www.iiste.org

Neostigmine as an Adjunct to 0.5% Lignocaine Quality of Anaesthetia and Analgesia in Intravention Regional Anaesthesia

DR. ALI TARIQ, MBBS

NISHTAR MEDICAL UNIVERSITY, MULTAN, PAKISTAN.

DR. HIRA RASHED, MBBS

NISHTAR MEDICAL UNIVERSITY, MULTAN, PAKISTAN.

DR. AZKA TARIQ, MBBS

NISHTAR MEDICAL UNIVERSITY, MULTAN, PAKISTAN.

ABSTRACT

Objective:- To compare the duration of anaesthesia and the degree of post operative pain relief. **Material and methods:-** This Interventional type of study was carried out in the Anaesthesia department, Nishtar Hospital Multan from January 2017 to January 2018. A total of 100 patients (two groups of 50 patients in each group). **Results:-** The onset of anaesthesia and quality of anaesthesia were better in neostigmine group (P<0.05). Post operative pain relief was also better. No significant difference in hemodynamics and no adverse effects were observed. **Conclusion:-** With the addition of neostigmine in traditional lignocaine solution for IVRA the quality of anaesthesia and analgesia is improved.

Key words:- Intravenous regional anaesthesia, IVRA, lignocaine, neostigmine.

INTRODUCTION

The immediate and most concerned problem of a patient undergoing any surgical procedure is pain. Anticipation for post operative pain makes the patient too much anxious. The International Association for the Study of Pain defines Pain as "an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage^{1,2}. So it can be understood that there is interplay between the objective, physiologic sensory aspects of pain and its subjective, emotional and psychological components.

While dealing with pain, a clinician must have a thorough knowledge of anatomical pathways concerned with the transmission of pain and physiology of perception and transmission of pain. Painful stimulus like that produced by a surgical incision can lead to a hyper excitable state which is the major cause of post operative pain. Now a day, as the life is getting busier and busier, the scope and necessity of Day Care Surgery is also augmenting. Day care surgical units provide services to the patient whose hospital stay is expected to be less than 24 hours and then the patient can be discharged³. In these units, intravenous regional anaesthesia is one of the safest and most reliable forms of anaesthesia for short surgical procedures on the upper extremity^{4,5}. However its use has been limited by tourniquet pain and inability to provide post operative analgesia⁶. But on the other hand, it has been associated with a more favorable patient recovery than general anaesthesia and patient also require lesser analgesia and anti emetics during recovery as compared with general anaesthesia. It also requires less nursing care in post anaesthesia care unit and promotes expedited discharge from the hospital⁷.

An ideal intra venous regional anaesthesia solution should have rapid onset, reduced dose of local anaesthetic and prolonged analgesia. At present, this may only be achieved by addition of various adjuncts to local anaesthetics like morphine, fentanyl, clonidine⁸, tramadol and non steroidal anti inflammatory drugs like ketorolac⁹. Neostigmine is a drug that has been used to reverse the effects of muscle relaxants¹⁰. Intrathecal administration of neostigmine has proved to cause analgesia by inhibition of acetylcholine receptors in the spinal cord¹¹. There are also acetylcholine receptors in peripheral nerves. Therefore, this study is designed to evaluate the effects of neostigmine when added to 0.5% Lignocaine in intravenous regional anaesthesia.

MATERIAL AND METHODS;

This Interventional type of study was carried out in the Anaesthesia department, Nishtar Hospital Multan from January 2017 to January 2018. A total of 100 patients (two groups of 50 patients in each group).

RESULTS

In this study I compared the quality of anesthesia and post operative analgesia in patients undergoing hand and arm surgery divided into two groups of traditional IVRA solution of 40ml of 0.5% lidonaciane in group A and addition of neostigmine 0.5mg in traditional IVRA solution in group B. Hundred patients, fifty patients in each group were included in the study. There were no statistically significant difference in demographic data including age, weight and gender of the patients and ASA status in both groups. (Table-1) Sensory and motor block onset times were statistically shorter in the neostigmine group (P < 0.05). Sensory and motor block recovery times were statistically prolonged in this group also (P < 0.05) (Table 3). There was no statistical difference between groups when compared for heart rate before and after tourniquet inflation, after anesthetic injection, and at 1 and 5 min, but at 10, 15, 20, and 40 min, there was a statistically significant decrease in the neostigmine group (P < 0.05) (Table 4). There was also no statistical difference between groups when compared for MAP and SpO2 at any time (Table 5 and 6). Anesthesia quality determined by the surgeon and dryness of the operative field were found statistically better in the neostigmine group (P < 0.05) (Table 7).

	Group-A (50)	Group-B (50)
Age (years)	27.8 + 10.3	26.7 + 9.1
Weight (Kg)	62 + 7	63 + 6
Male	34 (68%)	34 (68%)
Female	16 (32%)	16 (32%)
Values and mean + SD an averal an and 9/ a sec		

Values are mean ± SD or number and %ages Group A: Inj. Lignocaine 0.5% Group B: Inj. Lignocaine 0.5% + Inj. Neostigmine 0.5 mg

Table 2: Comparison of ASA status

	Group-A (50)	Group-B (50)
ASA-I	34 (68%)	16 (32%)
ASA-II	35 (70%)	15 (30%)

Table 3: Comparison of Onset and Recovery Times of Sensory and Motor Block (min)

	Group A (n=30)	Group B (n=30)
Sensory block onset	10 + 2	4 + 2
time		
Sensory block	3 + 1	7 + 2
recovery time		
Motor block onset	14 + 1	6+2
time		
Motor block recovery	2 +1	5 + 2
time		

P-value < 0.05

Table 4: Comparison of Heart rate

	Group A	Group B
	(n=30)	(n=30)
Before tourniquet	75.4 ± 4.4	74.5 ± 9.4
At tourniquet	79.6 ± 6.3	80.2 ± 13.5
After 1.min.	80.7 ± 5.6	79.7 ± 14.4
After 5.min.	78.5 ± 6.6	76.5 ± 14.8
After 10.min.	78.7 ± 7.9	$71.2 \pm 14.3*$
After 15.min.	78 ± 7.6	$70.6 \pm 13.9*$
After 20.min.	82.4 ± 6.9	$68.4 \pm 14.5*$
After 40.min.	80.5 ± 7.6	$68.5 \pm 7.6*$
After tourniquet	79.7 ± 5.6	74.2 ± 8.2
release		

P-value < 0.05

	Group A	Group B
	(n=30)	(n=30)
Before tourniquet	94.4 ± 13.6	91.2 ± 8.10
At tourniquet	98.5 ± 13.9	95 ± 5.9
After 1.min.	96.6 ± 14.2	93.8 ± 6.60
After 5.min.	97.8 ± 13.5	95.4 ± 7.1
After 10.min.	95.2 ± 15.2	93.1 ± 7.5
After 15.min.	96.7 ± 12.6	94.2 ± 8.4
After 20.min.	93.6 ± 12.6	92.3 ± 7.3
After 40.min.	94.6 ± 12.3	92.2 ± 6.4
After tourniquet	93.4 ± 6.4	90.4 ± 6.7
release		

Table 5: Comparison of Mean arterial pressure

Table 6: Comparison of SpO₂

	Group A	Group B
	(n=30)	(n=30)
Before tourniquet	98.8 ± 0.6	98.9 ± 0.5
At tourniquet	98.8 ± 0.7	98.8 ± 0.6
After 1.min.	98.8 ± 0.7	98.9 ± 0.7
After 5.min.	98.8 ± 0.7	98.8 ± 0.7
After 10.min.	98.9 ± 0.4	98.8 ± 0.6
After 15.min.	98.8 ± 0.7	98.9 ± 0.5
After 20.min.	98.9 ± 0.8	98.9 ± 0.7
After 40.min.	98.8 ± 0.7	98.8 ± 0.7
After tourniquet	98.7 ± 0.7	98.9 ± 0.7
release		

Table 7: Quality of Anesthesia assessed by a Surgeon, and Dryness of the Operation Field
--

	Group A (n=30)	Group B (n=30)
Quality of anesthesia		
(surgeon)	Acceptable	Perfect
Dryness of the operation		
field	Perfect	Perfect

DISCUSSION

IVRA is a technique in which anaesthesia is achieved by instillation of local anaesthetic in a limb through peripheral blood vessels and produces its effects by absorption of local anesthetic. This technique is widely used in isolated forearm and hand surgery. For times, there was a quest for finding a local anesthetic with addition of an adjuvant drug which would allow prolonged duration of anaesthesia and post operative analgesia. For this, various drugs like tramadol, opiods, muscle relaxants and NSAIDs have been frequently used. Studies have shown that there are ACh receptors in peripheral nerves, and in vitro studies have shown that peripheral cholinergic antinociception is caused by neuronal hyperpolarization and by modulation of nitric oxide pathways. ACh induces analgesia via increasing cyclic GMP by generation of nitric oxide^{12,13}. Spinal endogenous ACh plays an important role in mediating the analgesic effect of systemic morphine through both muscarinic and nicotinic receptors that are also present in the peripheral tissue¹⁴. The peripheral analgesic effect of neostigmine has been demonstrated in an animal model of inflamed knee joint in rats¹⁵. Another study of intraarticular administration revealed peripheral analgesic effects in humans¹⁶. However, a recent study performed by Van Elstraete et al in patients undergoing carpal tunnel release showed that neostigmine added to lidocaine for axillary plexus block lacked an analgesic action¹⁷. Peripheral inflammatory conditions, when present, enhance analgesic action may be the lack of an inflammatory process and intact dense lipid coverings of nerves⁶³. Yet, controversy persists. In a study performed by Bouaziz et al neostigmine lacked analgesic effects in a carrageenan-induced hyperalgesia rat model with inflamed tissue¹⁹.

Therefore, we used neostigmine in a block with a very different mechanism of action. IVRA local anesthetic and adjuvants are injected very near to the surgical site, and the tourniquet causes ischemia, which distorts nerve

penetration by oxidative stress and affects the blood-nerve barrier²⁰. Existing ACh receptors in peripheral nerves are also responsible for the action of neostigmine in peripheral analgesia, and ACh plays a role in newly discovered sensory regulatory mechanisms controlled by the motor system²¹. Study results indicate that ACh receptors are present in the soma of many petrosal ganglion neurons, thus supporting the idea that under normal conditions, peripheral sensory processes may be associated with Ach²². The most frequent side effect seen in our study was bradycardia, which may have been because of systemic absorption of neostigmine or its escape during tourniquet inflation. Tourniquet release did not further decrease HR. Nausea seen in one patient may also have been due to systemic absorption. Results of a systematic review by Choyce and Peng 69 suggested that nonsteroidal antiinflammatory drugs (NSAIDs) have the most to offer as adjuncts to IVRA when compared with others. NSAIDs, either as part of IVRA or wound infiltration, resulted in an analgesic benefit lasting longer than the same dose parenterally administrated. Our results revealed a clinically minor postoperative analgesia effect when compared with NSAIDs. Muscle relaxants improve muscle relaxation, facilitate fracture reduction, and improve overall analgesia²³. However, there is a risk of residual muscle weakness that can last several hours. Neostigmine improved muscle relaxation with residual weakness lasting for only a few minutes. Our study presents information about the clinical use of neostigmine as an adjunct in IVRA, however it may also be a useful model for studying the peripheral action of neostigmine in the absence of central effects.

CONCLUSION

With the addition of neostigmine in traditional Lignocaine solution for IVRA the quality of anaesthesia and analgesia is improved.

Reference

1. Morgan GE, Mikhail MS, Murray MJ. Pain management. In: Clinical Anaesthesiology. 4th ed. New york: Lange; 2006. p 359-411.

2. Brennan TJ, Kehlet H. Preventive Analgesia to Reduce Wound Hyperalgesia and Persistent Postsurgical Pain. Anesthesiology 2005; 103:681–3.

3. Rawal N. Analgesia for day case surgery. Br J Anaesth 2001; 87: 73-87.

4. Jafri SM, Rafiq H, Ahmed S, Ghaffar A, Rafiq F. A study about wafer's distal ulner resection procedure in post traumatic ulnar positive variant. Ann KE Med Coll2002;8:253-4.

5. Scott S, Reuben S, Robert B, Maciolek H, Manikantan P. An evaluation of analgesic efficacy of intravenous regional anaesthesia with lidocaine and ketorolac using a forearm versus upper arm tourniquet. Anesth Analg 2002; 95:457-60.

6. Scott S, Reuben S, Robert B, Shari D, Charles S. A Dose-Response Study of Intravenous Regional Anesthesia with Meperidine. Anesth Analg 1999;88:831–5.

7. Cynthia L, Henderson C, Warriner B, James A, McEwen, Pamela M et al. A North American Survey of Intravenous Regional Anesthesia. Anesth Analg 1997;85:858-63.

8. Abdulatif M, El-Sanabary M. Caudal neostigmine, bupivacaine, and their combination for postoperative pain management after hypospadias surgery in children. Anesth Analg 2002;95:1215–8

9. Sunita GN, Swati DR, Shanti PH. Intravenous regional anaesthesia using tramadol hydrochloride and ketorolac: a double blind controlled study. Indian J. Anaesth 2002; 46 : 369-72

10. Ali L Akhtar M. Cardiac arrest following the neuromuscular blockade reversal with neostigmine and Atropine. Professional Med J 2004;11:228-31.

11. Turan A, Memis D, Ümit N, Karamanlıog B, Necdet S. Caudal Ropivacaine and Neostigmine in Pediatric Surgery. Anesthesiology 2003; 98:719–22

12. Duarte IDG, Lorenzetti BB, Ferreira SH. Peripheral analgesia and activation of the nitric oxide-cyclic GMP pathway. Eur J Pharmacol 1990; 186: 289–93

13. Iwamoto ET, Marion L. Pharmacologic evidence that spinal muscarinic analgesia is mediated with an L1 arginine/nitric oxide/cyclic GMP cascade in rats. J Pharmacol Exp Ther 1994; 271: 601–8

14. Chen SR, Pan HL. Spinal endogenous acetylcholine contributes to the analgesic effect of systemic morphine in rats. Anesthesiology 2001; 95: 525–30

15. Buerkle H, Boschin M, Marcus MAE, et al. Central and peripheral analgesia mediated by the acetylcholinesterase-inhibitor neostigmine in the rat inflamed knee joint. Anesth Analg 1998; 86: 1207–32

16. Yang LC, Chen LM, Wang CJ, Buerkle H. Postoperative analgesia by intra-articular neostigmine in patients undergoing knee arthroscopy. Anesthesiology 1998; 88: 334–9

17. Van Elstraete AC, Pastureau F, Lebrun T, Mehdaoi H. Neostigmine added to lidocaine axillary plexus block for postoperative analgesia. Eur J Anaesthesiol 2001; 18: 257–60

18. Hassan AH, Ableitner A, Stein C, Hertz A. Inflammation of the rat paw enhances axonal transport of opioid receptors in the sciatic nerve and increases their density in the inflamed tissue. Neuroscience 1993; 55: 185–95

19. Bouaziz H, Gentili ME, Girard F, et al. Lack of peripheral analgesia mediated by intraplantar administration of neostigmine in carrageen-injected rats. Eur J Anaesthesiol 2001; 18: 303–5.

20. Saray A, Can B, Akbiyik F, Aakar I. Ischaemia-reperfusion injury of the peripheral nerve: an experimental study. Microsurgery 1999; 19: 374–80.

21. Chiou-Tan FY, Chiou GC. Contribution of circulating acetylcholine to sensory nerve conduction augmentation. Life Sci 2000; 66: 1509–18.

22. Varas R, Alcayaga J, Zapata P. Acetylcholine sensitivity in sensory neurons dissociated from the cat petrosal ganglion. Brain Res 2000; 882: 201–5.

23. Choyce A, Peng P. A systematic review of adjuncts for intravenous regional anesthesia for surgical procedures. Can J Anaesth 2002; 49: 32–45.