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Abstract 
The paper presents the study of three species ecological model with Prey N1, predator N2 and competitor to the 
Predator N3 and neutral with the predator N2 with imprecise biological parameters. The model is characterized 
by a set of first order nonlinear ordinary differential equations. Due to the lack of precise numerical information 
of the biological parameters such as prey population growth rate, predator population decay rate and predation 
coefficients, we consider the model with imprecise data as form of an interval in nature. Many authors have 
studied prey–predator harvesting model in different form, here we consider a simple prey–predator model under 
impreciseness and introduce parametric functional form of an interval and then study the model. Equilibrium 
points of the model are identified, the local stability is discussed using Routh - Hurwitz criteria and global 
stability by Liapunov function. The existence of bionomic equilibrium of the system has been discussed and 
optimal harvesting policy is given using Pontryagin’s maximum principle. The stability analysis is supported by 
Numerical simulation using Mat lab. 
Keywords: Prey; Predator; Competitor to the predator; Equilibrium points; interval number, Stability of the 
equilibrium points; Bionomic Equilibrium; Optimal harvesting policy; Pontryagin’s maximum principle; 
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INTRODUCTION 
1. Background 
Mathematical modeling of ecosystems is a field of study which helps us to understand the interactions between 
different species and the mechanisms that influence the growth of species and their existence and stability. 
Mathematical models have been used to study the dynamics of prey-predator systems since Lotka (1925) and 
Volterra (1927). They proposed the simple mathematical model which describes the interaction between prey 
and the predator. Since then, many mathematical models have been constructed based on more realistic explicit 
and implicit biological assumptions. 

Mathematical modeling is a frequently evolving process, to gain a deep understanding of the mathematical 
aspects of the problem and to yield non trivial biological insights; one must carefully construct biologically 
meaningful and mathematically tractable population models. Some of the aspects that need to be critically 
considered in a realistic and plausible mathematical model include; carrying capacity which is the maximum 
number of prey that the ecosystem can sustain in the absence of predator, competition among prey and predators 
which can be intraspecific or inter specific, harvesting of prey or predators and functional responses of the 
predators. 

In this research work, a mathematical model to study the ecological dynamics of prey and predator system 
is proposed and analyzed. And also as an example some of the prey and predator system in some areas be studied.  
 
1.1  Pre-Requisite Mathematics 
1.1.1  Interval Number 
Interval arithmetic, interval mathematics, interval analysis, or interval computation, is a method developed by 
mathematicians since the 1950s and 1960s as an approach to putting bounds on rounding errors and 
measurement errors in mathematical computation and thus developing numerical methods that yield reliable 
results. Very simply, it represents each value as a range of possibilities. For example, instead of estimating the 
height of someone using standard arithmetic as 2.0 meters, using interval arithmetic we might be certain that 
person is somewhere between 1.97 and 2.03 meters. 
An interval number Α is represented by closed interval ��� , ��� and defined by: � 	 ��� , ��� 	 
�: ��  �  �� , � ∈ R� 
Where � is the set of real numbers and �� , ��  are the left and right limit of the interval number respectively. Also 
every real number � can be represented by the interval number as [�,�] for all 
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 � ∈ � 
Classical arithmetic defines operations on individual numbers; interval arithmetic defines a set of operations on 
intervals.  � � � 	 
 �	| there is some � in �, and some � in �, such that �	 	 	� � � }. 
The basic operations of interval arithmetic are, for two intervals [�, b] and [c, d] that are subsets of the real line ��∞,∞�, 

i. [ ] [ ] [ ],,,, dbcadcba ++=+  

ii. [ ] [ ] [ ],,,, dbcadcba −−=−  
iii. ��, �� � ��, �� 	 � !"
� � �, � � �, � � �, � � ��, ��
� � �, � � �, � � �, � � ��� 
iv. ��, �� # ��, �� 	 � !"
� # �, � # �, � # �, � # ��, ��
� # �, � # �, � # �, � # ���, when 0 is not in ��, �� 

Division by an interval containing zero is not defined under the basic interval arithmetic. Instead of working with 
an uncertain real � we work with the two ends of the interval [�, b] which contains x  such that x  lies between � and b, or could be one of them. Similarly a function % when applied to x  is also uncertain. Instead, in interval 

arithmetic % produces an interval [�, b] which is all the possible values for %��� for all � ∈ [ ].,ba   
1.1.2 Interval-Valued Function 
Let �>0, b>0 and consider the interval [�, b]. From a mathematical point of view, any real number can be 
represented on a line. Similarly, we can represent an interval by a function. If the interval is of the form [�, b], 

the interval-valued function is taken as 
( ) ( )ba ppph −

=
1

for [ ]1,0∈p . 
Here we present some arithmetic operations on interval valued functions as follows: Let � 	 ��� , �&�  and ' 	 ��� , �&� be two interval numbers. 
Addition: � ( ' 	 ��� , �&	� ( ��� , �&	� 	 ��� ( �� , �& ( �&� Provided	�� ( �� ) 0. The interval-valued function 
for the interval BA + is given by *�+� 	 �,�-./��0/ where �, 	 �� ( �� and �0 	 �& ( �&.  
Subtraction: � � ' 	 ��� , �&	� � ��� , �&	� 	 ��� � �� , �& � �&� . Provided �� � �� ) 0 . The interval – valued 
function for the interval BA − is given by *�+� 	 �,�-./��0/ where �, 	 �� � �� and �0 	 �& � �&. 

Scalar multiplication: 1� 	 1��� , �&� 	 2�1�� , 1�&�!%	1 3 0�1�& , 1���!%	1 4 0 provided �� ) 0	and �& ) 0. The interval valued 

function for interval Aα is given by *�+� 	 �,�-./��0/if 0≥α and 

 *�+� 	 ��,�-./��0/	if 0<α , where ∁,	 1�� , ∁0	 1�& , �0 	 |1|�&	and �, 	 |1|��. 
1.1.3 Pontryagin's Maximum Principle 
Pontryagin's maximum principle is a powerful method for the computation of optimal controls, which has the 
crucial advantage that it does not require prior evaluation of the informal cost function. Let �, �  and 7  are 
differentiable function in	8 and � with continuous derivatives, and that the stopping set D is a hyper plane, thus 

{ } Σ+= yD  for some � ∈ 9: and some vector subspaceΣ of  9:.  
Define for ; ∈ 9: the Hamiltonian function as: Η�8, �, =, ;� 	 ;>��8, �, =� � ��8, �, =� 
Pontryagin's maximum principle states that if  ��? , =?�  @ is optimal, then there exist adjoint 

Paths 
( ) τλ ≤t t  in 9: and 

( ) τµ ≤t t  in 9		with the following properties for all τ≤t  
( ) µλ ttt utH x +,,,

has maximum value 0, at the point = 	 =? 
−=λ&t

T
( ) ( )uxux tttt

T
tctbt ,,,, ∇−∇λ  

( ) ( )uxux tttt

T

t
tctbt ,,,, &&& −∇=λµ

 
( )uxx ttt tb ,,&

& =
 

Moreover the following transversality conditions hold:��? , =?�  @ 
i) 

( ) 0, =




 ∇+ σττ τλ xC

T

 or all Σ∈σ  and, in the time-unconstrained case 
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ii) 
( ) 0, =+ xC

ττ
τµ &

 

Note that, in the time-unconstrained case, if �, � and 7 are time-independent functions, then 
0=µ t for 

all 8 
The Hamiltonian serves as a way of remembering the first four statements, which could be expressed 
alternatively as: 

i. 
0=

∂
Η∂
u  

ii. 
λ&=

∂
Η∂

−
x  

iii. 
µ&=

∂
Η∂

−
t  

iv. 
x&=

∂
Η∂
λ  

The condition ABA& 	 0 is not always correct. For example in cases where the set of actions is an interval and 
where the maximum is achieved at an endpoint 

 
2. MODEL FORMULATION AND ANALYSIS 
In section deals with the mathematical modeling of the prey-predator dynamics where there are two predators 
which compete for the same limited resources. In addition, the section deals with the stability analysis of the 
equilibrium points and the numerical simulation of the model. 
Parameter  Parameter Definition  
R net economic rent CD, ! 	 1,2,3 harvesting efforts H  instantaneous annual rate of discount ID, ! 	 1,2,3 catch ability coefficients �D , ! 	 1,2,3  harvesting cost per unit effort 

Table 3.1 Definition of some parameters  
 

2.1 Prey–Predator Model 
The ecological model is as follows. There is one prey and two predators, where the two predators are competes 
with each other for the use of common recourse i.e. food. But the two predators cannot eat each other (one is not 
eaten by the other). By assuming that the predator and competitor to the predator have alternative food in 
addition to prey population (but the competitor to the predator can’t eat the prey population), then the model for 
one Prey and two Predator and harvesting on the both species is given by the following system of first order 
ordinary differential equations employing the following notation:  

Let N1 denotes the size of the prey population, N2 denotes the size of the predator population and N3  
denotes the size of the competitor to the predator population, lets assuming that there is demand for all species in 
the market so the harvesting of both species are carried out. Let prey, predator and competitor to the predator 
species are subjected to harvesting efforts (effort applied to the harvest the prey, predator and competitor species) 
E1, E2 and E3 respectively. Then the dynamics of the prey-predator is described by:  
     JKLJ? 	 	MN- � 1-�N-�O � P-N-NO � I-Ε-N-                                                                       (3.1) 
 
      JKRJ? 	 	SNO � 1O�NO�O ( PON-NO � H-NONT � IOΕONO                                                     (3.2) 

      JKUJ? 	 	ℓNT � 1T�NT�O � PTNONT � ITΕTNT                                                                      (3.3)                                    
where M, S and ℓ are natural growth rate of prey, predator and competitor to the predator species respectively. 
Whereas: 1-is rate of decrease of the prey population due to inter species competition P-is rate of decrease of the prey population due to inhibition by the predator population, 1Ois rate of decrease of the predator population due to inter species competition, POis rate of increase of the predator population due to successful attacks on the prey population, H-is rate of decrease of the predator population due to the competition with the third    species(competitor),  1Tis rate of decrease of the competitor population to the predator population due to inter species competition, 
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PT	 is rate of decrease of the competitor population due to the competition with the third species(predator 
population).  Where all the parameter values 1-, 1O, 1T, P-, PO, PT and H- are non-negative real numbers.  
It is assumed that the prey reproduction is influenced by the predator only while the predator reproduction is 
limited by the amount of prey caught. It is also assumed that the prey population grows exponentially with the 
rate r  in absence of predator and also predator population growth exponentially in the absence of prey by 
alternative food with a rate S . But the competitor to the predator can’t change in the absence of the prey 
population. Where	I-, IO, ITare the catch ability coefficients of three species and strictly positive. The catch-rate 
function: I-Ε-N-, IOΕONO, ITΕTNT are based on CPUE (catch-per unit-effort). 
 
2.2 Imprecise Prey – Predator Model  
By the construction of the prey–predator model the parameters such as prey population growth rate r, predator 
population growth rate s, competitor to the predator growth rate ℓ and predation coefficients 1-, 1O, 1T, P-, PO, PT 
and H-  are positive in nature and are considered precise. Intuitively if any of the parameters are imprecise, 
furthermore when any parameter of the right hand side of equations (3.1) - (3.3) are interval number rather than a 
single value, then it is not so straight forward to convert equations to the standard form like (3.1), (3.2) and (3.3).  
For an imprecise coefficient we present the problem with an interval coefficient. 
2.2.1 Prey – Predator Model with Interval Coefficient 
Let M̂, Ŝ, ℓX, 1Y-, 1YO, 1YT, PZ-, PZO, PZT and HZ-be the interval counterparts of, M, S, ℓ, 1-, 1O	, 1T, P-, PO, PT		 
and H- respectively, then the prey–predator model with combined harvesting efforts E1, E2 and E3 can be written 
in the following form: 
      JKLJ? 		 M̂N- � 1Y-�N-�O � PZ-N-NO � I-Ε-N-                                                                      (3.4) 

      JKRJ? 		 ŜNO � 1YO�NO�O ( PZON-NO � HZ-NONT � IOΕONO                                                     (3.5) 

      JKUJ? 		ℓXNT � 1YT�NT�O � PZTNONT � ITΕTNT                                                                      (3.6)                
Where  
 M̂ ∈ �M� , M&�, Ŝ ∈ �S� , S&�, ℓX ∈ �ℓ� , ℓ&�, 1Y- ∈ ��1-�� , �1-�&�, 1YO ∈ ��1O��	, �1O�&�,	 1YT ∈ ��1T�� , �1T�&�, PZ- ∈ ��P-��	, �P-�&�, PZO ∈ ��PO��	, �PO�&�, PZT ∈ ��PT�� 	, �PT�&� and 
 HZ- ∈ ��H-�� , �H-�&� With M� , S� , ℓ� , �1-�� , �1O�� , �1T�� , �P-�� , �PO�� , �PT�� ,	and �H-�� are all positive.   
2.2.2 Prey–Predator Model with Parametric Interval Valued Function Coefficient 
The parametric form of the equations (3.4), (3.5) and (3.6) are: JKL�?;/�J? 	 �M��-./�M&�/N- � ��1-�&�-./��1-���/N-O � ��P-�&�-./��P-���/N-NO � I-Ε-N-           (3.7) �NO�8; +��8 	 �S��-./�S&�/NO � ��1O�&�-./��1O���/NOO ( ��PO���-./��PO�&�/N-NO 
                   ���H-�&�-./��H-���/NONT � IOΕOΝO																					                                                            (3.8)                                            JKU�?;/�J? 	 �ℓ��-./�ℓ&�/NT � ��1T�&�-./��1T���/NTO � ��PT�&�-./��PT���/NONT � ITΕTNT         (3.9) 
Theorem 1: The differential equations with interval valued coefficient       JKLJ? 		 M̂]N- � 1Y]�N-�O � PZ]N-NO � I-Ε-N-                                                                         (3.10) 

  JKRJ? 		 Ŝ]NO � @̂]�NO�O ( Ŷ]N-NO � HZ]NONT � IOΕONO                                                        (3.11) 

 JKUJ? 		ℓX]NT � _Y]�NT�O � X̀]NONT � ITΕTNT                                                                               (3.12) 
Where M̂] ∈ �M� , M&�, Ŝ] ∈ �S� , S&�, ℓX] ∈ �ℓ� , ℓ&�, 1Y] ∈ �1� , 1&�, PZ] ∈ �P� , P&�,	 @̂] ∈ �@� , @&�, Ŷ] ∈ �^�	, &̂�, HZ] ∈ �H�	, H&�, _Y] ∈ �_� 	, _&� and  X̀] ∈ �`� , `&� 
Also M� , ℓ� , S� , 1� , P� , @�, ^� , _� , H� and `�  (are all > 0) are provided interval valued functional form of coefficient by 
the differential equations: JKL�?;/�J? 	 �M��-./�M&�/N- � �1&�-./�1��/N-O � �P&�-./�P��/N-NO � I-Ε-N-                              (3.13) �NO�8; +��8 	 �S��-./�S&�/NO � �@&�-./�@��/NOO ( �^��-./� &̂�/N-NO ��H&�-./�H��/NONT � IOΕOΝO																					                                                                                       (3.14) JKU�?;/�J? 	 �ℓ��-./�ℓ&�/NT � �_&�-./�_��/NTO � �`&�-./�`��/NONT � ITΕTNT                           (3.15) 

for ]1,0[∈p . 
Proof:   Replacing in place of M̂], Ŝ], ℓX], 1Y], PZ], @̂], Ŷ], HZ], _Y] and  X̀] by �M� , M&�, �S� , S&�, �ℓ� , ℓ&�, �1� , 1&�,�P� , P&�, �@� , @&�, �^�	, &̂�, �H�	, H&�, �_� 	, _&� and  �`� , `&� respectively, then equation (3.10), (3.11) and (3.12) 
will be come: JKLJ? 	 �M� , M&�N- � �1� , 1&��N-�O � �P� , P&�N-NO � I-Ε-N-                                                   (3.16) 
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JKRJ? 	 �S� , S&�NO � �@� , @&��NO�O ( �^� , &̂�N-NO � �H� , H&�NONT � IOΕONO                          (3.17) JKUJ? 	 �ℓ� , ℓ&�NT � �_� , _&��NT�O � �`� , `&�NONT � ITΕTNT                                                (3.18) 
 Let M-a ∈ �M� , M&�, S-a ∈ �S� , S�, ℓ-a ∈ �ℓ� , ℓ&�, 1-a ∈ �1� , 1&�, @-a ∈ �@� , @&�, _-a ∈ �_� , _&�, P-a ∈ �P� , P&�, ^-a ∈ �^� , &̂�, H-a ∈ �H�, H&�  and `-a ∈ �`� , `&�  respectively. Following the interval arithmetic operation and properties, 
equations (3.16), (3.17) and (3.18) reduces to: JbLJ? 	 M-aΝ- � 1-aΝ-O � P-aΝ-ΝO � I-Ε-Ν-                                                                             (3.19) JbRJ? 	 S-aΝO � @-aΝOO ( ^-aΝ-ΝO � H-aΝOΝT � IOΕOΝO                                                           (3.20) JbUJ? 	 ℓ-aΝT � _-aΝTO � `-aΝOΝT � ITΕTΝT                                                                                 (3.21)                         

For fixed " , let us consider the interval-valued function *:�/� 	 �:�-./��:�/�  for [ ]1,0∈p  and interval 1: ∈ ��:, �:�.  Since *:�/� is a strictly increasing and continuous functions, then the above equation reduces to: JbLJ? 	 M-aaΝ- � 1-aa�Ν-�O � P-aaΝ-ΝO � I-Ε-Ν-                                                                                  (3.22) JbRJ? 	 S-aaΝO � @-aa�ΝO�O ( ^-aaΝ-ΝO � H-aaΝOΝT � IOΕOΝO                                                                (3.23) JbUJ? 	 ℓ-aaΝT � _-aa�ΝT�O � `-aaΝOΝT � ITΕTΝT                                                                                  (3.24)  
Where M-aa ∈ �M��-./�M&�/ , S-aa ∈ �S��-./	�S&�/ , ℓ-aa ∈ �ℓ��-./	�ℓ&�/ , 1-aa ∈ �1&�-./	�1��/ , @-aa ∈ �@&�-./	�@��/ , _-aa ∈�_&�-./	�_��/, P-aa ∈ �P&�-./	�P��/, ^-aa ∈ �^��-./	� &̂�/, H-aa ∈ �H&�-./	�H��/,  `-aa ∈ �`&�-./	�`��/ and + ∈ �0, 1�.  
Therefore the parametric form of the differential equations (3.10) - (3.12) is given by: 
 JbLJ? 	 �M��-./�M&�/Ν- � �1&�-./	�1��/Ν-O � �P&�-./	�P��/Ν-ΝO � I-Ε-Ν-                                                                                                                             
 JbRJ? 	 �S��-./	�S&�/ΝO � �@&�-./	�@��/ΝOO ( �^��-./	� &̂�/Ν-ΝO � �H&�-./	�H��/ΝOΝT � IOΕOΝO                                                                                                                              
 JbUJ? 	 �ℓ��-./	�ℓ&�/ΝT � �_&�-./	�_��/ΝTO � �`&�-./	�`��/ΝOΝT � ITΕTΝT for ]1,0[∈p .   
 
2.3  Dynamic Behavior of the Harvesting Model 
2.3.1 Equilibrium States of Prey-Predator Model with Parametric Interval Coefficient 
The system under investigation has eight equilibrium states given by: 

                           JKc�?,/�J? 	 0, ! 	 1,2,3	                                                                                       (3.25) 
The possible equilibrium points of the systems are:  
I. The extinct state: 

                                                     Νd- 	 0, ΝdO 	 0 and ΝdT 	 0                                                    (3.26) 
II. The state in which both the predator and competitor to the predator washed out and prey survive: 
That is: ΝdO 	 ΝdT 	 0 and Νd- 		 e.fLgLh , where � 	 �M��-./�M&�/ and � 	 	 ��1-�&�-./��1-���/ 

                                                         ij.kLgLl , 0,0m                                                                            (3.27) 
III. The state in which only the predator survives and the prey and competitor to the predator are washed 

out: 
That is: Νd- 	 ΝdT 	 0 and ΝdO 		 J.fRgRn   where � 	 �S��-./�S&�/ and o 	 ��1O�&�-./��1O���/ 

                                                      i0, J.fRgRn , 0m                                                                              (3.28) 
IV.  The state in which both the prey and the predators washed out and competitor to the predator 

survive: 
That is: Νd- 	 ΝdO 	 0 and ΝdT 		 p.fUgUq   where * 	 �ℓ��-./�ℓ&�/ and r 	 ��1T�&�-./��1T���/ 

                                                           i0, 0, p.fUgUq m                                                                       (3.29) 
V. The state in which both the prey and the predators stay alive and competitor to the predator vanishes: 
That is: ΝdT 	 0  �M��-./�M&�/Νd- � ��1-�&�-./��1-���/Νd-O � ��P-�&�-./��P-���/Νd-ΝdO � I-Ε-Νd- 	 0           
And 
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�S��-./�S&�/ΝdO � ��1O�&�-./��1O���/ΝdOO ( ��PO���-./��P-�&�/Νd-ΝdO � IOΕOΝdO 	 0               (3.30) 
Solving for Νd- and ΝdO from the 2nd and 3rd equations that given in equation (3.30) yields: Νd- 	 n�e.fLgL�st�JsfRgR�hnstu   and  ΝdO 	 u�e.fLgL�.h�JsfRgR�hnstu  
where	� 	 �M��-./�M&�/, � 	 ��1-�&�-./��1-���/, � 	 ��P-�&�-./��P-���/,  
         � 	 �S��-./�S&�/,  o 	 ��1O�&�-./��1O���/ and	% 	 ��PO�&�-./��PO���/  
Also assuming that � � I-Ε- ) 0, then these equilibrium states’ exist only when: 

( ) ( )ΕΕ +>− 2211 qq dbaf
 

VI. The state in which both prey and competitor to the predator exist and predator extinct: 
That is: 

                                               ΝOvvvv 	 0, Ν-vvvv 	 e.fLgLh  and ΝdT 	 p.fUgUq                                       (3.31) 
where � 	 �M��-./�M&�/, � 	 ��1-�&�-./��1-���/,  
         * 	 �ℓ��-./�ℓ&�/ and  r 	 ��1T�&�-./��1T���/  
The equilibrium state exists when: � � I-Ε- ) 0 and * � ITΕT ) 0 
VII. The state in which both Predator and Competitor to the Predator exist and Prey washed out: 
That is:  N-vvv 	 0, �S��-./�S&�/ΝOvvvv � ��1O�&�-./��1O���/�ΝOvvvv�O � ��H-�&�-./��H-���/ΝOvvvvΝTvvvv � IOΕOΝOvvvv 	 0 and �ℓ��-./�ℓ&�/ΝTvvvv � ��1T�&�-./��1T���/�ΝTvvvv�O � ��PT�&�-./��PT���/ΝOvvvvΝTvvvv � ITΕTΝTvvvv 	 0           (3.32) 
Solving for NdO and NdTfrom the 2nd and 3rd equations that given in equation (3.32) yields: ΝdO 	 r�� � IOΕO� � w�* � ITΕT�or �  w 	�"�		ΝdO 	 o�* � IOΕO� �  �� � ITΕT�or �  w  

where	� 	 �S��-./�S&�/, o 	 ��1O�&�-./��1O���/, w 	 ��H-�&�-./��H-���/,  
       * 	 �ℓ��-./�ℓ&�/,  r 	 ��1T�&�-./��1T���/ and	 	 ��PT�&�-./��PT���/   
 
Assuming that � � IOΕO ) 0, * � ITΕT ) 0, * � IOΕO  and � � ITΕT ) 0, then these equilibrium states’ exist 
only when:  r�� � IOΕO� ) w�* � ITΕT�, o�* � IOΕO� )  �� � ITΕT�	�"�	or )  w 
VIII. Co-existence State 

( )( ) ( ) ( )
( ) cfkgmekb

hcgdkcgmeka EqEqEq
N +−

−+−−−−
=

332211
1

 
( ) ( ) ( )

( ) cfkgmekb

hgbdbkafk EqEqEq
N +−

−−−+−
=

332211
2

 
and 

( )( ) ( ) ( )
( ) cfkgmekb

dbmafmcfbeh EqEqEq
N +−

−−−−+−
= 221133

3
 

where	� 	 �M��-./�M&�/, � 	 ��1-�&�-./��1-���/, � 	 ��P-���-./��P-�&�/, w 	 ��H-�&�-./��H-���/,	� 	 �S��-./�S&�/, o 	 ��1O�&�-./��1O���/,	% 	 ��PO���-./��PO�&�/, 	* 	 �ℓ��-./�ℓ&�/,  r 	 ��1T�&�-./��1T���/ and	 	 ��PT���-./��PT�&�/ 
Assuming that � � IOΕO ) 0, * � ITΕT ) 0 and � � I-Ε- ) 0, then these equilibrium states’ exists only when: 

( ) ( )( ) ( )EqqEq dkcgmekahcg 221133
−>−−+− Ε  and

( ) ( ) ( )Ε−>−+− 332211 qEqEq hgbdbkafk
 

2.3.2 Stability Analysis  
To  investigate  the  stability  of  the  equilibrium  states  we  consider  small  perturbations u1, u2 and u3 in N1, N2 
and N3 over Νd-, ΝdOand ΝdT	respectively, so that  Ν- 	 Νd- ( =-, ΝO 	 ΝdO ( =O, ΝT 	 ΝdT ( =T                                                                                 (3.33) 

 
 By  substituting  (3.33)  in to equations  (3.1) - (3.3) and  neglecting  second  and  higher  order terms of  the 
Perturbations =-, =Oand =Twe get the equations of the perturbed state: 

                                              JxJ? 	 yx                                                                                                (3.34) 
Where x 	 �=-, =O, =T� and  
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y 	 z� � 2�Νd- � �ΝdO � I-Ε- ��Νd- 0%ΝdO � � 2oΝdO ( %Νd- � wΝdT � IOΕO �wΝdO0 � ΝdT * � 2rΝdT � ΝdO � ITΕT{(3.35)                                         

The characteristic equation for the system is: 
                                                         ��y � ;Ι� 	 0                                                                            (3.36) 

The equilibrium state is stable, if three roots of the equation (3.36) have negative real parts. 
Solving for �, d and h from the equation (3.1) - (3.3) respectively and substituting in to the equation (3.35) we 
obtain the variational matrix:  

                                                 y 	 z��Νd- ��Νd- 0%ΝdO �oΝdO �wΝdO0 � ΝdT �rΝdT{                                             (3.37) 

Where � 	 �Νd- ( �ΝdO ( I-Ε-, � 	 oΝdO � %Νd- ( wΝdT ( IOΕO	�"�	* 	 rΝdT ( ΝdO ( ITΕT 
2.3.2.1 Local Stability Analysis 
The local and global stability of the equilibrium states I, II, III and IV are found to be unstable. But the reaming 
is stable. We restricted our study to the equilibrium states V, VI, VII and VIII. 

i. Stability of the Equilibrium State �}d~, }d�, ��: 
The variational matrix at the trivial equilibrium point will become: 

                 y 	 z� � 2�Νd- � �ΝdO � I-Ε- ��Νd- 0%ΝdO � � 2oΝdO ( %Νd- � IOΕO �wΝdO0 0 * �  ΝdO � ITΕT{ (3.38) 

The Characteristic equation of the above variational matrix is given by: ��y � ;Ι� 	 0 
 

One of the Eigen values of variational matrix Α is ; 	 �* � ITΕT� �  ΝdO and the other two are obtained 
from the quadratic equation: 

                                         ;O ( ��Νd- ( oΝdO�; ( ��o ( �%�Νd-ΝdO 	 0                                  (3.39) 
In (3.39), the sum of the roots, ���Νd- ( oΝdO� , is negative and the product of the roots, 
 ��o ( �%�Νd-ΝdO, is positive. Therefore the roots of (3.39) are real and negative or complex conjugates having 
negative real parts. Thus the equilibrium point is asymptotically stable when  �* � ITΕT� 4  ΝdO. 
ii. Stability of the Equilibrium State at �}d~, �, }d��: 
The variational matrix at the trivial equilibrium point (state) is:  

                                   y 	 z� � 2�Νd- � I-Ε- ��Νd- 00 � ( %Νd- � wΝdT � IOΕO 00 � ΝdT * � 2rΝdT � ITΕT{   (3.40) 

The roots of the corresponding characteristic equations are: ;- 	 ��� � I-Ε-�, ;O 	 � ( %� �� � I-Ε-� � wr �* � ITΕT�	�"�	;T 	 ��* � ITΕT�	 
The equilibrium point is asymptotically stable when � ( uh �� � I-Ε-� 4 �q �* � ITΕT�.  
iii. Stability of the equilibrium state at ��, }d�, }d��: 
The variational matrix at the trivial equilibrium point (state) is: y 	 z� � �ΝdO � I-Ε- 0 0%ΝdO � � 2oΝdO � wΝdT � IOΕO �wΝdO0 � ΝdT * � 2rΝdT � ΝdO � ITΕT{ 

 
One of the Eigen values of variational matrix	y is ;- 	 �� � I-C-� � �NdO and the other two are obtained from 
the quadratic equation: 
                                 ;O ( �oNdO ( rNdT�; ( �or � w �NdONdT 	 0                                                                 (3.41) 
 
In (3.41), the sum of the roots ��oNdO ( rNdT� is negative and the product of the roots  �or � w �NdONdT is positive. Therefore the roots of (3.41) are real and negative or complex conjugates having 
negative real parts. Thus the state will be asymptotically stable when 
 �� � I-C-� 4 �NdO. 
iv. Stability of the positive interior equilibrium point  
The variational matrix at the positive interior equilibrium point is: 
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y 	 z��Νd- ��Νd- 0%ΝdO �oΝdO �wΝdO0 � ΝdT �rΝdT{ 
In this case the characteristic equation is given by: 

                                                                ;T ( �-;O ( �O; ( �T 	 0                                                        (3.42)                                   
where  
   �- 	 �Nd- ( oNdO ( rNdT, 	�O 	 �rNd-NdT ( �or � w �NdONdT ( ��o ( �%�Nd-NdO and  
   �T 	 ��or ( �%r � �w �Nd-NdONdT    
By Routh-Hurwitz criteria, all eigen values have negative real parts if and only if  �- 	 �- ) 0, �O 	 �-�O � �T ) 0 and �T 	 �T��-�O � �T� ) 0     

But	�- 	 �- ) 0, �O 	 �-�O � �T ) 0 and �T 	 �T��-�O � �T� ) 0 if gmek >  

The positive interior equilibrium point �Νd-, ΝdO, ΝdT� is locally stable if .gmek >  
2.3.2.2 Global Stability 
Theorem 2: The equilibrium point �Νd-, ΝdO, ΝdT� is globally asymptotically stable.  
Proof: 
Let consider the function which defined as: ��Νd-, ΝdO, ΝdT� 	 2Ν- � Νd- � Νd- ln �Ν-Νd-�� ( 2ΝO � ΝdO � ΝdO ln �ΝOΝdO�� ( 2ΝT � ΝdT � ΝdT ln �ΝTΝdT�� 

for Ν- ) Νd-, ΝO ) ΝdO and ΝT ) ΝdT.                                        
Now we prove that the function V is a Liapunov function. For this we need to show that: 

i. V is continues and positive definite function  
ii. J�J?   is negative semi definite 

Now  
i. The function V  is positive definite, since N- ) Νd-, NO ) ΝdO and NT ) ΝdT.  

ii. Now, differentiating V with respect to ''t  we obtain:  J�J? 	 i1 � bdLbLm JbLJ? ( i1 � bdRbRm JbRJ? ( i1 � bdUbUm JbUJ?   

    		 ibL.bdLbL m JbLJ? ( ibR.bdRbR m JbRJ? ( ibU.bdUbU m JbUJ?                                                                  (3.43) 
 

Substituting (3.1), (3.2) and (3.3) in to (3.43) we obtain:  ���8 	 �N- � Nd-��� � �N- � �N- � I-N-� ( �NO � NdO��� � oNO ( %N- � wNT � IONO� ( 
                                                                                             �NT � NdT��* � rNT � NO � ITNT� 
               		���N- � Nd-�O � �o ( -O �� � % ( w ( �� �NO � NdO�O � �r ( -O � ( w�� �NT � NdT�O 4 0   

This implies that J�J?  negative semi definite. Therefore, �Nd-, NdO, NdT� is globally asymptotically stable. 
Theorem 3: The systems (3.1) – (3.3) cannot have any limit cycle in the interior of the positive quadrant. 
Proof: Let Η�Ν-, ΝO, ΝT� 	 -bLbRbU 
                    *-�Ν-, ΝO, ΝT� 	 �Ν- � ��Ν-�O � �Ν-ΝO � q-E-Ν- 

                 *O�Ν-, ΝO, ΝT� 	 �ΝO � o�ΝO�O ( %Ν-ΝO � wΝOΝT � qOEOΝO	and               
                 *T�Ν-, ΝO, ΝT� 	 *ΝT � r�ΝT�O � ΝOΝT � qTETΝT. Then            Η�Ν-, ΝO, ΝT� ) 0 in the interior of positive octant of xyz -space.  Because Ν-, ΝO and ΝT are all greater than 

zero.  
Now � �Ν-, ΝO, ΝT� 	 	 AAbL �Η*-� ( AAbR �Η*O� ( AAbU �Η*T� 
                                 		 .hbRbU � nbLbU � qbLbR 
                                  		� � hbRbU ( nbLbU ( qbLbR� 4 0                                                                                     

This shows that � �Ν-, ΝO, ΝT� does not change sign and identically zero in the positive octant of xyz  space. By 
Bendixson - Dulac criteria, it follows that the system (3.1) – (3.3) has no closed trajectories and hence no 
periodic solutions in the positive octant of xyz  space. Thus the system (3.1) - (3.3) cannot have any limit cycles 
in the interior of the positive octant.  
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2.4  Bionomic equilibrium of the imprecise prey–predator model 
The bionomic equilibrium is nothing but the combination of the concepts of biological equilibrium as well as 
economic equilibrium. The biological equilibrium is given by equation (3.25). It is the study of the dynamics of 
living resources using economic models. Economic equilibrium is said to be achieved when the total revenue 
obtained by selling the harvested biomass (TR) equals to the total cost for the effort devoted to the harvesting 
(TC). 
To discuss the bionomic equilibrium of the imprecise prey, predator and competitor to the predator model, we 
consider the following parameters. 
Let �-be the harvesting cost per unit effort for prey species, +-be the price per unit biomass of the prey, �O be the 
harvesting cost per unit effort for predator species, +Obe the price per unit biomass of the predator, �T	be the 
harvesting cost per unit effort for competitor to the predator species and +T be the price per unit biomass of the 
competitor to the predator species, Then the net economic rent (net revenue) for the prey, predator and 
competitor to the predator at any time is given by: 
             � 	 �+-I-Ν- � �-�Ε- ( �+OIOΝO � �O�ΕO ( �+TITΝT � �T�ΕT 	 �- ( �O ( �T 
Where �- 	 �+-I-Ν- � �-�Ε-, �O 	 �+OIOΝO � �O�ΕO and �T 	 �+TITΝT � �T�ΕT.  �-, �O  and �T  represent the net revenues for the prey, predator and competitor to the predator species 
respectively.  
The bionomic equilibrium 
�Ν-��, �ΝO��, �ΝT��, �E-��, �EO��, �ET��� is given by the following simultaneous 
equations.  

                                                ��� �Ν- � ��Ν-�O � �Ν-ΝO � I-Ε-Ν- 	 0																																												�ΝO � o�ΝO�O ( %Ν-ΝO � wΝOΝT � IOΕOΝO 	 0																								*ΝT � r�ΝT�O � ΝOΝT � ITΕTΝT 	 0																																				�+-I-Ν- � �-�Ε- ( �+OIOΝO � �O�ΕO ( �+TITΝT � �T�ΕT 	 0   (3.44) 

 
In order to determine the bionomic equilibrium we come across the following cases.  
Case (1): When �O ) +OIOΝO  and �T ) +TITΝT , the cost is greater than revenue for the predator and 
competitor to the predator species, then the predator and competitor to predator species are not harvested. The 
predator and competitor to the predator harvesting is stopped �ΕO 	 0, ΕT 	 0�. Then only prey harvesting 
remains operational ��- 4 +-I-Ν-�. Therefore ΕO 		ΕT 	 0 and �- 4 +-I-Ν-, we have�N-�� 	 tL/LfL. 
Case (2): When �- ) +-I-Ν- and �T ) +TITΝTthe cost is greater than revenue for the prey and competitor to 
the predator species, then the prey and competitor predator species are not harvested. The prey and competitor 
to the predator harvesting is stopped�Ε- 	 0, ΕT 	 0�. Then only predator harvesting remains operational �O 4 +OIOΝO. Therefore Ε- 		ΕT 	 0 and �O 4 +OIOΝO, we have�ΝO�� 	 tR/RfR.   
Case (3): When �- ) +-I-Ν-and	�O ) +OIOΝO , the cost is greater than revenue for the prey and predator 
species, then the prey and predator species are not harvested. The prey and predator harvesting is 
stopped�Ε- 	 ΕO 	 0�. Then only predator harvesting remains operational ��T 4 +TITΝT�. Therefore Ε- 	 ΕO 	 0and �T 4 +TITΝT, we have�ΝT�� 	 tU/UfU.  
Case (4): When �- ) +-I-Ν-,	�O ) +OIOΝO and 	�T ) +TITΝT then the cost is greater than revenues for both 
species and the whole harvesting will be closed.  
Case (5): When �- 4 +-I-Ν-,	�O 4 +OIOΝO and 	�T 4 +TITΝT the cost is less than the revenue for both species, 
then both species is harvested. This implies that the revenues for both species being positive; so the whole 
harvesting will be in operation (the system becomes operational). In this case �Ν-�� 	 tL/LfL , �ΝO�� 	 tR/RfR 
and �ΝT�� 	 tU/UfU. By substituting the values of �Ν-��, �ΝO�� and �ΝT�� in to the 1st, 2nd, and 3rd equation of 
(3.44) we obtain: 

                         �Ε-�� 	 -fL �e/L/RfLfR.h/RfRtL.t/LfLtR/L/RfLfR �                                                       (3.45) 

                      �ΕO�� 	 -fR �J/L/R/UfLfRfU.n/L/UfLfUtRsu/R/UfRfUtL.�/L/RfLfRtU/L/R/UfLfRfU �                    (3.46) 

                        �ΕT�� 	 -fU �p/R/UfRfU.q/RfRtU.�/UfUtR/R/UfRfU �                                                     (3.47)                               
But  

                      �Ε-�� ) 0 if �+-+OI-IO ) �+OIO�- ( �+-I-�O                                           (3.48) �ΕO�� ) 0 if �+-+O+TI-IOIT ( %+O+TIOIT�- ) o+-+TI-IT�O ( w+-+OI-IO�T                (3.49) 
                    	�ΕT�� ) 0	!%	*+O+TIOIT ) r+OIO�T ( +TIT�O                                                (3.50) 

Thus the nontrivial bionomic equilibrium point ��Ν-��, �ΝO��, �ΝT��, �Ε-��	, �ΕO��, �ΕT���  exist if 
conditions (3.48) - (3.50) hold. 
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2.5 Qualitative Analysis Of Optimal Harvesting Policy  
In commercial exploitation of renewable resources the fundamental problem from the economic point of view, is 
to determine the optimal trade-off between present and future harvests. If we look at the problem it is observed 
that the marine fishery sectors become more important not only for domestic demand but also from the 
imperatives of exports. 

In this section we study optimal harvesting policy of the system of equation (3.1) - (3.3); and also our 
objective is to maximize, the objective functional form of the harvesting model, with the instantaneous annual 
rate of discount δ  is as follows: ��Ε-, ΕO, ΕT� 	 � o.�?��+-I-Ν- � �-�Ε-�8� ( �+OIOΝO � �O�ΕO�8� ( �+TITΝT � �T�ΕT�8���] �8 (3.51) 
Subject to the state constraints (3.1) - (3.3) with control constraints (variables): 0  ΕD�8�  ΕD�e� , ! 	 1, 2, 3 
Firs we construct the following Hamiltonian function for the problem by:  Η 	 e tδ− ��+-I-Ν- � �-�Ε-�8� ( �+OIOΝO � �O�ΕO�8� ( �+TITΝT � �T�ΕT�8�� 
                                                   (;-��Ν- � ��Ν-�O � �Ν-ΝO � I-Ε-Ν-� 
                                                    (;O��ΝO � o�ΝO�O ( %Ν-ΝO � wΝOΝT � IOΕOΝO� 
                                                     (	;T�*ΝT � r�ΝT�O � ΝOΝT � ITΕTΝT�                                   (3.52)                               

where λλ 21,
and λ3 are additional unknown functions called the adjoint variables.                                                           

Now by differentiating Η with respect to Ε-, ΕO and ΕT respectively, we obtain: 
                                               ABAgL 	 o.�?�+-I-Ν- � �-� � ;-I-Ν- 	 �-�8�                                     (3.53) 

                                            ABAgR 	 o.�?�+OIOΝO � �O� � ;OIOΝO 	 �O�8�                                    (3.54)   

                                             ABAgU 	 o.�?�+TITΝT � �T� � ;TITΝT 	 �T�8�                                   (3.55)    
The optimal control ΕD�8� must satisfy the condition:  

                 CD�8� 	 2CD�e� 	!%	�D�8� ) 00					!%	�D�8� ) 0			                                                                                          (3.56) 

Since φD�8�  causes	ΕD�8�, ( )3,2,1=i   to switch between 0 and CD�e�  so φD�8� ( )3,2,1=i  are called switching 
function. Depending on the sign of the switching function φD�8�, the optimal control 	ΕD�8� is a bang– bang 

switching from one extreme point to other one. When φD�8� 	 0 ( )3,2,1=i , the Hamiltonian function Η  

becomes independent of the control variable	ΕD�8�, ( )3,2,1=i   and the optimal control cannot be determined by 
the above procedure. It is then called a singular control 
 ΕD∗�8�, 0 4 ΕD∗�8� 4 ΕD�e��8�.  Hence the optimal harvesting policy is 

                                                     CD�8� 	 �������CD�e� 	!% ( )t
iϕ 	 ) 0	0					!%		 ( ) 0<t
iϕ

Ei
* 	if		 ( ) 0=t

iϕ

   For 3,2,1=i                              (3.57) 

The aim is to find an optimal equilibrium ��Ν-�� , �ΝO�� , �ΝT�� , �Ε-�� , �ΕO�� , �ΕT��� to maximize Hamiltonian
Η . Since Hamiltonian Η is linear in the control variablesΕ-, ΕO and ΕT the optimal control can be extreme 
controls or the singular controls. 

Thus for singular control
( ) 0=t

iϕ  ( )3,2,1=i , from equations (3.53) - (3.55) solving for 
( )3,2,1, =iiλ we 

obtain: 
                                                            ;- 	 o.�? i+- � tLfLbLm                                                         (3.58)                                                                                         

                                                              ;O 	 o.�? i+O � tRfRbRm                                                       (3.59) 

                                                              ;T 	 o.�? i+T � tUfUbUm                                                       (3.60) 
In this case, the optimal control is called the singular control and equations (3.58) - (3.60) are the necessary 
conditions for the maximization of Hamiltonian Η. 
By Pontryagin’s Maximum Principle, the adjoint equations are: 
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                                             ¡¢L¡£ 	 � ¤B¤bL , ¡¢R¡£ 	 � ¤B¤bR , ¡¢U¡£ 	 � ¤B¤bU                                             (3.61) 
Now, by using equation (3.61) we obtain: 

                                         J¥LJ? 	 �o.�?+-I-Ε- � ;-�� � 2�Ν- � �ΝO � I-Ε-� � ;O%ΝO             (3.62) 
 
 

Substituting � 	 �Ν- ( �ΝO ( I-Ε- and (3.59) in to the equation (3.62) we obtain:     J¥LJ? 	 �o.�?+-I-Ε- ( �Ν-;- � o.�? i+O � tRfRbRm  or �;-�8 � �Ν-;- 	 �o.�?+-I-Ε- � o.�? ¦+O � �OIOΝO§ 
This is of the form: 

                                           J¥LJ? ( A-;- 	 ��Oo.�?                                                                            (3.63) 

where Α- 	 ��Ν- and ΑO 		+-I-Ε- ( i+O � tRfRbRm  
The above equation is linear in ;- and its solution is given by: 

                                                   ;- 	 � ©R©L.� o.�?                                                                             (3.64) 
and also J¥RJ? 	 �o.�?+OIOΕO ( �Ν-;- � ;O�� � 2oΝO ( %Ν- � wΝT � IOΕO� (  ΝT;T                          (3.65) 
Substituting � 	 	oΝO � %Ν- ( wΝT ( IOΕO and equations (3.58) in to (3.65) we obtain: 

                                J¥RJ? ( B-;O 	 'Oo.�?                                                                                       (3.66) 

where '- 	 �oΝO	and 'O 	 i+- � tLfLbLm �Ν- ( i+T � tUfUbUm ΝT � +OIOΕO 
The above equation is linear in λ 2  and its solution is given by: 

                                            ;O 	 «R«L.� o.�?                                                                                     (3.67) 
Similarly,  

                                J¥UJ? 	 �o.�?+TITΕT ( wΝO;O � ;T�* � 2rΝT � ΝO � ITΕT�                    (3.68) 
Now by substituting * 	 rΝT ( ΝO ( ITΕT, equation (3.58) and (3.59) in to (3.68) we obtain:  

                                    J¥UJ? ( C-;T 	 7Oo.�?                                                                                   (3.69) 

Where 7- 	 �rΝT and 7O 		i+O � tRfRbRm wΝO � +TITΝT    
The above equation is linear in λ3  and its solution is given by: 

                               ;T 	 RL.� o.�?                                                                                                (3.70) 

It is obviously that 
)(),( 21 tt λλ  and 

)(3 tλ are bounded as ∞→t .  From (3.58) and (3.64) we obtain a 
singular path:  

                                p- � ¯LkLbL 		� ©R©L.°                                                                                      (3.71) 
And also from (3.59) and (3.67), we obtain a singular path: 

                                   +O � tRfR±R 		 «R«L.�                                                                                       (3.72) 
Similarly, from (3.60) and (3.70) we obtain a singular path: 

                                       +T � UfUbU 		 ²R²L.�                                                                                    (3.73) 

Let Ϝ�Νd-� 	 i+- � tLfLbLm ( ´R´L.�  , µ�ΝdO� 	 i+O � tRfRbRm � ¶R¶L.�  and ·�ΝdT� 	 i+T � tUfUbUm � ²R²L.�  then there 
exists a unique positive root Νd- 	 �Ν-�� of  Ϝ�Νd-� 	 0 in the interval 0 4 Νd- 4 r- if the following inequalities 
hold: Ϝ�0� 4 0, Ϝ�k-� ) 0, Ϝ′�Νd-� ) 0 for Νd- ) 0 

And also there exists a unique positive root ΝdO 	 �ΝO��	of µ�ΝdO� 	 0	in the interval 0 4 ΝdO 4 rOif the 
following inequalities hold: µ�0� 4 0, µ�kO� ) 0, µ′�ΝdO� ) 0 for ΝdO ) 0 

Similarly, there exists a unique positive root ΝdT 	 �ΝT�� of ·�ΝdT� 	 0	 in the interval 0 4 ΝdT 4 rT if the 
following inequalities hold: ·�0� 4 0,·�kT� ) 0,·′�ΝdT� ) 0 for ΝdT ) 0 
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Now, for Νd- 	 �Ν-�� , ΝdO 	 �ΝO��	and ΝdT 	 �ΝT��we get: �Ν-�� 		 ¯LºLkL, �ΝO�� 		 ¯RºRkR, �ΝT�� 		 ¯UºUkU,                                           �Ε-�� 		�+-+OI-IO � �+OIO�- � �+-I-�O+-+O�I-�OIO  �ΕO�� 		�+-+O+TI-IOqT � o+-+TI-IT�O ( %+O+T+TIOITc- � w+-+OI-IO�T+-+O+TI-�IO�OIT  

                                           and �ΕT�� 		h+O+TIOIT � r+OIO�T � +TIT�O+O+TIO�IT�O  

Hence once the optimal equilibrium ��Ν-�� 	, �ΝO��		�ΝT�� 	� is determined, the optimal harvesting effort ��Ε-�� ,�ΕO�� , �ΕT��� can be determined. From (3.64), (3.67) and (3.70) we found that ;D�8� where 3,2,1=i  do not 
vary with time in optimal equilibrium. Hence they remains bounded as ∞→t .  
From (3.71), (3.72) and (3.73) we note that: 
                                              p- � ¯LkLbL 		� ©R©L.° 	⟶ 0	as	δ ⟶ 0 pO � cOqOΝO 		 BOB- � δ ⟶ 0	as	δ ⟶ 0 

                                              and  pT � cTqTΝT 		 COC- � δ ⟶ 0	as	δ ⟶ 0 

Thus, the net economic revenue for the Prey population	�- 	 0, the net economic revenue for the predator 
population �O 	 0	and the net economic revenue for the competitor to the Predator population	�T 	 0. From this 
we conclude that, if the discount rate increases, then the net economic revenue decrease and even may tend to 
zero if the discount rate tends to infinity. Hence finally we remarked that high interest rate will cause high 
inflation rate. 
 
3. Numerical simulation 
In this section, we substantiate as well as augment our analytical findings through numerical simulations 
considering the interval parameters.  For this, numerical examples are obtained to illustrate the proposed 
methodology presented in this paper.  
Example: Let us consider a set of artificial values of parameters as follows in appropriate units: M 	 �2.5, 3�, 1- 	 �0.2, 0.6�, 1O 	 �0.7, 0.8�, 1T 	 �0.5, 0.9�, S 	 �4.5, 5�, P- 	 �0.8, 0.9�, 

 PO 	 �0.2, 0.4�, PT 	 �0.5, 0.6�, ℓ 	 �5.5, 6�, H- 	 �0.2, 0.5�, I- 	 0.2, IO 	 0.5, IT 	 0.8, Ε- 	 10, ΕO 	 8, ΕT 	 6 and + ∈ �0, 1�. 
The trivial equilibrium point �0,0,0� always exists for all values of [ ]1,0∈p . The non trivial equilibrium points 
and the Eigen values of variational matrices at the corresponding points of co-existence equilibriums are given in 

table1below for different values of p in [ ]1,0 . 
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Table 3.2 Equilibrium states, eigen values, nature of the equilibrium points. 
Values of p  Equilibrium states         Eigen values Nature of the equilibrium states 

0 0.29, 0.362, 0.536 �0.636,	�0.156 � 0.111!, �0.156 ( 0.111! Stable 

0.1 0.294, 0.435, 0.578 �0.674,�0.144 � 0.117!, 
 �0.144 ( 0.117! Stable 

0.2 0.292, 0.515, 0.623 �0.665, �0.18 � 0.126!, 	�0.18 ( 0.126! Stable 

0.3 0.275, 0.601, 0.661 �0.793,�0.164 � 0.125!,  �0.164 ( 0.125! Stable 

0.4 0.281, 0.674, 0.729 �0.783,�0.188 � 0.156!, 
 �0.188 ( 0.156! Stable 

0.5 0.275, 0.755, 0.791 �0.812,�0.179 � 0.155!, 
 �0.179 ( 0.155! Stable 

0.6 0.261, 0.842, 0.856 �0.846, �0.168 � 0.148!,  �0.168 ( 0.148! Stable 

0.7 0.322, 0.929, 0.967 �0.943, �0.193 � 0.178!, 
 �0.193 ( 0.178! Stable 

0.8 0.149, 1.079, 0.928 �0.962, �0.254, �0.128 Stable 
0.9 0.195, 1.134, 1.162 �1.017, �0.197 � 0.124!, 

 �0.197 ( 0.124! Stable 

1 0.2, 1.2, 1.2 �1.072, �0.204 � 0.122!, 
 �0.204 ( 0.122! Stable 

From the above table we observe that there are different equilibrium points for different values of p. We also see 
that the eigen values corresponding to different equilibrium points are complex conjugate with negative real part. 
Therefore the equilibrium points are stable. 
The fluctuation of prey, predator and competitor to the predator population with respect to time beginning with Ν- 	 1, ΝO 	 1.09 and ΝT 	 1.1 for + 	 0.7, + 	 0.8, + 	 0.9 and + 	 1 are depicted in following Figures 
respectively.  
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Fig 1: Variation of prey, predator and competitor to the predator population against the time for different values 
of p 

 
4.CONCLUSIONS AND RECOMMENDATIONS 
4.1   Conclusions 
Prey–predator (competitor) harvesting model has undergone different development in theoretical and practical 
applications in the field of biomathematics. Most of the researchers have developed the prey, predator and 
competitor to the predator harvesting model based on the assumption that the biological parameters are precisely 
known but the scenario is different in real life situation. In this paper, we developed a method to find the 
biological equilibrium points, bio-economic equilibrium points and optimal harvesting policy when some 
biological parameters are imprecise in nature. Here we develop the concepts imprecise parameters to the prey, 
predator and competitor to the predator harvesting model by considering the prey population growth rate, 
predator population growth rate, competitor to the predator growth rate and predation coefficients are imprecise 
in nature for the lack of precise numerical information. The ability of calculating the biological equilibrium 
points, bio-economic equilibrium points and optimal harvesting policy developed in this paper might help to 
develop more realistic mathematical models in the area of mathematical biology. Before ending this article we 
would like to mention that one may consider Lotka–Volterra model with logistic growth under imprecise 
biological parameters. Impreciseness of the harvesting cost and price of the biomass of the species of the 
harvesting model are also important characteristic to be considered. 
 
4.2 Recommendation 
Basing on the results of qualitative analysis and numerical simulation of the model, we recommend that; 

i. Prey-predator (competitor) should not be harvested at a rate higher than their growth rate. However 
optimal harvesting of the prey-predator (competitor) at a rate much lower than their growth rate is 
permissible, since this would not lead to collapse of the system in the long term. 

ii. The population density of the predator can be increased drastically by increasing the growth rate of the 
prey species e.g. regular recruiting more prey into the area. Since regular recruiting of prey may not be 
realistic, the best alternative is to minimize or stop poaching of the preys so as to greatly increase the 
number of their population in that area, which will in turn result in an increase in the population of the 
predator. But the number of population of competitor to the predator does not dependent on the number 
of prey population; it depends on the number of predator population that competes’ with them for 
common resource. This common resource may be additional resources for predator population. 

iii. The population density of the predator depends mainly on the biomass of the prey than that of   
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competitor; hence any attempt to control the population density of the predator should be based on 
controlling the population density of the prey. 

 

 

 
Fig.2 prey-predator examples 
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