

Initial 
workload, M 
(SD) Progression Final workload, M (SD)

1 149.3 (16.8) m/
min, 40% jets

Increased speed 13.4 m/min 
every minute for 4–5 min, then 
increased jets 10% every minute 
to volitional fatigue

212.2 (19.2) m/min, 
75.7% (13.8%) jets

2 149.3 (16.8) m/
min, 40% jets

Increased speed 13.4 m/min 
every minute for 4–5 min, then 
increased jets 10% every minute 
to volitional fatigue

212.2 (19.2) m/min, 
80.4% (11.9%) jets

3

Silvers and Dolny: Reliability of Peak Cardiorespiratory Responses During Aquatic Tr

Published by ScholarWorks@BGSU, 2008



VO2peak Reliability in Aquatic Treadmill Exercise    143

participants relative to their typical daily workout running paces and, if available, 
best performance times in 5- to 10-km road races in the 3 months before testing. 
Water jets were directed at the participant’s torso to provide an additional adjustable 
resistance during testing. Participants were submerged to the xiphoid process and 
positioned approximately 1 m away from the water jets to standardize the amount 
of fluid resistance. Underwater sagittal- and frontal-plane camcorders connected to 
video screens in front of the pool provided the investigators and participants real-
time feedback about position in relation to the water jets and running gait, to ensure 
that the ATM protocol did not degrade participants’ running form when they neared 
physiological exhaustion. Based on pilot-testing sessions, we chose to use 40% 
water-jet resistance as the beginning resistance for the first ATM speed to promote 
normal running gait and minimize “float time” over the treadmill belt. After a 4- to 
6-min warm-up, participants began the test running at their predetermined initial 
speed with 40% water-jet resistance for 1 min. Thereafter, we increased speed 13.4 
m/min every minute for 5–6 min to a predetermined maximum speed, while water-
jet resistance stayed constant at 40%. Once participants reached maximum speed, 
we increased water-jet resistance incrementally 10% every minute until participants 
reached the point of volitional exhaustion. Air temperature and relative humidity in 
the room were maintained at 24 ± 1.0 °C and 43% ± 2.0%, respectively.

We applied the following criteria to verify that participants had achieved a 
valid maximal-effort test: heart rate [HR] ±5 beats/min of age-predicted maximum 
(220 – age), LA ≥9 mM, respiratory-exchange ratio (RER) ≥1.10, and VO

2
 increases 

<0.15 L/min with increases in workload at end of test (Taylor, Buskirk, & Henschel, 
1955). We selected these criteria because they represent typical criteria commonly 
used in previous TM protocols.

Variables

We continuously sampled data for VO
2
, HR, tidal volume (V

T
), ventilation (V

E[BTPS]
), 

breathing frequency (f), and RER during testing. Four 15-s samples around the 
highest 15-s VO

2
 sample were averaged to express peak 1-min values for each 

variable. Three minutes after completion of the ATM protocol, we drew 5 µl of 
whole blood from participants’ fingertips and placed them on an analyzer testing 
strip. LA values were reported in mmol/L.

Statistical Analysis

Peak 1-min values for VO
2
, VCO

2
, HR, V

E
, V

T
, f, RER; postexercise LA and RPE; 

and test time were recorded for each trial. We checked the data for heteroscedas-
ticity using plots of the raw and log-transformed data, with the change scores 
plotted against the mean scores and the uniformity of the scatter checked (Bland 
& Altman, 1986). If we detected heteroscedasticity, analyses were conducted 
with log-transformed data. We employed one-way repeated-measures ANOVAs to 
determine significant differences between trials for each variable, with the level of 
significance set at p < .05. Pearson’s r, ICC, TE, and CV were calculated for each 
variable. TE was used to represent technological error of measurement. SWC was 
calculated as 0.2 × between-participants SD (Cohen, 1988; Hopkins, 2000).

4
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Table 2  Test–Retest Reliability Parameters for All Variables

Variable Trial 1, M (SD) Trial 2, M (SD) TEa CV r ICC

VO
2
 (L/min) 3.65 (0.80) 3.67 (0.80) 0.09 2.2% .99 .99

HR (beats/min) 187 (13) 187 (14) 2.27 1.3% .96 .97
VCO

2
 (L/min) 4.09 (0.90) 4.11 (1.00) 0.12 2.9% .98 .99

V
E
 (L/min) 128.1 (25.9) 129.4 (27.1) 5.30 3.7% .90 .97

V
T
 (L/min) 2.39 (0.51) 2.42 (0.60) 0.12 4.7% .97 .95

f (breaths/min) 54 (6) 54 (6) 2.70 4.9% .76 .82
RER 1.12 (0.05) 1.12 (0.10) 0.03 2.5% .74 .73
LA (mM) 12.1 (1.7) 12.4 (1.9) 0.80 6.8% .75 .84
RPE (Borg 6–20) 19 (1) 19 (1) 0.49 2.2% .60 .53
Test time (min) 10.0 (1.3) 10.2 (1.3) 0.69 7.0% .69 .71

Note. TE = total error; CV = coefficient of variation; ICC = intraclass correlation coefficient; HR = 
heart rate; V

E
 = minute ventilation; V

T
 = tidal volume; RER = respiratory-exchange ratio; LA = blood 

lactate; RPE = rating of perceived exertion.
aUnits for TE are the same as variable units.

Results
Means, standard deviations, and reliability measures for each variable are presented 
in Table 2. There were no significant differences between trials for any variable, with 
VO

2peak
 mean differences of 0.02 L/min (95% CI of –0.03 to 0.08 L/min), or 0.4% 

(95% CI of –0.8 to 1.9%); ICC of .99 (95% CI of 0.968–0.995); CV of 2.2% (95% 
CI of 1.4–3.0%); and TE of 2.2%. Linear-regression analysis of Trial 1 versus Trial 
2 (intercept = 0.11, slope = 0.97) appeared similar to the line of identity (intercept 
= 0, slope = 1.00; Figure 1), with 95% limits of agreement within ±0.22 L/min.

Figure 1 — Plot of VO
2peak

 for Trial 1 versus Trial 2.
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Using the selected criteria, on average participants reached a plateau in VO
2
 

in 75% (36/48) of the tests, and they achieved HR
max

 and peak RER and LA in 
47%, 85%, and 95% of the tests, respectively (Table 3). ICCs were very strong (r 
= .90–.98), and TE and CV (1.3–6.0%) were low for peak values of HR, V

E
, and 

V
T
. ICCs were moderate (r = .73–.76), and TE and CV (2.5–9.3%) tended to be 

greater, for f, RER, and LA.

Discussion
We designed the current study to evaluate the reliability of peak cardiorespiratory 
responses elicited during maximal-effort ATM testing. Our results are in line with 
previously reported reliability data for VO

2peak
 TM protocols. The ICC of .99 (95% 

CI = 0.968–0.995) and CV of 2.2% are similar to the best previously reported TM 
reliability of ICCs = .90–.96 and CVs = 2.3–6.5% (Froelicher et al., 1974; Har-
ling et al., 2003; Katch et al., 1982; McArdle et al., 1972; Mitchell et al., 1958; 
Taylor, 1944; Wilmore et al., 1980, 1985; Table 4). The average test duration for 
both trials was ~10 min, which is within the optimal range for TM VO

2peak
 testing 

(Astorino et al., 2004).

Table 3  Percentage of Peak Criteria Met for Each Trial

% of Trials in Which 
Criteria Were Met

Criteria for peak testa Trial 1 Trial 2

VO
2
 ≤ 0.15-L/min increase 71% 79%

Heart rate ±5 beats/min age-predicted maximum 47% 47%
Respiratory-exchange ratio ≥ 1.10 83% 87%
Blood lactate ≥ 9 mM 94% 96%

aDescriptions of criteria are listed in the Methods section.

Table 4  Summary of This and Previous Studies on Treadmill 
Reliability

Authors
Trial 1 VO2, 
M (SD)

Trial 2 VO2, 
M (SD) CV r

Current study 3.65 (0.8) 3.67 (0.8) 2.2% .99
Froelicher et al. (1974; Bruce protocol) 3.41 (0.33) 3.50 (0.50) 5.4% .82
Froelicher et al. (1974; Taylor protocol) 3.74 (0.44) 3.70 (0.50) 4.1% .92
Froelicher et al. (1974; Balke protocol) 3.40 (0.39) 3.40 (0.40) 7.9% .63
Harling et al. (2003) 4.31 (0.47) 4.39 (0.61) 2.9% .96
McArdle et al. (1972) 2.15 (0.33) 2.17 (0.33) 2.5% .92
Mitchell et al. (1958) 3.06 (0.46) 3.07 (0.44) 4.5% .92
Wilmore et al. (1980) 3.27 (0.56) 3.29 (0.63) — .90
Wilmore et al. (1985) 3.54 (0.35) 3.54 (0.35) — .94

Note. A dash indicates the CV was not reported.
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The ATM allowed us to administer workloads during the ATM protocol by 
manipulating treadmill speed and adjusting fluid resistance (i.e., water jets), as 
well as customizing water height to ensure that each participant was submerged 
to the xiphoid level. Therefore, we feel that the ATM afforded each participant an 
individualized opportunity to exercise up to his or her maximal potential.

We patterned the current protocol after previously established land-based 
TM protocols that initially increase running speed to a predetermined level, then 
increased TM incline to fatigue (Astrand & Rodahl, 1970). Using the same protocol 
in an earlier study, we demonstrated that ATM yielded VO

2peak
 values comparable 

to those of TM (Silvers et al., 2007). We believe that the incremental increase in 
treadmill speed followed by increases in water-jet resistance corresponds to a sub-
stantial degree to the increase in treadmill speed and incline experienced with land 
protocols. We would have to quantify the added external work of running against 
different jet-resistance settings before we could absolutely support this comparison 
with TM. Different protocols such as combining increases in treadmill speed and 
jet-resistance levels throughout all stages of testing might yield different results. 
All measures representing performance reliability indicated that the ATM protocol 
used in the current study provided a reliable way to assess peak cardiorespiratory 
indices for the measured variables.

The SWC identifies the magnitude of change required to elicit a meaningful 
or significant improvement in VO

2peak
. The SWC, calculated as a proportion of the 

effect size, represents the magnitude of improvement in a variable as a function 
of the between-participants standard deviation of the particular cohort (Hopkins, 
2000). Knowledge of the magnitude of the SWC helps a coach or athlete interpret 
the usefulness of a change in performance or physiological measurement. We chose 
an indirect method of estimating the SWC, using a small Cohen’s effect size as 
suggested by Hopkins. For the current study, based on the SWC for VO

2peak
 of 0.16 

L/min (4.4% of mean), mean bias in VO
2peak

 of 0.4% (–0.9 to 1.8% lower and upper 
95% CIs), and TE of 2.2%, we would rate this ATM VO

2peak
 test as having sufficient 

statistical power to be able to detect real and meaningful within-participant changes. 
We are confident that in subsequent training interventions using a similar participant 
population and ATM testing procedures, a change in VO

2peak
 that meets or exceeds 

4.4% for the change can be considered both meaningful and real.
Regarding the female participants, there is a strong possibility that there are 

both intra- (between test and retest) and interindividual variability (in each test) 
because of menstrual-cycle phases. Indeed, taking into account that both exercises 
were interspersed by a rest period of at least 6 days, the test and retest exercises 
might have been performed by most women with different hormonal environments. 
Most previous research has reported no difference in VO

2peak
 test results resulting 

from menstrual-cycle phase (Janse de Jonge, 2003).
We believe that the remaining variability between ATM trials for VO

2peak
 is a 

result of technological or instrumentation error. The current study used a Parvo-
Medics TrueOne 2400 automated metabolic cart for all testing. This system has 
been shown to be very reliable and valid when compared with the Douglas-bag 
criterion procedure (Crouter et al., 2006). Crouter et al. had participants cycle from 
50 to 250 W. VO

2peak
 reached 3.65 ± 0.18 L/min and yielded mean error values of 

0.04, 0.03, and 1.34 L/min for VO
2
, VCO

2
, and V

E(BTPS)
, respectively. Pearson’s rs 
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of .99 for VO
2
, .99 for VCO

2
, and .97 for V

E(BTPS)
 with corresponding CVs of 4.7%, 

5.7%, and 7.3% were more reliable than the author’s Douglas-bag techniques.
Data-sampling rate appears to influence the existence of a VO

2
 plateau at peak 

exercise. Myers, Walsh, Sullivan, and Froelicher (1990) reported that as much as 
20% differences in measured VO

2
 at the end of a test occur because of the method 

of sampling gas-exchange data (breath by breath, 15, 30, or 60 s) and that a VO
2
 

plateau was more commonly observed with a shorter sampling period. The current 
study used a 15-s sampling interval, which might have contributed somewhat to 
the observed VO

2
 plateau rate of 75%.

For years there has been a debate in the exercise-physiology literature about 
whether a leveling off or plateau of VO

2
 with an increase in workload at the end 

of the test is required for the measurement to be considered valid (Howley et al., 
1995; Noakes, 1997). The occurrence of a VO

2
 plateau near the end of a maximal 

exercise test ranges from a high of ~94% (Taylor et al., 1955) to a low of 7% 
(Froelicher et al., 1974) using the Bruce TM protocol. In a review of 29 studies on 
VO

2max
 testing, Howley et al. determined that only ~50% of all participants tested 

demonstrated a true VO
2
 plateau. The authors did note that the lack of a plateau 

does not necessarily mean that VO
2peak

 was not reached.
Although a plateau of VO

2
 near the end of a maximal oxygen-consumption 

test is the most traditional evidence that a true maximal effort has been achieved, 
researchers typically look for other indicators to verify a valid test, especially when 
no VO

2
 plateau is observed. HR

max
, RER, and LA are common variables cited. 

Although they are accepted as secondary criteria, there appears to be no consensus 
on what their cutoffs should be. Using our criteria cutoffs (Table 3) for VO

2
 plateau, 

HR
max

, RER, and LA, we observed that these criteria, when averaged over both trials, 
were achieved during 75%, 47%, 85%, and 95% of the tests, respectively. Of the 
total of 48 tests conducted, all four criteria were met in 10 tests, three criteria in 24 
tests, two criteria in 12 tests, and one criterion in 2 tests. This compares favorably 
to the results from Duncan, Howley, and Johnson (1997), who used criteria similar 
to those used in the current study and reported that VO

2
 plateau, HR

max
, RER, and 

LA criteria were met for 50%, 40%, 90%, and 90% of the tests, respectively. Dif-
ferences between studies for achieving criteria might be the result of differences 
in the criteria selected, testing protocols, and participant fitness levels.

HR
max

 has demonstrated reasonable reproducibility with repeated maximal TM 
testing, ranging from .76 (McArdle et al., 1972) to .81 (Taylor, 1944; Wilmore et 
al., 1985) and .82 (Wilmore et al., 1980), with HR CV of 1.5–4.0% (Froelicher et 
al., 1974; Katch et al., 1982). In the current study HR

max
 was very reproducible, 

as demonstrated by the high ICC (r = .96) and low CV (1.3%). RER has been 
demonstrated as less reliable, with ICCs ranging from .44 (Wilmore et al., 1985) 
to .48 (Wilmore et al., 1980) and .52 (McArdle et al.). The current study’s RER 
data appear to be more reliable than those in most of these previous studies, sug-
gesting that the cardiorespiratory responses of the participants in this study were 
very reproducible from Test 1 to Test 2.

Less is known regarding the reliability of LA and RPE during maximal testing. 
Krustrup et al. (2003) reported LA concentrations at exhaustion of two trials of 
an intermittent shuttle-running test (Yo-Yo test) to be similar (mean difference of 
0.1 ± 0.6 mmol/L). At the same time, they found large intraindividual variations 

8
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(CV = 17%). Doherty, Smith, Hughes, and Collins (2001) determined that RPE 
solicited at 30-s intervals of a supramaximal running test lasting 3.3 ± 0.6 min 
administered on three separate occasions yielded ICCs of .78–.87 and CVs of 
4.4–6.0%, which was in line with ICCs of .70–.90 previously reported (Eston & 
Williams, 1988). In the current study we solicited the RPE immediately after the 
test, once the treadmill stopped and we had removed the respiratory valve. Whether 
RPE solicited immediately after versus during the last minute of the test yields 
greater reliability awaits further study.

Although not considered a secondary criterion in maximal-exercise testing, 
V

e(BTPS)
 has demonstrated moderate reliability, with ICCs of .53 (Taylor, 1944), .73 

(Wilmore et al., 1980), and .78 (McArdle et al., 1972; Wilmore et al., 1985). The 
ICC of .90 and CV of 3.7% for V

e(BTPS)
 in the current study suggest that V

E(BTPS)
 was 

at least as reliable in ATM as in previous TM protocols and raises the possibility of 
examining the role of V

e(BTPS)
 in evaluating the extent of effort during these tests.

We might have observed different results in the current study if we had used a 
different water depth. Gleim and Nicholas (1989) demonstrated that during running 
at 134.1, 147.5, and 160.9 m/min, VO

2
 and HR were higher as water levels rose 

from ankle to patella to midthigh than with land running. They also reported that 
running in waist-deep water produced VO

2
 values comparable to those seen during 

TM running at speeds of 134.1 m/min and faster. This result suggests that water-
submersion level might considerably influence cardiorespiratory responses during 
ATM peak-exercise testing protocols. Immersion to the xiphoid process has been 
shown to decrease limb loading by 71% versus 57% and 85% for submersion to the 
waist and seventh cervical vertebra, respectively (Harrison, Hillman, & Bulstrode, 
1992). When buoyancy is inadequate to provide substantial limb unloading, as is 
typically seen in water levels below the waist, drag forces imposed by fluid resistance 
substantially elevate the metabolic cost, as evidenced by increased VO

2
, VO

2
 cost 

per stride, and HR (Gleim & Nicholas; Pohl & McNaughton, 2003). Conversely, 
when water-submersion levels meet or exceed waist height, increases in buoyancy 
counteract concomitant increases in workload imposed by fluid resistance, result-
ing in similar or reduced VO

2
 and HR (Gleim & Nicholas; Pohl & McNaughton). 

Therefore, readers should limit generalizing the results of the current study to 
participants who exercise in xiphoid-deep water.

Our results might not be comparable to results when an ATM protocol is con-
ducted with different water temperatures. Our water temperature was 28 °C, which 
might be viewed as just below a thermoneutral temperature condition. Craig and 
Dvorak (1969) point out that exercise intensity can lower the acceptable level of 
thermoneutrality during moderate- to high-intensity exercise. With the high inten-
sity of exercise performed in this study, we feel that water temperature was not a 
limiting factor for peak cardiorespiratory responses during ATM.

Within the limitations of the single water depth and the protocol we selected 
in this study and in light of our findings, it appears that ATM VO

2peak
 testing is 

comparable to land-based TM protocols in terms of reproducibility of physiological 
performance measures. These results confirm and extend our earlier findings that 
VO

2peak
 responses in ATM compare favorably with those in land-based TM exercise. 

ATM might be a viable training alternative to maintain or improve fitness level for 
injured and healthy individuals alike.
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