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ABSTRACT 

A perturbation technique was used to obtain an approximate closed-form solution for the mass balance equations 
when the dusty gas model (DGM) is used to calculate total molar fluxes of components of ternary gaseous 
systems. This technique employed the straight-forward expansion method to the second-order approximation. 
Steady-state, isobaric, isothermal and no reaction conditions were assumed.  The obtained solution is a set of 
equations expressed to calculate mole fractions as functions of dimensionless length, boundary conditions, 
properties of the gases and parameters of transport mechanisms (i.e., Knudsen diffusivity and effective binary 
diffusivity). Three different systems represent field and experimental conditions were used to test the 
applicability of perturbation solution. Findings indicate that the obtained solution provides an effective tool to 
calculate mole fractions and total molar fluxes of components of ternary gaseous systems. 
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INTRODUCTION 
 

Many significant environmental problems require 
quantification of diffusive transport mechanisms in the 
gaseous phase. Examples of such problems include: the 
use of natural unsaturated zones as landfills and disposal 
sites for hazardous wastes, groundwater contamination 
by volatile organic compounds (VOCs), subsurface 
remediation and the health effects of Radon and its 
decay products. 

Three models have been commonly used to model 

diffusive transport in natural porous media. These 
include: Fick’s first law of diffusion, the Stefan-Maxwell 
equations and the Dusty Gas Model (DGM). Many 
studies investigated the applicability of Fick’s first law of 
diffusion to model vapor diffusion and highlighted the 
importance of flux mechanisms other than molecular 
diffusion flux to adequately model the diffusive transport 
in a porous medium. Thorestenson and Pollock (1989a, b) 
used the Stefan-Maxwell equations and the DGM to 
assess the limitations of Fick’s fist law through a 
theoretical investigation of the relative importance of 
different transport mechanisms in binary and multi-
component gaseous systems. Baehr and Bruell (1990) 
analyzed results of hydrocarbon vapor transports column 
experiments and calculated the tortuosity factors 
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necessary to fit these experimental data when using 
Fick’s law and the Stefan-Maxwell equations. Abriola et 
al. (1990) numerically investigated the importance of 
different gas transport mechanisms in non-steady-state 
binary systems. Voudrias and Li (1992) experimentally 
investigated the importance of Knudesn diffusion in an 
unsaturated soil sample containing benzene vapor. Abu-
El-Sha’r and Abriola (1997) experimentally evaluated the 
relative importance of different gaseous transport 
mechanisms in natural porous media systems. 

Findings of the above studies indicated that a 
multicomponent treatment incorporating different gas 
transport mechanisms should be undertaken to obtain 
better modeling of gas transport in natural porous 
media. This is of special importance when modeling 
systems where Knusden diffusion contributes 
significantly to the total diffusion (e.g., clay). In such 
systems, Fick’s diffusion and the Stefan-Maxwell 
equations may be inadequate to model diffusive gaseous 
transport. Therefore, analysis of natural environmental 
problems requires consideration of ternary systems 
(systems consisting of a gaseous contaminate and air 
which is usually modeled as a mixture of oxygen and 
nitrogen). 

The use of the DGM to solve for concentrations and 
molar fluxes of species of gaseous systems when the 
number of components of three or more exists is limited 
by the availability of a closed-form solution to the DGM. 
To our knowledge, there is no analytical solution in the 
literature to the mass balance equations when the DGM is 
used to calculate concentrations or total molar fluxes of 
gaseous species in a porous medium. Numerical solutions 
however are limited and have their own limitations. The 
objectives of this paper are: (1) to obtain an approximate 
closed-form solution to the DGM equations when 
incorporated in mass balance equations for ternary 
systems using perturbation methods. The following 
conditions are also assumed: steady-state, isothermal, no 
chemical or biological reactions occur in the system and 
surface diffusion is neglected, (2) to apply the obtained 
approximate closed-form solution to different natural 
porous media systems. 

BACKGROUND 
 
Gas Transport Mechanisms through Porous Media 

Gas transport through a porous medium occurs via 
four different mechanisms: (1) surface flow or diffusion; 
(2) viscous flow; (3) Knudsen flow; (4) ordinary 
diffusion (i.e., molecular and non-equimolar fluxes). A 
brief discussion of these mechanisms is given below and 
a detailed discussion can be found in Cunningham and 
Williams (1980), Mason and Malinauskas (1983) and 
Abu-El-Sha’r (1993). 

Surface flux occurs when gas molecules are adsorbed 
on specific sites at the surface of the particles of the 
porous media. Due to the continuous movement 
(vibrations) of the adsorbed molecules, each molecule 
transfers by hopping to other adsorption sites a number of 
times before it returns to the gaseous phase. Surface 
diffusion is usually modeled by employing Fick’s Law of 
diffusion where the concentration gradients refer to the 
surface concentration gradients and all the complexities 
of the porous medium geometry, surface structure and 
adsorption equilibrium are lumped into the surface 
diffusion coefficient. The Fickian model is useful only at 
low surface coverage (Mason and Malinuskas, 1983). In 
this paper, the number of molecules adsorbed to the soil 
surface adsorption sites is assumed equal to the number 
of molecules leaving the adsorption sites (steady-state 
conditions). Thus, net surface flux will not effect the total 
gaseous flux and is neglected. 

Viscous flux occurs when a pressure gradient is 
applied on the system. The damping effects due to the 
high rate of interaction (i.e., collisions) among gas 
molecules compared to the interaction between gas 
molecules and the boundaries of the system cause a 
constant viscous flux. On the other hand, when there is 
more interaction between gas molecules and system 
boundaries than the interaction among gas molecules, 
Knudsen flux dominates. In a multicomponent gaseous 
system, there is a concentration gradient for each 
component and thus a net Knudsen flux of each 
component as well. The net Knudsen flux of gas i  can be 
calculated as (Cunningham and Williams, 1980): 
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where K
iN  is the Knudsen molar flux of component i , 

ic  is molar concentration of component i  and K
iD is the 

Knudsen diffusivity, given as: 
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where pQ is the obstruction factor for Knudsen 

diffusivity, T is the temperature, R  is the ideal gas 
constant and iM  is the molecular weight of gas i . For a 
porous media with a single pore size, K

iD  is given by 
(Geankoplis, 1972): 
 

i

K
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where r  is the average pore radius. 
Ordinary diffusion of gases in a porous medium is a 

combination of two different flux mechanisms: diffusive 
(molecular) flux and viscous (nonequimolar) flux. The 
total molar diffusive flux of component i  is given by 
(Cunningham and Williams, 1980): 
 

v
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D
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T
i NXNN +=  (4) 

 
where T

iN  is the total diffusive flux of component i , 
D
iN  is molar diffusive flux of component i , iX  is the 

mole fraction of component i  and v
iN  is the molar 

viscous flux of component and can be given as: 
 

P
µ
k

RT
PN v ∇−=

 (5) 
where k  is the intrinsic permeability, µ  is the 

dynamic viscosity and P∇  is the pressure gradient. 
 
Gas Transport Models 

As mentioned previously, Fick’s first law of diffusion, 
Stefan-Maxwell equations and the Dusty Gas Model 
(DGM) have been used to study gas transport through 

porous media. Fick’s law has been reported in the 
literature of hydrology and soil physics to model 
molecular diffusion. It originated based on solute studies 
as an empirical equation and then extended for prediction 
of gaseous diffusion through porous media (Kirham and 
Powers, 1972; Abu-El-Sha’r, 1993). 

Fick’s law for one-dimensional and steady-state 
conditions is written in molar form as (Jaynes and 
Rogwski, 1983): 

( )
z

X
cDN i

ijF
D
i d

d
−=

  (6) 
 

where ( )FD
iN  is Fick’s first law diffusive molar flux 

of component i , ijD  is the binary diffusivity of 
components i  and j  and c  is the total molar 
concentration. ijD  can be calculated as (Perry and Green, 
1997):  
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here T  is the temperature (Kelvin), P  is the pressure 
(Kpa), and ∑V  is the sum of atomic diffusion volumes. 

For gaseous transport through porous media, ijD  is 

replaced by the effective diffusive coefficient e
ijD , which 

is given by: 
 

ijm
e
ij DQD  =

 (8) 
where mQ is an obstruction factor, which is a function 

of porosity and tortuosity of the porous medium. One 
suggested correlation for mQ is given by (Cunningham 
and Williams, 1980): 
 

3Pm TQ =  (9) 
where PT  is the porosity of the porous media. 
Stefan-Maxwell equations are usually used in 

chemical engineering to study multicomponent gas 
diffusion. The general form of Stefan-Maxwell equations 
can be given as: 
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where n  is the number of gaseous component in the 
system. Note that Equation (10) represents 1n −  
independent equations, since 

∑
=

=
n

1i
i 0.1X  (11) 

The form of Stefan-Maxwell equations given in 
Equation (10) can be written in a form similar to Fick’s 
law, where diffusion coefficients are function of the 
composition of gaseous components and properties of the 
porous media. It is to be noted that both Fick’s law of 
diffusion and Stefan-Maxwell equations do not 
incorporate Knudsen diffusion, therefore, both models 
may be inadequate to model systems where Knudsen 
diffusion is significant. 

Although the DGM can be used to model 
multicomponent gaseous transport through porous 
media, it has been rarely used in natural systems 

applications (Alzyadi, 1975; Thorstenson and Pollock, 
1989a, b; Abriola et al., 1992; Voudrias and Li, 1992). 
In addition, few measurements have been made to 
estimate the different transport parameters and 
coefficients incorporated in the model (Allawi and 
Gunn, 1987; Abu-El-Sha’r and Abriola, 1997). The 
DGM incorporates the different transport mechanisms 
(i.e., molecular diffusion, non-equimolar flux, Knudsen 
diffusion, surface diffusion and viscous flux) in a 
rigorous way based on the kinetic theory treatment. The 
DGM treats the porous medium as a collection of 
suspended large dust particles. The dust particles (i.e., 
solid matrix) are considered as one component of the 
gaseous mixture, uniformly distributed, and much larger 
and heavier than the gas molecules (Jackson, 1977; 
Cunningham and Williams, 1980; Mason and 
Malinauslcas, 1983).  

The constitutive equations of the DGM in molar form 
are given by: 
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where 'n  is the gas and particle density, ijα  is the 

generalized thermal diffusivity and the remaining 
parameters are previously defined. The summation term 
on the left hand side of Equation (12) is the momentum 
lost through molecule-molecule collisions with 
component other than i  (but not the particle), the 
second term is the momentum lost by component i  
through molecule-particle collisions, the first term on 
the right hand side is the component pressure gradient 
of component i  and the second term is the thermal 
gradient which may be neglected for isothermal 
systems. 
 
Analysis of Gaseous Systems 

The analysis of a particular gaseous system requires 
solution of mass balance equations for system 
components based on given boundary and initial 
conditions. The mass balance equations on a molar basis, 
assuming uniform void fraction in time, can be written in 

a general form as: 

0R
t
cN. vi

iT
i =+

∂
∂

+∇ ε  (13) 

where T
iN is the total molar flux of component i  

which can be calculated using either Fick’s law, Stefan-
Maxwell equations, or DGM; ε  is the void fraction of 
the porous medium; ic  is the number of moles per unit 
void volume; viR  is the reaction rate of species i  per unit 
volume of porous media. 

In this paper, the following conditions were assumed: 
isothermal, steady-state, isobaric, no chemical or 
biological reactions occur in the system and surface 
diffusion is insignificant. Therefore, Equation (13) is 
reduced to: 

0N. T
i =∇   (14) 

For ternary gas system, the total molar fluxes for the 
different gas components may be explicitly written using 
the DGM equation as (Feng and Stewart, 1973): 
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where [ ]zN  and [ ]c  are n-element column vectors 
consisting of elements Niz and ci; respectively; r is the 
radius of pore; µ  is the gas dynamic viscosity; [ ])r(Ds  is 
an n×n diagonal matrix of surface diffusivities, )r(Dis ; 
[ ])r(F  is the n×n matrix formed as: 
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For steady-state, isobaric conditions, Equation 15 may 
be written as: 
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Perturbation 

Perturbation theory is a collection of methods for 
systematic analysis of the global behavior of solutions to 
the differential equations. The general procedure of 
perturbation theory is to identify a parameter (small or 
large), usually denoted by∈, then the solution is 
represented by the first few terms of an asymptotic 
expansion, usually not more than two terms. The 
expansion may be carried out in terms of ∈ which 
appears naturally in the equations, or may be artificially 
and temporarily introduced into a difficult problem 

having no small parameter. Then ∈=1 is set, if necessary, 
to recover the original problem.  This artificial conversion 
to a perturbation problem may be the only way to solve 
the problem. However, it is preferable to introduce ∈ in 
such away that the zero-order solution (i.e., the leading 
terms in the perturbation series) is obtainable as a closed-
form analytic expression. Such expansion is called 
parameter perturbation. Alternatively, the expansion may 
be carried out in terms of a coordinate (either small or 
large). These are called coordinate perturbation. The idea 
of perturbation theory is to decompose a tough problem 
into an infinite number of relatively easy ones. Hence, 
perturbation theory is most useful when the first few 
terms reveal the important features of the solution and the 
remaining ones give small corrections (Bender and 
Orszag, 1999; Nayfeh, 2000). 
 
Details of Solution of the DGM 

Molar fluxes of species along a given direction (i.e., the 
z direction) in a multicomponent gaseous system are 
given by Equation (15). For steady-state diffusive mass 
transport, it is commonly assumed that viscous flow and 
surface diffusion are insignificant (Farmer et al., 1980; 
Karimi et al., 1987; Baeher and Bruell, 1990; Voudrious 
and Li, 1992). Therefore, the first and third terms of the 
right hand side of Equation (15) may be neglected. 
Using Equations (15) and (16) and the relations: Pi=Xi P 
and RTPC ii = , the molar fluxes of a three-component 
gaseous system can be given as (i.e., Equation 17): 
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Dots in the above equation represent the derivative 

with respect to z. For formulation convenience, let: 
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where gaseous components 1, 2 and 3 are chosen so 
that M1 < M2 < M3 (Mi is the molecular weight of 
component i ). 

The total molar flux equation for each component is 
obtained by substitution of Equation (18) in the mass 
balance Equations (i.e., Equation (14)) and utilizing 
Equation (11). The total molar fluxes for component one, 
two, and three are given by the Equations (19), (20) and 
(21) below, respectively. 
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where iα is a coefficient function of K

iD and ijD , 
values of iα  are given in the Appendix. Note from 
Equation (11), for an n-component gaseous system, that 
there are n-1 independent total molar flux equations. 
Therefore, one equation out of Equations (19), (20) and 
(21) is redundant. Equations (20) and (21) were chosen 
to solve for the concentrations of the components. As 
mentioned earlier, the fundamental idea behind 
perturbation is to turn a difficult problem to a simple 
one; this can be achieved by identifying terms in 
Equations (20) and (21) that contribute insignificantly to 
the equations. The less significant terms are then 

removed from the equations to reduce the non-linearity 
of the equations. The relative importance of the terms in 
Equations (20) and (21) was examined by calculating 
the coefficients of the equations (i.e., iα ) for different 
ternary gaseous representing typical subsurface 
contaminates and having widely different molecular 
weights. Details of the procedure adapted in this study 
to obtain first-order approximate solutions of the molar 
fractions are presented in Appendix A. Results are 
shown below: 
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The first-order approximate solution of 3X  can be found using the same procedure used to solve for 2X . 3X   

is given as: 
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For ternary gaseous system, Equation (11) is used to solve for 1X : 
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where:  
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k1 =  α39 /α95                             (25) 
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k34  = α58 /α80 (36) 
k44  = α59 /α80 (37) 
k45  =  α61 /α80 (38) 
k46  =  α62 /α80 (39) 
k47  =  α63 /α80 (40) 
k59  =  α92 /α80 (41) 
k60  =  α96 /α80 (42) 
k61  =  α98 /α80 (43) 
k62  =  α99 /α80 (44) 
k63  =  α100 /α80 (45) 
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α39 = (-a2c2d+abc2d-2a2cds+2abcds-a2ds2+abds2)  (52) 
α54 = (-a2c2b – a2c2d-2a2bcs+2a2cds- a2bs2+a2 ds2) (53) 
α55 = (a2c2d -abc2d-2a2bck -2a2cdk+2a2bcs+4a2cds –2abcds-2a2bks –2a2dks+2a2bs2+3a2ds2-abds2) (54) 
α58 = (a2c2d – a2c2k+2a2bc – 2abc2s +4a2cds - 2ac2ds – 2a2cks+2a2bs2 –2abcs2+ 3a2ds2+ 2acds2- a2ks2) (55) 
α59 = (2a2cdk - ac2dk- a2ck2 -4a2cds+2abcds+2ac2ds –bc2ds+2a2bks –3abcks+ 4a2dks - 3acdks – a2k2s - 
2a2bs2+2abcs2- 6a2ds2 +2abds2+ 4acds2- bcds2 +2a2ks2 - abks2)  (56) 
α61 = (-2a2cds +2ac2ds-2a2cks -2ac2ks - a2cks2+2abcs2 –bc2s2 -3a2ds2 + 4acds2 - c2ds2+2a2ks2 - 2acks2)  (57) 
α62 = (-2a2dks +3acdks - c2dks + a2k2s - ack2s+3a2ds2 – abds2 -4acds2 + bcds2 + c2ds2 - 2a2ks2  +abks2 + 2acks2 – bcks2)
  (58) 
α63 = (a2ds2 - 2acds2 + c2ds2 - a2ks2 + 2acks2 - c2ks2)  (59) 
α79 = (-a2b2s + ab2cs -2a2bds +2abds - a2d2s + acd2s)  (60) 
α80 = (abcdk +-acd2k - a2bk2  -2a2bds - 2ab2ds – 2abcds +b2cds +2a2d2s -2abd2s - 2acd2s + bcd2s +ab2ks  +abdks)
 (61) 
α91 = (- a2b2c -2a2bcd -a2cd2 - a2b2s -2a2bds - a2d2s)  (62) 
α92 = (2a2bcd -2ab2cd +2a2cd2 -2abcd2  - a2b2k -2a2bdk –a2d2k +a2b2s+ 4a2bds –2ab2ds +3a2d2s - 2abd2s)  (63) 
α95 = (2a2bcd +2a2cd2 -2a2bck - 2a2cdk + a2b2s –ab2cs +4a2bds –2abcds + 3a2d2s - acd2s – 2a2bks - 2a2dks)  (64) 
α96 = (-2a2cd2 +2aabcd2 +2a2bdk + 2a2cdk –3abcdk +2a2d2k - acd2k– a2bk2 -a2dk2 - a2bds +2ab2ds +2abcds – b2cds 
-6a2d2s +4abd2s +2acd2s – bcd2s + 2a2bks –ab2ks + 4a2dks –3abdks) (65) 
α98 = (-a2cd2 +2a2cdk -a2ck2 -2a2bds +2abcds -3a2d2s +2acd2s +2a2bks – 2abcks  + 4a2dks -2acdks - a2k2 s) (66) 
α99 = (-a2d2k +acd2k + a2dk2 +acd2k +3a2d2s -2abd2s –2acd2s + bcd2s - 4a2dks +3abdks+2acdks – bcdks +a2k2s - 
abk2s)      (67) 
α100 = (a2d2s -acd2s -2a2dks +2acdks +a2k2s + ack2s)  (68) 
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Here, a<b<c  (i.e.   M1 < M2 < M3 ) 
where, Mi is the molecular volume weight of i. Note 

that Z  in Equations (22) and (23) is a dimensionless 
parameter: LlZ = , where l  is a distance along the 
diffusion path at which the concentrations to be 
calculated (measured from the boundary) and L  is the 
total length of diffusion path. 

Although the solution requires the evaluation of the  
terms given in equations (22 – 69), it is a relatively 
simple approach when compared to the reported 
numerical solutions (Remick and Geankoplis, 1970). If a 
spread sheet is prepared to evaluate these terms, the 
solution can be obtained in a fast and effective manner 
for different boundary conditions. 
 
Solution Verification 

To verify the perturbation solution of the DGM, 
concentration profiles of components of a ternary gaseous 
system were calculated using Equations (22) and (23) and 
compared to concentrations obtained by an independent 
numerical solution of a set of equations that describe the 
transition region between Knudsen and molecular 
diffusion. While the numerical solution obtained by 
Remick and Geankoplis (1970) did not utilize the DGM 
equations, it provides a base for verification because it 

incorporates the same transport mechanisms assumed in 
this paper to solve for the DGM. The ternary gaseous 
system used consisted of components that have widely 
different molecular weights and exhibit no surface 
diffusion. Physical properties of the components of the 
system and boundary concentrations are given in Table 
(1). Note that ijD and K

iD are chosen to be approximately 
of the same order of magnitude to provide equal 
contribution from Knudsen and molecular mechanisms. 
Figure (1) shows the concentrations of AX , BX  and CX  
plotted vs. Z  ( LlZ = ) at P=100 atm obtained by 
perturbation and numerical solutions. There is a good 
agreement between the two solutions. However, in the 
case of the numerical solution, concentration lines of AX  
and BX  are curved in opposite direction. Remick and 
Geankoplis (1970) reported that this behavior was 
observed at high pressures, concentration lines tend to be 
more linear as pressure decreases. 
 
Application Examples 

Equations (22), (23) and (11) can be used to calculate 
mole fractions of ternary gaseous systems components. In 
addition, the total molar fluxes can be calculated 
explicitly for each component by incorporating the mole 
fractions using the following equations (Jackson, 1977): 
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To test the validity of Equations (22-24), the 

Equations are applied to scenarios including both 
experimental and field applications as follows: 
(1) The first example represents a field application 

where the scenario and the data are borrowed from 
Thorstenson and Pollock (1989a). This example 
represents a typical subsurface contamination 
problem in which a contaminant is generated at a 
continuous rate at a specific depth below the ground 
surface. One-dimensional transport is assumed (i.e., 
transport in the vertical direction). The system is 
treated as a ternary system where Methane (CH4), the 
major contaminant in this example, is considered as 
one component and the major constituents of air (i.e., 
N2 and O2) are considered as two distinct 
components. System properties and boundary 
conditions are given in Table (2); note that Knudsen 
diffusion is neglected in this example. Of particular 
interest in such scenario is to calculate concentrations 
(i.e., mole fraction) as a function of depth for the 
different components in the system. Figure (2) shows 
mole fractions of the components of the system as 
obtained from the perturbation solution. 

(2) The second example used is an experimental 
diffusion system used by Karimi et al., (1987) to 
investigate vapor phase diffusion of C6H6 in soil. The 
experiment was designed to accommodate diffusion 
cell contained soil sample extracted from cover of a 
landfill used for disposal of industrial wastes. A 
source of C6H6 was placed beneath the cell to mimic 
the landfill by allowing diffusion through the soil 
sample. At the top of the soil sample, an N2 source 
was placed to sweep away C6H6. Properties and 
boundary conditions of the system are shown in 
Table (3). The objective of this example is to 
calculate the concentration of C6H6 at different points 
of the landfill cover. Mole fractions of the 
components of the system as calculated by Equations 

(60), (61) and (11) are shown in Figure (3). 
(3) The third example used is an experimental system 

used by Abu-El-Sha’r (1993) to evaluate the relative 
importance of different transport mechanisms in 
gaseous systems. The system considered herein is an 
open system where CH4 was injected at one side of a 
soil sample placed in a diffusion cell and air (i.e., N2 
and O2) was injected at the other side. System 
properties and boundary conditions are given in 
Table (4). The objective of this example is to 
calculate molar fluxes of CH4 at different points for 
different types of porous media. Three types of soil 
were used; sea sand, Ottawa sand and Kaoliniate. 
Figure (4) shows total molar fluxes for CH4 in the 
different soil samples as calculated by perturbation 
solution. 

 
SUMMARY AND CONCLUSION 

 
A perturbation method was used to solve the mass 

balance equations for ternary gas systems when the 
dusty gas model (DGM) is incorporated to calculate 
mole fractions and molar fluxes of the components of 
the system. Steady-state conditions, isobaric, isothermal 
and non reactive system were assumed. The straight-
forward expansion method to the second-order 
approximation was implemented in the solution. The 
perturbation parameter which was introduced into the 
equations, presented no physical meaning to the system. 
The solution was expressed as a closed-form solution 
incorporates a dimensionless length boundary 
conditions, and parameters of transport mechanisms. The 
solution was verified by a numerical solution and there 
was a good agreement between the two solutions. The 
perturbation solution was applied to different 
experimental and field conditions to predict mass 
fractions and molar fluxes of components of ternary 
gaseous systems. 
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APPENDICES 
 
Appendix A 
Details of the Perturbation Solution of the DGM 

Molar fluxes of species along a given direction (i.e., the z direction) in a multicomponent gaseous system are given 
by Equation (15). For steady-state diffusive mass transport, it is commonly assumed that viscous flow and surface 
diffusion are insignificant (Farmer et al., 1980; Karimi et al., 1987; Baeher and Bruell, 1990; Voudrious and Li, 1992). 
Therefore, the first and third terms of the right hand side of Equation (15) may be neglected. Using Equations (15), (16) 
and the relations: Pi=Xi P and RTPC ii = , the molar fluxes of a three-component gaseous system can be given as (i.e., 
Equation 17): 
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Dots in the above equation represent the derivative with respect to z. For formulation convenience, let: 

231312
K
3

K
2

K
1 D

1Q;
D
1G;

D
1H;

D
1E;

D
1B;

D
1A ======   (A-2) 

 
where gaseous components 1, 2 and 3 are chosen so that M1 < M2 < M3 (Mi is the molecular weight of component i ). 
The total molar flux equation for each component is obtained by substitution of Equation (A-1) in the mass balance 

Equations and utilizing ∑
=

=
n

1i
i 0.1x . The total molar fluxes for component one, two and three are given by the Equations 

(A-3), (A-4) and (A-5), respectively. 
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where iα is a coefficient function of K

iD and ijD , values of iα  are given in the Appendix. Note from Equation (11), 
for an n-component gaseous system, that there are n-1 independent total molar flux equations. Therefore, one equation 
out of Equations (A-3), (A-4) and (A-5) is redundant. Equations (A-4) and (A-5) were chosen to solve for the 
concentrations of the components. As mentioned earlier, the fundamental idea behind perturbation is to turn a difficult 
problem to a simple one; this can be achieved by identifying terms in Equations (A-4) and (A-5) that contribute 
insignificantly to the equations. The less significant terms are then removed from the equations to reduce the non-
linearity of the equations. The relative importance of the terms in Equations (A-4) and (A-5) were examined by 
calculating the coefficients of the equations (i.e., iα ) for different ternary gaseous representing typical subsurface 
contaminates and having widely different molecular weights. Upon neglecting the insignificant terms, Equations (A-4) 
and (A-5) are reduced to Equations (A-6) and (A-7), respectively. 
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The variables in Equations (A-6) and (A-7) are 32 X ,X and z ( 2X  and 3X are dimensionless and z has a length unit). 

To obtain dimensionless forms of Equations (A-6) and (A-7), the following variables are introduced: 
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The star in Equation (A-8) represents a dimensionless variable. 
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Similarly, 3X
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Dimensionless forms of Equations (A-6) and (A-7) are obtained by the following steps: (1) substituting Equations 

(A-9) and (A-10) into Equations (A-6) and (A-7); (2) multiplying both sides of Equations (A-6) and (A-7) by L2; and 
(3) dividing Equations (A-6) and (A-7) by 95α , a relatively large coefficient chosen arbitrary to define a small 
dimensionless perturbation parameter ∈  as: 
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Note that the perturbation parameter in this case has no physical meaning; it is artificially introduced into the equation 
to reduce non-linearity. The dimensionless forms of Equations (A-6) and (A-7) are given by Equations (A-12) and (A-13), 
respectively: 
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 (A-13) 

 
where ik are dimensionless coefficents given in the Appendix. Note that 2X , 3X  and Z are dimensionless and the 

star is removed from the notation for convenience. The second-order approximation of 2X  and 3X  are given by 
Equations (A-14) and (A-15), respectively: 

)(OXX);Z(X 2
21202 ∈+∈+=∈  (A-14) 

)(OXX);Z(X 2
31303 ∈+∈+=∈  (A-15) 

where 0iX  and 1iX  are the zero-order and first-order approximations of iX , respectively. 
Substitution of Equations (A-14) and (A-15) into equations (A-12) and (A-13) and expansion of all terms give the 

following equations: 
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Equating terms of like powers of ∈  in Equations (A-16) and (A-17) to zero gives two sets of equations: (1) when the 

power of∈  equals zero, Equations (A-18) and (A-19) are obtianed; and (2) when the power of ∈  equals one, Equations 
(A-20) and (A-21) are obtianed. 
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The general solution of Equation (A-18) can be obtained as follows: 

Let 
Zd

Xd
Xw 20

20 ==
•

  (A-22) 

By the chain rule: 
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substitution of   
Zd

Xd 20 and 2
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2
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Xd

 in Equation (A-18) gives: 
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Integration of the above equation gives w as: 
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where 1ψ is an arbitrary integration constant. 

Substituting 
Zd

Xd 20  for  w gives the following equation: 
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From Eqaution (42), X20 is obtianed as: 
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where 2ψ  is an arbitrary integration constant. In similar manner, using the same procedure used to obtian the general 
solution of Equation (A-18) (i.e., Equations A-22- A-27), the general solution of Equation (A-19) can be obtained as: 
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where 3ψ and 4ψ  are arbitrary integration constants determined from boundary conditions. Substitution of Equations 
(A-27), (A-28) and their deravitaves in Equation (A-20) gives the following equation: 
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where ik are dimensionless coefficents given in the Appendix. In the homogenous part of Equation (A-29), define the 
following functions: 
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Since )Z(p and )Z(q are analytic and Z=0 is an ordinary point of Equation (A-29), the particular solution of Equation 
(A-29) is given by the following form: 
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Substitution of Equation (A-32) in Equation (A-29) gives: 
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Note that NHS represents the non-homogenous side of Equation (A-29) (i.e., the right-hand side). Substitution of 

j=η  in the first, fourth and sixth summations, 2j −=η  in the second summations, and 1j −=η  in the third and fifth 
summations of Equation (A-33) gives the following equation: 
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Separating the terms corresponding to 1,0 == ηη , and combining the rest under one summation, gives: 
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Equating the coefficients of like powers of Z  on both sides of Equation (A-35) gives Equations (A-36 –A-38): 
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where ηβ ...,1j,j =  is an arbitrary constant. Solving Equations (A-36 –A-38) for 2β , 3β  and 4β  in terms of 0β  and 1β  
gives: 
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The general solution of Equation (A-29) can be expressed as: 
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where im are coefficients function of properties of system components (i.e., gases) given in the Appendix, 0β  and 1β  
are arbitrary constants. Only the particular solution of Equation (A-29) is of interest, therefore, from Equation (A-42), 21X  
can be given as: 
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Substitution of Equations (A-27) and (A-43) in Equation (A-14) gives the first-order approximate solution of 2X  as: 
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The first-order approximate solution of 3X  can be found using the same procedure used to solve for 2X . 3X  is 
given as: 
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For ternary gaseous system, Equation (A-46) is used to solve for 1X : 

∑
=
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n

1i
i 0.1X  (A-46) 

Note that Z  in Equations (A-44) and (A-45) is a dimensionless parameter: LlZ = , where l  is a distance alnog the 
diffusion path at which the concentrations to be calculated (measured from the boundary), and L  is the total length of 
diffusion path. 

α39= (-A2E2H+ABE2H-2A2EHG+2ABEHG-A2HG2+ABHG2).  
α54= (-A2BE2-A2E2H-2A2BEG-2A2EHG-A2BG2-A2HG2). 
α55= (A2E2H-ABE2H-2A2BEQ-2A2EHQ+2A2BEG+4A2EHG-2ABEHG-2A2BQG- 
 2A2HQG+2A2BG2+3A2HG2-ABHG2). 
α58= (A2E2H-A2E2Q+2A2BE-2ABE2G+4A2EHG-2AE2HG-2A2EQG+2A2BG2- 
 2ABEG2+3A2HG2-2AEHG2-A2QG2). 
α59= (2A2EHQ-AE2HQ-A2EQ2-4A2EHG+2ABEHG+2AE2HG-BE2HG+2A2BQG+2A2EQG- 
 3ABEQG+4A2HQG-3AEHQG-A2Q2G-2A2BG2+2ABEG2-A2HG2+2ABHG2+4AEHG2-BEHG2+2A2QG2-ABQG2). 
α61= (-2A2EHG+2AE2HG+2A2EQG-2AE2QG-A2BG2+2ABEG2-BE2G2-3A2HG2+4AEHG2- 
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 E2HG2+2A2QG2-2AEQG2). 
α62= (-2A2HQG+3AEHQG-E2HQG+A2Q2G-AEQ2G+3A2HG2-ABHG2- 
 4AEHG2+BEHG2+E2HG2-2A2QG2+ABQG2+2AEQG2-BEQG2). 
α63= (A2HG2-2AEHG2+E2HG2-A2QG2+2AEQG2-E2QG2). 
α79= (-A2B2G+AB2EG-2A2BHG+2ABEHG-A2H2G+AEH2G). 
α80= (ABEHQ+AEH2Q-A2BQ2-A2HQ2+2A2BHG-2AB2HG-2ABEHG+B2EHG+2A2H2G- 
 2ABH2G-2AEH2G+BEH2G+AB2QG+ABHQG). 
α91= (-A2B2E-2A2BEH-A2EH2-A2B2G-2A2BHG-A2H2G). 
α92= (2A2BEH-2AB2EH+2A2EH2-2ABEH2-A2B2Q-2A2BHQ-A2H2Q+A2B2G+4A2BHG- 
 2AB2HG+3A2H2G-2ABH2G). 
α95= (2A2BEH+2A2EH2-2A2BEQ-2A2EHQ+A2B2G-AB2EG+4A2BHG-2ABEHG+3A2H2G- 
 AEH2G-2A2BQG-2A2HQG). 
α96= (2A2EH2+2ABEH2+2A2BHQ+2A2EHQ-3ABEHQ+2A2H2Q-AEH2Q-A2BQ2-A2HQ2- 
A2BHG+2AB2HG+2ABEHG-B2EHG-6A2H2G+4ABH2G+2AEH2G-BEH2G+2A2BQG-AB2QG+4A2HQG-3ABHQG). 
α98= (-A2EH2+2A2EHQ-A2EQ2-2A2BHG+2ABEHG-3A2H2G+2AEH2G+2A2BQG- 
 2ABEQG+4A2HQG-2AEHQG-A2Q2G). 
α99= (-A2H2Q+AEH2Q+A2HQ2+AEH2Q+3A2H2G-2ABH2G-2AEH2G+BEH2G- 
 4A2HQG+3ABHQG+2AEHQG-BEHQG+A2Q2G-ABQ2G).  
α100= (A2H2G-AEH2G-2A2HQG+2AEHQG+A2Q2G+AEQ2G). 
k1  = α39 / α95 

k10 = α54 / α95 
k11 = α55 / α95 

k23 = α79 / α95 
k28 = α91 / α95 

k43 = α58 / α80 
k44 = α59 / α80 

k45 = α61 / α80 
k46 = α62 / α80 

k47 = α63 / α80 
k59 = α92 / α80 
k60 = α96 / α80 
k61 = α98 / α80 
k62 = α99 / α80 
k63 = α100 / α80 
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Table 1: Properties and boundary conditions of the system used to  
verify the perturbation Solution. 

Boundary Concentrations Component 
i 

iM  
g/mole 

K
iD  

cm2/sec 
ijD  

cm2/sec z = 0 z = L 
A = He 4.003 0.837207 DAB = 1.126 XA0 = 0.5 XAL=0.0 
B = Ne 20.183 0.372868 DAC = 0.729 XB0 = 0.0 XBL=0.5 
C = Ar 39.944 2.65033 DBC = 0.322 XC0 = 0.5 XCL=0.5 

 
 
 

Table 2: Properties and boundary conditions of the system given in Example 1. 
Boundary Concentrations Component 

i 
iM  

g/mole 
ijD  

cm2/sec 

e
ijD † 

cm2/sec z = 0 z = L (10m) 
A = CH4 16.043 DAB = 0.2137 DAB = 0.02137 XA0 = 1.0 XAL=0.0 
B = N2 28.013 DAC = 0.2263 DAC = 0.02263 XB0 = 0.0 XBL=0.78 
C = O2 31.999 DBC = 0.2083 DBC = 0.02083 XC0 = 0.0 XCL=0.22 

† e
ijD  is calculated as ij

e
ij DD 1.0= . 

 
 

Table 3: Properties and boundary conditions of the system given in Example 2. 
Boundary Concentrations Component 

i 
iM  

g/mole 

K
iD † 

cm2/sec 
ijD ‡ 

cm2/sec 

e
ijD § 

cm2/sec z = 0 z = L 
(L=2.54 cm) 

A = N2 28.013 0.0125 DAB = 0.284 0.0426 XA0 = 0.702 XAL=1.0 
B = O2 31.999 0.0117 DAC = 0.107 0.0161 XB0 = 0.198 XBL=0.0 

C = C6H6 78.114 0.0075 DBC = 0.100 0.0150 XC0 = 0.10 XCL=0.0 
† K

iD  is calculated using Eq. 3 ( r =4X10-7 cm for clayey soil (Abriola et al., 1990), T=20oC). 
‡ Data from Abu-El-Sha’r, 1993. 
§ e

ijD   is calculated using Eqn. (8) and (9), assuming 45.0=pT . 
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Table 4: Properties and boundary conditions of the system given in Example 3. 

Soil Porosity mQ  pQ  
(cm) gas iM  

g/mole 

K
iD † 

cm2/sec 
ijD  

cm2/sec 

e
ijD ‡ 

cm2/sec 

A=CH4 16.043 424.7 DAB= 
0.2137 0.0470 

B=N2 28.013 321.4 DAC= 
0.2263 0.0497 

Sea 
Sand 0.46 0.22 0.0109 

C=O2 31.999 300.74 DBC= 
0.2083 0.0458 

A=CH4 16.043 1180.7 DAB= 
0.2137 0.0363 

B=N2 28.013 893.5 DAC= 
0.2263 0.0384 

Ottawa 
sand 0.36 0.17 0.0303 

C=O2 31.999 836.01 DBC= 
0.2083 0.0354 

A=CH4 16.043 31.17 DAB= 
0.2137 0.0876 

B=N2 28.013 23.59 DAC= 
0.2263 0.0927 Kaolinite 0.85 0.41 0.0008 

C=O2 31.999 22.07 DBC= 
0.2083 0.0850 

† K
iD is calculated using Eqn. (2) (T= 20 oC). 

‡ e
ijD  is calculated using Eqn. (8). 

Figure 1: Comparison between perturbation and numerical solutions for a  
ternary gaseous system. 
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Figure 2: Mole fractions of the components of the system given in Example 1 as calculated  
by perturbation solution. 

 
 

Figure 3: Mole fractions of the components of the system given in Example 2 as calculated 
by perturbation solution. 
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Figure 4: Total molar fluxes of CH4 in different porous media systems given in Example 3 
as calculated by perturbation solution. 

 
Notation 

A  coefficient (L2 t-1) 

B  coefficient (L2 t-1) 

c  total molar concentration (mole L-3) 

ic  molar concentration of component i  (mole L-3) 

ijD  free binary diffusivity of gases i  and j (L2 t-1) 
e
ijD  effective binary diffusion coefficient of gases i  and j (L2 t-1) 
K
iD  Knudsen diffusivity (Knudsen diffusion coefficient) of gas i  (L2 t-1) 

)r(DK
i  Knudsen diffusivity of gas i  in a pore of radius r  (L2 t-1) 

)r(Dis  effective surface diffusivity of component i  in a pore of radius r  (L2 t-1) 

E  coefficient (L2 t-1) 

G  coefficient (L2 t-1) 

H  coefficient (L2 t-1) 

i  index 

j  index 

k  intrinsic permeability (L2) 

ik  coefficient 
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L  length (L) 

iM  molecular weight of component i  (M mole-1) 

im  coefficient 

n  number of gas components 

'n  molar density of gas and particles (mole L-3) 
D
iN  total molar diffusive flux of component i  (mole L-2 t-1) 
K
iN  Knudsen molar flux of component i  (mole L-2 t-1) 
T
iN  total molar flux of component i  (mole L-2 t-1) 
vN  molar viscous flux (mole L-2 t-1) 

[ ]zN  column vector with elements nziz N,...,N  

P  pressure (M L-1 t-2) 

Q  coefficient (L2 t-1) 

mQ  obstruction factor (diffusivity) 

PQ  obstruction factor for Knudsen diffusivity (the effective Knudsen radius) (L) 

R  ideal gas constant (M L2 t-2 T-1 mole-1) 

viR  reaction rate of component i  per unit volume of porous media (M3 t-1 L-3) 

r  pore radius (L) 

r  average pore radius (L) 

T  temperature (T) 

t  time (t) 

PT  total porosity of the porous media 

iX  mole fraction of component i  
∗
X  dimensionless mole fraction 
Z  dimensionless length, Ll  
∗

Z  dimensionless length 
z  length (L) 

DGM dusty gas model 
VOCs volatile organic compounds 

NHS nonhomogenous side 

iα  coefficient 

ijα  generalized thermal diffusivity 

iβ  coefficient 

η  index 
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∈ perturbation parameter 

ε  void fraction 

µ  dynamic viscosity (M L-1 t-1) 

iψ  integration constant 

ΣV sum of atomic diffusion volumes 

∞  infinity 

∇  gradient operator 
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