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Communicating Criterion-Related 
Validity Using Expectancy Charts: 
A New Approach

Jeffrey M. Cucina1, Julia L. Berger2, and  Henry H. Busciglio1

1. U.S. Customs and Border Protection
2. U.S. Customs and Border Protection, Bowling Green State University

Imagine that you are a practitioner and have just con-
ducted a criterion-related validity study on a new personnel 
selection test. Your organization’s top leadership asks for a 
quick summary of the findings. How would you convey the 
predictive ability of the test on a single slide in a presenta-
tion without having to delve into statistical terminology?  
In the academic literature, criterion-related validity coeffi-
cients are often used as a measure of predictive ability of a 
test. However, practitioners may find it challenging to trans-
late the meaning of a criterion-related validity coefficient 
to a nontechnically-savvy audience in a manner that would 
allow the audience to quickly make informed decisions. We 
have found expectancy charts to be useful for these purpos-
es.  These charts can convey the predictive ability of a test 
in a single slide with little explanation required.

To help practitioners translate the results of their 
criterion-related validity studies, we set out to meet the 
following goals: (a) to describe how expectancy charts 
can assist personnel selection practitioners in translating 
complex, technical concepts such as criterion-related va-
lidity to nontechnically-savvy audiences and (b) present a 
new methodology for constructing expectancy charts. We 
also provide R syntax that practitioners can use to compute 
more accurate expectancy values. We begin our paper by 
reviewing existing approaches to creating expectancy charts 
and highlighting some potential issues with these approach-
es.  We then present our new approach and explain how to 

implement it in a step-by-step format. We also discuss the 
inherent assumptions and limitations of our approach and 
cover some special situations in which it may be used (e.g., 
multiple-hurdle selection systems).  

Expectancy Charts
Expectancy charts are bar charts that illustrate the 

relationship between a range of predictor scores, such as 
personality, and a range of criterion scores, such as job 
performance. Figure 1 illustrates an expectancy chart for 
the relationship between ranges of test scores and the per-
centage of special agents who were rated as superior by 
their supervisors. For example, of those special agents with 
test scores of 90 or higher, 43.4% were rated as superior, 
compared to 3.1% for those with test scores of 69 or lower. 

ABSTRACT

KEYWORDS
Often, personnel selection practitioners present the results of their criterion-related 
validity studies to their senior leaders and other stakeholders when trying to either 
implement a new test or validate an existing test. It is sometimes challenging to 
present complex, statistical results to nonstatistical audiences in a way that enables 
intuitive decision making. Therefore, practitioners often turn to expectancy charts 
to depict criterion-related validity. There are two main approaches for constructing 
expectancy charts (i.e., use of Taylor-Russell tables or splitting a raw dataset), both 
of which have considerable limitations. We propose a new approach for creating 
expectancy charts based on the bivariate-normal distribution. The new method 
overcomes the limitations inherent in the other two methods and offers a statistically 
sound and user-friendly approach for constructing expectancy charts.

Expectancy Charts, 
Validity, 

Bivariate Normal 
Distribution

Julia L. Berger is now at Aptima, Inc and Henry H. Busciglio 
is now retired. The views expressed in this paper are those 
of the authors and do not necessarily reflect the views of U.S. 
Customs and Border Protection or the U.S. Federal Gov-
ernment. The authors would like to thank Philip T. Walms-
ley, Kimberly J. Wilson, and Chihwei Su for their valuable 
comments and suggestions on this article. A portion of this 
article was presented at the 2016 annual meeting of the So-
ciety for Industrial and Organizational Psychology (Division 
14 of the American Psychological Association). 

Corresponding author: 
Jeffrey M. Cucina
Address: 1400 L Street, NW 7S39 
               Washington, DC 20229-1145
Email: jcucina@gmail.com
Phone: 202-863-6298

http://scholarworks.bgsu.edu/pad/


2
2017 • Issue 1 • 1-14Published By ScholarWorks@BGSU, 2017

Personnel Assessment and Decisions Expectancy Charts

Thus, expectancy charts allow practitioners to present com-
plex statistical relationships in an easy fashion. As research 
has long shown, visualizations aid memory and comprehen-
sion because they help build mental models, whereas text 
and numbers do not (Glenberg & Langston, 1992).

Taylor-Russell Table Approach
When deciding to construct an expectancy chart, a 

practitioner may discover two dominant approaches in the 
literature. The first approach uses the Taylor-Russell tables 
to obtain expectancies (Taylor & Russell, 1939). This re-
quires three inputs: the validity coefficient, the proportion 
of applicants who will be selected top-down based on their 
test scores, and the base rate proportion of current em-
ployees who are satisfactory performers. With these three 
values, one can use the Taylor-Russell tables to determine 
the proportion of individuals who will be satisfactory per-
formers if the test is used. For example, if the correlation 
between a test and job performance is .70, the proportion of 
satisfactory performers is .50, and the top 20% of applicants 
will be selected based on their test scores, then the expected 
proportion of satisfactory performers will increase from .50 
to .90 when the test is used. There are some limitations to 

the Taylor-Russell table approach. These tables only pro-
vide expectancies for ranges of test scores that go from a 
specified test score to the maximum possible score on the 
test (e.g., 70 or above, 80 or above). Thus, these tables do 
not provide expectancies for other types of test score ranges 
(e.g., 70 to 79, 80 to 89). Additionally, the three inputs must 
be rounded to increments of .05 or .10 when using the ta-
bles. 

Raw Data Approach
The second approach uses a raw dataset to compute 

expectancies. In this approach, the predictor and criterion 
are recoded into groups (e.g., four equally sized groups, 
or quartiles) or into specific ranges of scores (e.g., 70-79).  
Next, cross-tabulations are run on the data to obtain the 
expectancy values. For example, in Figure 1, the raw data 
for the predictor were divided into four groups (i.e., 69 and 
lower, 70-79, 80-89, and 90 and higher) and the percentage 
of employees in each group who were rated superior was 
recorded. There are two limitations to this approach.  First, 
it cannot incorporate corrections for criterion unreliability 
and range restriction. It is well recognized in the personnel 
selection literature that the relationship between an assess-
ment test and performance in a raw dataset is artificially 
lowered due to these effects (Nunnally & Bernstein, 1994; 
Schmidt & Hunter, 1996, 1998). Thus, expectancy charts 
computed using raw data underestimate the relationship be-
tween two variables. 

Second, unless the sample size of the raw data is very 
large, there may not be enough cases to accurately compute 
expectancy values when the data are split into multiple 
groups. The sample sizes for criterion-related validity stud-
ies are often guided by a power analysis for detecting a sig-
nificant correlation not for splitting the data into different 
groups. To illustrate the inherent noisiness associated with 
using raw data to create expectancy charts, we conducted 
a Monte Carlo simulation. The details and full results on 
the simulation are provided in the Supplemental Materials. 
We simulated data for an observed validity of .26, which is 
the observed meta-analytic value for cognitive ability tests 
(Hunter, Schmidt, & Le, 2006).  We generated 10,000 sam-
ples of 151 cases each. With 151 cases, there is a 90% pow-
er of detecting a significant correlation.  Next, we generated 
expectancies using the raw datasets. To compute the ex-
pectancies, we divided the predictor into five equally sized 
groups and recorded the percentage of superior performers.  
We defined superior performers as those within the top 20% 
on the criterion. 

As shown in the Supplemental Materials, the results 
suggest that there is considerable variability and inaccuracy 
in expectancy values using raw data. This is due to the sam-
pling error associated with splitting the dataset of 151 cases 
into multiple groups. The expectancy values varied consid-
erably from sample to sample and the ranges of observed 

FIGURE 1. 
This expectancy chart shows that special agents who have 
scored 90 and higher on a test are more likely to be rated 
superior by their supervisors. Note that this expectancy 
chart was computed using raw data and was reproduced 
from Simpson, Nester, and Palmer (2007).

Nontechnical Explanation: This test predicts who will be 
a superior performer on the job. Of those employees with a 
test score of 69 or lower, only 3.1% were rated as superior. 
In contrast, 43.4% of the employees with a test score of 90 
or higher were rated as superior. To identify superior per-
formers, supervisors confidentially rated the performance 
of their employees. Those employees who were in the top 
25% were identified as superior. 
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values were quite large. In the population for our Monte 
Carlo simulation, the relationship is entirely monotonic, 
which means that increases in test scores are always associ-
ated with increases in job performance. However, in 87.4% 
of samples, the expectancies suggested that the predictor–
criterion relationship was nonmonotonic, meaning that job 
performance did not always increase with test scores. Even 
in those samples where the observed validity (.26) turned 
out to be identical to the true population observed validity 
(.26), there was still considerable variation in the expectan-
cies, and 88.2% of these samples suggested a nonmonotonic 
relationship. 

A nonmonotonic relationship suggests that higher test 
scores are not associated with better performance.  For 
example, in one sample that had a validity of .26, the ex-
pectancy values for the five equally sized groups of test 
scores were 16.7%, 9.1%, 26.5%, 20.7%, and 23.3%.  This 
suggests that individuals whose test scores were in the low-
est 20% did better than those who were in the next 20%.  
Further, individuals whose test scores were in the middle 
20% outperformed those in the other five groups. Looking 
at these expectancy charts, a decision maker might assume 
that the organization should focus hiring on individuals 
whose test scores were in middle category or that the test is 
not a consistent predictor of performance. In contrast, the 
values that should have been obtained are 10.8%, 15.6%, 
19.2%, 23.4%, and 31.2%. These values show a clear pos-
itive trend and do not paint the false picture that perfor-
mance goes up and down as test scores increase. 

Furthermore, as mentioned before, the raw data ap-
proach does not allow for corrections for range restriction 
and criterion unreliability. To corroborate this, we comput-
ed the average expectancy value for individuals who scored 
in the top 20% on both the predictor and the criterion from 
the Monte Carlo simulation and obtained a value of 30.2%.  
Next, using the new methodology that we will soon de-
scribe, we computed the expectancy value after making the 
corrections. The resulting expectancy was 46.0%, which is 
noticeably larger than the value obtained using the raw data.  
Thus, using raw data appears to be problematic.

A New Approach to Computing Expectancies 
To address the limitations inherent in the Taylor-Rus-

sell (1939) and raw data approaches, we developed syntax 
to compute more accurate expectancy values. This approach 
uses the bivariate normal distribution, which can be viewed 
as a three-dimensional bell-shaped graph showing the distri-
bution and relationship between two variables. Information 
on the mathematical details of our new approach is provid-
ed in the Supplemental Materials. Essentially, our syntax 
computes expectancy values by selecting different sections 
under the bivariate normal distribution. It is equivalent to 
computing expectancies using a dataset of enormous size 
with no criterion unreliability or range restriction.  

Our new methodology has several advantages and in 
many cases improves upon the Taylor-Russell (1939) and 
raw data approaches. In comparison to the raw data ap-
proach, our new methodology allows selection researchers 
to make corrections for range restriction and criterion un-
reliability while also reducing the effects of sampling error. 
Although our approach does not correct for the sampling 
error associated with estimating validity, it does address 
the sampling error that is observed in expectancy values 
when the validity coefficient is held constant. As mentioned 
above, even when the validity coefficient was .26 in the 
random samples, splitting the data into multiple categories 
resulted in expectancy values that varied widely. Because 
our new approach is equivalent to splitting a dataset of in-
finite size, it results in no noticeable sampling error when 
criterion-related validity is held constant. Second, our new 
approach eliminates the nonmonotonic relationships in ex-
pectancy charts that are due to the sampling error associated 
with splitting up the raw data. Third, unlike the Taylor-Rus-
sell (1939) approach, this approach allows for the compu-
tation of expectancies for different ranges of test scores. 
Fourth, it allows for more precision than the Taylor-Russell 
tables, which only provide expectancies for a subset of all 
possible input values. 

Fifth, this approach allows nonstatistically minded 
audiences to visualize the relationships between organiza-
tional variables (e.g., cognitive ability, job performance, 
training performance), which aids comprehension and 
memory (Glenberg & Langston, 1992). We have found that 
these charts can quickly and easily convey the relationship 
between test scores and performance to stakeholders, espe-
cially when compared to correlation coefficients, regression 
equations, and scatterplots. As most nonstatisticians are 
familiar with percentages, only short descriptions of the 
expectancy chart are needed. An example of a nontechnical 
explanation is provided in Figure 1. Sixth, it is also possible 
to create expectancy charts using summary data from pub-
lished studies. Table 1 displays expectancy charts for some 
of the most oft-researched relationships in industrial-orga-
nizational psychology. To make these charts, we obtained 
meta-analytic correlations from previous studies and com-
puted expectancies for four equally sized groups (just as in 
the steps shown below).  

Step-by-Step Instructions for Constructing Expectancy 
Charts

The syntax for our new approach is provided in Table 
2, along with annotations explaining each line of code. The 
syntax uses an algorithm created by Miwa and colleagues 
(Mi, Miwa, & Hothorn, 2009; Miwa, Hayter, & Kuriki, 
2003) that is implemented in an R package developed by 
Genz and colleagues (Genz et al., 2008; Hothorn, Bretz, & 
Genz, 2001). To run the R syntax, researchers should per-
form the steps shown below. A copy of the output for the 
example values in the steps below is provided in Figure 2. 

http://scholarworks.bgsu.edu/pad/
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1. Diagnose the data for nonnormality, including skewness, 
kurtosis, and the shape of the distribution of scores. Ta-
bachnick and Fidell (2001) provide an explanation of 
how to conduct and interpret these tests. If nonnormality 
is detected, a transformation should be performed to 
make the data normal.  Possible transformations include 
the inverse, logarithmic, or Blom (1958) transformations 
in SPSS.

2. Examine the relationship between the predictor and cri-
terion for nonlinearity. This can be done using the curve 
estimation feature in SPSS. If nonlinearity exists, con-
duct a regression analysis using standard statistical pack-
ages like SPSS, save the predicted scores, and use those 
scores as the predictor in further analyses.

3. Obtain the uncorrected correlation between the predic-
tor and criterion. If needed, make corrections for range 
restriction and unreliability. Obtain the upper and lower 
bounds of the confidence intervals around the correla-
tion, if desired.

4. Determine the cutoff scores for the different ranges of 
predictor and criterion scores, and convert these to a 
z-scale (i.e., M = 0, SD = 1). For example, if you wish to 
divide the range of scores into quartiles (i.e., four equal-
ly-sized groups), the z-score cutoffs for the 4 ranges of 
scores would be: -∞ to -.67 for the bottom 25%, -.67 to 0 
for the lower middle 25%, 0 to +.67 for the upper middle 
25%, +.67 to ∞ for the top 25%.

5. Download and install R on your computer and then 
launch the program. Alternatively, go to the website 
www.r-fiddle.org, which can run R syntax without in-
stalling R.

6. If you installed R on your computer, download the mvt-
norm R package. (This step is not needed if you are us-
ing www.r-fiddle.org.) 

7. Copy and paste the syntax shown in Table 2 into R and 
press enter. 

8. Type the following text into R: Expectancyfunc (Validity, 
PredLowerCut, PredUpperCut, CritLowerCut, CritUp-
perCut). 
Substitute the validity coefficient from Step 2 for “Valid-
ity,” the lower and upper predictor cutoffs from Step 3 
for “PredLowerCut” and “PredUpperCut,” respectively, 
and the lower and upper criterion cutoffs from Step 3 for 
“CritLowerCut” and “CritUpperCut,” respectively.  Use 
the text “Inf” in place of an ∞ symbol.
For example, if the criterion-related validity is .545, the 
predictor scores of interest range from 1.0 to ∞, and the 
criterion scores of interest range from 0.67 to ∞, then the 
following text should be typed into R: Expectancyfunc 
(0.545, 1, Inf, 0.67, Inf)

9. Press <Enter> and the expectancy value will appear 
along with the joint probability and x probability values. 

Assumptions of the New Approach
We must mention that our new approach to creating 

expectancy charts makes a number of critical assumptions. 
The first assumption is that the two variables under study 
are normally distributed. There is some debate in the lit-
erature about the normality of variables (Beck, Beatty, & 
Sackett, 2014). Thus, it might be beneficial to check for 
nonnormality. Our syntax could then be applied and the 
score cutoffs could be transformed back to the nonnormal 
scale, if desired. If the data are nonnormal and no transfor-
mations are conducted, then the expectancy values will not 
be accurate. This is due to the fact that the algorithm behind 
our syntax computes the area under a bivariate normal dis-
tribution and not the area under a nonnormal distribution.  

The second assumption is that the two variables must 
be linearly related. In general, most test scores tend to be 
linearly related to performance (Coward & Sackett, 1990), 
with the possible exceptions of personality predictors (Car-
ter et al., 2014) and self-reported grades (Arneson, Sackett, 
& Beatty, 2011). Our syntax does not allow for the spec-
ification of the nonlinear terms, such as quadratic terms. 
However, it is possible to linearize the relationship by 
conducting a multiple regression analysis that includes cur-
vilinear terms and then saving the predicted (ŷ) values.  The 
predicted values would have a linear relationship with the 
criterion and could be used as the predictor in our new ap-
proach. If a nonlinear relationship is present in the data but 
not considered when running our syntax, then the expectan-
cy values will be incorrect. For example, if the relationship 
between the predictor and criterion begins to level off near 
the high end of the range of test scores, then the reported 
expectancy values for the high end of test scores will be 
higher than they should be.

Third, our approach assumes that the two variables are 
on an interval scale rather than an ordinal scale. Typically, 
individual items on a test or a criterion are on an ordinal 
scale and total scores are treated as an interval scale (Nun-
nally & Bernstein, 1994). Thus, if the predictor is a test 
score and the criterion is a sum total or average of multiple 
items, both variables can be treated as interval scales, and 
our approach can be used. However, if the predictor is an 
individual item such as a single personality item on a 5-point 
scale and/or the criterion is an individual item such as a 
single rating of job performance on a 5-point scale, then our 
new approach may not be valid. In our experience, most 
predictors and criteria used by practitioners are formed 
from multiple items, so this assumption may not be vio-
lated often in practice. Finally, our approach assumes that 
corrections for range restriction and criterion unreliability 
are appropriate. There indeed is some debate on this topic 
(LeBreton, Scherer, & James, 2014; Shen, Cucina, Walms-
ley, & Seltzer, 2014; Viswesvaran, Ones, Schmidt, Le, & 
Oh, 2014). We leave it to readers to decide where they stand 
on this debate and whether or not to make corrections and 
which values to apply when using corrections.

http://www.r-fiddle.org
http://www.r-fiddle.org
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TABLE 1.
Expectancy Charts for Some of the Most Often Researched Relationships in Industrial-Organizational Psychology

Note. The correlation coefficients used to create these expectancy charts were obtained from Paterson, Harms, and Credé 
(2012) and Schmidt, Shaffer, and Oh (2008).

http://scholarworks.bgsu.edu/pad/
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TABLE 2.
Computing the Volume Under the Bivariate-Normal Distribution
R script Annotation
Expectancyfunc <- function (Va-
lidity, PredLowerCut, PredUp-
perCut, CritLowerCut, CritUp-
perCut) {

This creates a new function in R called Expectancyfunc. The function takes the criterion-related 
validity coefficient, the lower and upper cutoffs for the predictor score, and the lower and upper 
cutoffs for the criterion score as inputs. To represent positive or negative ∞, “Inf” or “-Inf” can 
be used, respectively.

library(mvtnorm) Before proceeding, the mvtnorm library must be downloaded and installed. This command line 
tells R that the mvtnorm library is being used.

n <- 1000
A dataset must be created before R can be run to conduct the analyses. This command tells R to 
create a dataset with 1,000 cases. The value n represents the number of cases and the symbol <- 
indicates that n should be set equal to 1,000. 

mean <- c(0, 0)
In this line, the means for the two variables (which equal 0 when a standardized solution is 
used) are provided. Note that the values are presented parenthetically, separated by a comma, 
and preceded by the letter c. This syntax stores the means as a vector in R.

lower <- c(PredLowerCut, Crit-
LowerCut)

This line assigns the lower z-score cutoffs for the predictor and the criterion to a vector. 

upper <- c(PredUpperCut, 
CritUpperCut)

This line assigns the upper z-score cutoffs for the predictor and the criterion to a vector.

corr <- diag(2) This line creates a 2-by-2 matrix with diagonal values of 1 and stores the matrix in the variable 
corr.

corr[lower.tri(corr)] <- Validity
corr[upper.tri(corr)] <- Validity

In these two steps, the correlation between the two variables provided by the user is stored into 
the upper and lower triangles of the 2-by-2 correlation matrix.

jtprob <- pmvnorm(lower, upper, 
mean, corr, algorithm = Miwa(-
steps = 128))

Here the pmvnorm command in the mvtnorm package is run; this is the command that is used 
for computing the volume under multivariate-normal distributions. As inputs, pmvnorm takes 
the upper and lower z-score cutoffs (which are vectors), the vector of means (which is set to 0), 
the correlation matrix, and the algorithm that is to be used. The algorithm statement specifies 
that the Miwa et al. (2003) algorithm should be used. The term “(steps = 128)” informs R that 
128 grid points should be used. The output for this procedure is the joint probability between 
the predictor and the criterion – the volume under the bivariate-normal distribution between the 
lower and upper cutoffs. This probability is saved in the variable jtprob.

jtprobOutput <- paste("Joint 
Probability: ", jtprob, sep="")

This line creates a new string variable containing the value of jtprob along with a label. The 
term “sep=""” indicates that there are no text separating the expectancy value and the % sym-
bol.

print(jtprobOutput) The previous steps saved the volume of the bivariate-normal distribution and added a label; this 
step prints that value, with the label, to the screen.
Computing the expectancy

xprob <- pnorm(PredUpperCut, 
mean=0, sd=1)-pnorm(Pred-
LowerCut, mean=0, sd=1)

To compute the expectancy, we must obtain the proportion of cases that have a predictor value 
within the lower and upper cutoffs for the predictor. This is accomplished by computing the 
area under the univariate-normal distribution, which is the proportion of cases having predictor 
values within the upper and lower cutoffs. The pnorm command in R is used to compute this 
area and it takes the upper or lower predictor cutoff, mean (which is set to 0), and standard de-
viation (which is set to 1) as inputs. The proportion of cases that fall within the upper and lower 
cutoffs is obtained by subtracting the proportion of cases falling between the lower cutoff and 
-∞ from the proportion of cases falling between the upper cutoff and -∞. This value is stored to 
a new variable, xprob.

xprobOutput <- paste("Predictor 
Probability: ", xprob, sep="")

This line creates a new string variable containing the value of xprob along with a label.

print(xprobOutput) This command prints the value xprob to the screen along with a label.

expectancy <- 
paste(round(100*jtprob/xprob, 
1), “%”, sep=””)

The expectancy is computed by dividing the joint probability by the predictor probability. The 
expectancy is converted to a percentage using the syntax “100*.” In addition, this value is 
rounded to one decimal place, using the syntax “round(…., 1).” Next, a percentage symbol is 
added using the “paste” command, which pastes the expectancy value and the % symbol (shown 
in the syntax using “%”) together into a string variable named “expectancy.” 

print(expectancy)
}

This command prints the expectancy value to the screen.



Personnel Assessment and Decisions

7
2017 • Issue 1 • 1-14 http://scholarworks.bgsu.edu/pad/

Research Articles

Displaying Confidence Intervals and Corrections in Ex-
pectancy Charts

Statistically savvy audiences might inquire about the 
precision of the expectancy charts for a given study or 
about the impact of corrections for unreliability and range 
restriction on the expectancies. To address this, we propose 
a new format for expectancy charts that can be used to dis-
play confidence intervals (CIs) and corrections for unreli-
ability and range restriction. Oftentimes, CIs are displayed 
on charts (showing mean differences) using error bars. The 
same approach can be applied to expectancy charts. The 
uncorrected and corrected correlation coefficients can also 
be portrayed using a traditional bar chart format. We de-
pict both of these formats in Figure 3. Making corrections 
for range restriction and criterion unreliability impacts the 
expectancies. For example, in Figure 3, the uncorrected va-
lidity coefficient (ρ = .511) indicates that of those individ-
uals whose test score is in the top 25%, a total of 46% are 
superior performers in training (i.e., in the top 25%). After 
correcting for range restriction and criterion unreliability, 
the expectancy value increases to 52%, indicating that the 
original expectancy of 46% is actually an underestimate of 
the true expectancy. A format, such as that in Figure 3, can 
also be used to compare expectancies for the different pre-
dictors that an organization is considering for inclusion in a 
selection system.

Using Expectancy Charts for Multiple-Predictor Selec-
tion Systems

It is common to think about expectancy charts as being 
applicable only to situations when there is a single predictor 
and a criterion. However, these charts can also be applied 

to each step in multihurdle personnel selection system pro-
vided that the range restriction corrections are made in an 
appropriate fashion. Consider an organization that has a 
two-step selection process, consisting of Test A in Step 1 
and Test B in Step 2. In this situation, there are really two 
applicant pools. The first applicant pool consists of those 
applicants who participate in Step 1 and take Test A. The 
second applicant pool consists of those applicants who pass 
Step 1, participate in Step 2, and thus take Test B.  

Suppose that the corrected validity for scores on Test 
A is .50. This is the estimate of what the validity of Test A 
would be for the first applicant pool if there was no range 

FIGURE 2. 
This is the output (obtained using R Studio, 2015) from the 
R function shown in Table 2 with the syntax Expectancy-
func (0.545, 1, Inf, 0.67, Inf).  

FIGURE 3. 
New expectancy chart format showing confidence intervals 
as well as corrections for criterion unreliability and range 
restriction. The blue bar represents values corrected for 
criterion unreliability and range restriction, the gray bar 
represents values corrected for criterion unreliability, and 
the white bar represents the uncorrected values. This expec-
tancy chart displays the expectancy percentages for the top 
25% of individuals (using training performance as the crite-
rion) and the quartiles of logic-based measurement (LBM) 
test scores. Note that the cutoff points for the quartiles of 
LBM scores are as follows: -∞ < X < -.67; -.67 < X < 0; 0 
< X < .67; .67 < X < ∞. Similarly, the cutoff points for the 
criterion are .67 < X < ∞. Note that the z-scores of -.67 and 
.67 correspond to the 25th and 75th percentiles, respective-
ly. The uncorrected validity coefficient (r = .457), validity 
coefficient corrected for criterion unreliability (ρ = .511), 
and validity coefficient corrected for criterion unreliability 
and range restriction (ρ = .600) were drawn from Hayes, 
McElreath, and Reilly’s (2002, 2003) meta-analysis. The 
upper and lower bounds of the 95% confidence intervals for 
the uncorrected correlation coefficient were corrected for 
unreliability and range restriction to obtain the corrected 
correlation’s confidence intervals (see Schmidt & Hunter, 
1996). The meta-analytic sample size (n = 6,711) was too 
large to provide easily discernable confidence intervals in 
the chart; therefore, we arbitrarily set the sample size to 
500 when computing the confidence intervals.  
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restriction or criterion unreliability. Using our syntax, the 
expectancy values for the top 20% on the criterion and five 
equally sized groups of test scores are 4.2%, 10.2%, 16.7%, 
25.4%, and 43.6%. Suppose that the corrected validity for 
Test B scores is .30. This estimate was computed for the 
second applicant pool, which are the applicants who passed 
Test A and participated in the second step. Using our syn-
tax, the expectancy values are 9.6%, 14.8%, 19.0%, 23.8%, 
and 33.1%. Note that the validity of Test B is estimated 
only for those applicants who passed Test A, and it likely 
experiences incidental range restriction due to selection on 
Test A. If Test B were given in the first step, then its validity 
might be higher due to a lack of incidental range restriction.  
However, in this example, we are interested in the validity 
of Tests A and B within the steps in which these are given.

It is also possible to create expectancy charts for a 
composite score computed using two or more tests.  For 
example, the meta-analytic multiple correlation between a 
composite of a general mental ability test and an integrity 
test with job performance is .65 (Schmidt & Hunter, 1998).  
Using our syntax, the expectancy values for this composite 
are 1.5%, 6.2%, 13.6%, 25.9%, and 53.0%. Thus, expectan-
cy charts can be used for selection systems consisting of a 
single test or multiple tests.

CONCLUSION

This paper presents expectancy charts as a useful way 
to display complex, statistical relationships to nontechnical-
ly savvy audiences. It further presented a new methodology 
for creating expectancy charts and provided a step-by-step 
guide for implementing this methodology using R syntax. It 
is our hope that this article will make the creation of accu-
rate expectancy charts easier for practitioners and research-
ers, and better facilitate the communication of information 
on the validity of assessments to stakeholders.
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ONLINE SUPPLEMENTAL MATERIALS
Expectancy Values Using Monte Carlo Simulation

To illustrate the noisiness inherent in the expectancy 
charts created using raw data, we conducted a Monte Car-
lo simulation. We simulated data for an observed validity 
coefficient of .26 (the average uncorrected meta-analytic 
coefficient for cognitive ability tests reported by Hunter, 
Schmidt, & Le, 2006) for 10,000 samples consisting of 151 
cases (the minimum required for 90% power) each. We 
then divided the predictor and criterion into quintiles and 
computed expectancy values using the simulated raw data. 
Table S1 provides a summary of these results as well as the 
values that would be obtained using the new methodology 
that we describe in the paper. We also depict these results in 
Figure S1a-e, which contains histograms of the five expec-
tancy values for the simulated raw data across the 10,000 
samples. The results for the simulated data are shown in 
blue bars. For reference, we also applied our new approach 
to computing expectancies to the observed validity coef-
ficients in the 10,000 samples. Histograms for the expec-
tancies from our new approach are shown in Figure S1s-e 
using red bars. Notice that the distribution of the blue bars 
(i.e., the expectancies computed using the simulated raw 
data) are much wider than those for the red bars (i.e., the 
expectancies computed using our new approach). Overall, 
the simulated raw data, which necessitate dividing the sam-
ple of 151 cases into 25 categories (i.e., 5 predictor score 
ranges × 5 criterion score ranges) and computing expectan-
cies on the slices, results in unstable estimates.

As shown in Table S1, for the highest quintile (i.e., the 
top 20% of scores) on the test, the mean observed expectan-
cy value from the simulated raw was 31.2%; however, the 
observed values ranged from 0% to 65.2%. Given the SD 
TABLE S1.
Comparison of the Results Obtained from Monte Carlo Simulation and the New Method

Quintile 1 
Lowest 20%

Quintile 2 
Next 20%

Quintile 3
Next 20%

Quintile 4
Next 20%

Quintile 5 
Highest 20%

True Expectancy r = .26 10.8% 15.6% 19.2% 23.4% 31.2%
True Expectancy r = .11 (95% confidence interval-lower) 15.9% 18.3% 19.9% 21.6% 24.5%
True Expectancy r = .40  (95% confidence interval-upper) 6.7% 12.6% 18.0% 24.7% 38.1%
True Expectancy ρ = .54 3.4% 9.2% 16.0% 25.6% 46.0%
Observed Expectancy Across All 10,000 Samples
M 10.7% 15.6% 19.1% 23.4% 31.2%
SD 5.7% 6.7% 7.2% 7.8% 8.5%
Min 0% 0% 0% 0% 0%
Max 40.7% 47.6% 53.3% 56.0% 65.2%
95% CI-lower -0.8% 2.2% 4.7% 7.9% 14.2%
95% CI-upper 22.1% 28.9% 33.5% 39.0% 48.3%
Observed Expectancy For 485 samples with robserved = .26
M 10.6% 15.2% 18.6% 23.1% 31.6%
SD 5.5% 6.3% 6.8% 7.9% 7.4%
Min 0% 0% 3.0% 4.2% 10.7%
Max 31.0% 40.7% 38.9% 45.0% 55.2%
95% confidence interval-lower -0.4% 2.6% 5.0% 7.3% 16.7%
95% confidence interval-upper 21.6% 27.8% 32.2% 38.9% 46.5%

of 8.5%, the 95% confidence interval ranged from 14.2% 
to 48.3%. In contrast, placing a 95% confidence interval 
around the validity of .26 (i.e., r = .11 and .40) and using 
our syntax approach yielded values of 24.5% and 38.2%, 
which is about less than half the size of the observed inter-
val. Furthermore, after correcting for range restriction and 
criterion unreliability, the meta-analytic validity estimate 
is .54, which yields an expectancy of 46.0% (substantially 
higher than the observed mean value of 31.2%).

Additionally, we compared the expectancy values for 
adjacent score ranges on the predictor (e.g., the expectancy 
values for the lowest quintile and the second lowest quintile 
were compared). If the predictor and criterion have a linear 
relationship, the expectancies should have a positive trend 
going from the lowest test score range to the highest test 
score range. A total of 87.4% of the samples had at least 
one pair of adjacent expectancy values (e.g., 13.9% for the 
lowest quintile and 7.7% for the second lowest quintile) that 
suggested the relationship between the test and the criterion 
was non-monotonic. Given past research suggesting that 
most oft-researched I-O predictors (e.g., cognitive ability 
tests) are linearly related to performance (with the possible 
exception of personality measures), the non-monotonicity is 
an unexpected result.  

Finally, we isolated the 485 simulated samples that had 
an observed validity of exactly .26 (after rounding).  The 
expectancies from these samples also had considerable 
variability, as shown in Table S1. Thus, even if a researcher 
is lucky and obtains a point estimate of the validity (.26) 
that is identical to the true population estimate (.26), there 
is still considerable variability in the expectancy values (we 
attribute this variability to sampling error).
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FIGURE S1. 
This figure presents histograms of the expectancy values obtained for observed validity coefficients using the raw data 
approach (shown in blue) and the new approach (shown in red) described in the main paper. Separate sets of histograms are 
presented for each quintile of test scores.

(a) (b)

(c) (d)

(e)
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Mathematical Theory Behind the Bivariate Normal Dis-
tribution

The new approach to developing expectancy charts de-
scribed in the paper takes advantage of the bivariate normal 
distribution. This section provides more information on the 
mathematical framework behind the bivariate normal distri-
bution.  

A bivariate-normal distribution consists of two nor-
mally distributed variables, x1 and x2, with a correlation 
of -1 < r < +1 (see Figure S2a-c). When x1 and x2 are un-
correlated (i.e., rx1,x2 = 0), the distribution consists of a 
3-dimensional bell-shaped volume (see Figure S2a). When 
x1 and x2 are correlated, the distribution becomes flatter 
as the correlation increases (Figure S2b-c). Note that when 
|rx1,x2| = 1, the bivariate-normal distribution is equivalent 
to univariate-normal distribution since the two variables, x1 
and x2, are perfectly correlated. 

It is possible to represent the bivariate normal distribu-
tion formulaically. Gatignon (2010) provides the following 
formula for a bivariate-normal distribution:

Note that the means and standard deviations of xi are 
μi and σi and the correlation between x1 and x2 is ρ.  When 
both variables are standardized on a z-scale , this formula 
reduces to:

Integration, from calculus, can be used to find the vol-
ume under a function (including 3-dimensional functions). 
The volume under the normal bivariate distribution is rep-
resented by the integral shown below. Note that here, the 
integration occurs on both variables x1 and x2:

Vasicek (1998; see also Gupta, 1962) describes the 
standard process for solving the integral, which is based on 
the tetrachoric procedure and the Hermite (1864) polynomi-
als.  

Substituting the Kerridge and Cook’s (1976) approx-
imation for the two integral terms on the left side of the 
equation produces the following equation:

In practice, the volume of the multivariate distribu-
tions is computed numerically.  Genz and colleagues (Genz 
et al., 2008; Hothorn, Bretz, & Genz, 2001) developed a 
package, mvtnorm, for the statistical program R (Ihaka 
& Gentleman, 1996) that can be used to estimate the area 
under bivariate and multivariate-normal distributions. One 
of the algorithms available in the package is MIWA, which 
uses a numerical methodology to compute the area under 
the distributions (Miwa, Hayter, & Kuriki, 2003; Mi, Miwa, 
& Hothorn, 2009). The MIWA procedure can be used when 
the number of variables in the multivariate-normal distribu-
tion is 20 or less1 (Genz et al., 2008; Mi et al., 2009). Since 
expectancy charts only require the use of two variables, the 
variable limitation is not an issue.  

Unlike other estimation algorithms in the GenzBretz 
procedure, Miwa et al.’s (2003) procedure does not rely 
on Monte Carlo analysis; therefore, it provides consis-
tent results each time it is conducted. Instead of using the 
equation presented above from Vasicek (1998), Miwa et 
al. developed a numerical integration approach that can be 
applied to more than two variables. In their approach, they 
divide the volume of the multivariate-normal distribution 
into different sections and compute the volume within each 
section. Their approach allows a user to modify the size of 
each section by inputting the number of “grid points” (the 
default is 128). This type of numerical integration is com-
monly used in calculus for finding the area under curved 
functions that are not easily integrated using integration 
rules from calculus (Larson & Edwards, 2014). The use of 
numerical integration is not completely foreign to psycho-
metrics; the item-response theory software package BILOG 
uses numerical integration (Mislevy & Stocking, 1989). 
Thus, rather than implementing the formulaic integral 
shown above, Miwa et al.’s procedure implements numeri-
cal integration to estimate the volume of a multivariate-nor-
mal distribution.

Using 128 grid points, Miwa et al. (2003) tested the 
accuracy of their approach by comparing results from it to 
those tabulated by Tong (1990) and Gupta (1963). Of the 
567 entries in Tong’s table, Miwa et al.’s procedure agreed 

1 The GenzBretz algorithm can be used for up to 1,000 variables (Genz, 
Bretz, Miwa, Mi, Leisch, Scheipl, & Hothorn, 2008; Mi, Miwa, & 
Hothorn, 2009).
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with 556 values; the remaining 11 values only disagreed by 
less than .00002. Miwa et al. noted that their results were 
similar to those from a Monte Carlo approach; however, 
their procedure was able to obtain more accurate results 
with less computing time when the number of variables was 
less than seven.  

Our implementation of Miwa et al.’s (2003) proce-
dure consists of three main computations. First, the joint 
probability is computed. This is the volume of the bivari-
ate-normal distribution between the cutoffs for the predictor 
and the criterion. In mathematical terms, where x is the 
predictor and y is the criterion, the joint probability is the 
intersection (∩) of Lower x Cutoff < x < Upper x Cutoff 
and Lower y Cutoff < y < Upper y Cutoff. Second, the 
probability that any given score falls within the cutoffs for 

x is computed. This is the univariate volume of the follow-
ing distribution: Lower x Cutoff < x < Upper x Cutoff. The 
joint probability is then divided by the x probability to give 
the expectancy. Thus, the expectancy is the proportion of 
those cases within the x cutoffs that are also within the y 
cutoffs. To provide an example, suppose that the validity is 
zero and we are interested in predictor scores and criterion 
scores above the mean. Here the x probability is 0 < x < ∞, 
which is 0.5. The joint probability (0 < x < ∞ ∩ 0 < y < ∞.) 
is computed to be 0.25 and the expectancy is .25 ÷ .50, or 
50%. In other words, in total 25% (i.e., a proportion of .25) 
of the cases have predictor and criterion scores above the 
mean. Of those with a predictor score above the mean, 50% 
have a criterion score above the mean. Thus, the expectancy 
is 50%. 

FIGURE S2. 
a. 3-dimensional plot of a bivariate-normal distribution when rx1,x2 = 0.
b. 3-dimensional plot of a bivariate-normal distribution when rx1,x2 = .5.
c. 3-dimensional plot of a bivariate-normal distribution when rx1,x2 = .9.

Note. Figures obtained using the Statistics Online Computational Resource (SOCR) web-based statistical program.

(a) (b) (c)
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