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Abstract 

In this Present paper a two dimensional boundary layer flow and heat transfer of a non-Newtonian fluid due to 

stretching sheet with convective boundary condition is considered. The flow of non-Newtonian Casson fluid and 

the heat transfer equations are nonlinear partial differential equations with variable coefficients, these PDE’s are 

transformed into non-linear ordinary differential equations by means of similarity transformations. These BVP’s 

are converted into IVP’s and are solved numerically using Runge-Kutta Fehlberg method with shooting technique. 

The effects of various governing parameters on flow, heat transfer are plotted and discussed the obtained results.  
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Nomenclature 

c       stretching rate   

Bi  Biot number 

x  horizontal coordinate  

y  vertical coordinate  

u  horizontal velocity component  

v  vertical velocity component  

T  temperature 

pc  specific heat 

f  dimensionless stream function 

Pr Prandtl number 

l  Characteristic length 

'  differentiation with respect to η 

 

Greek symbols 

η  similarity variable 

θ  dimensionless temperature  

k  thermal conductivity  

µ  viscosity 

υ  kinematic viscosity  

ρ  density 

α         thermal difusivity 

β  Casson parameter 

 

Subscripts 

w  properties at the plate 

∞  free stream condition 

 

1. Introduction 

As we Know the Boundary layer flow and Heat transfer due to continuous moving surface is an important type of 

flow occurring in a many of engineering processes. In an Aerodynamic extrusion of plastic sheets, cooling of an 

infinite metallic plate in a cooling path, the boundary layer along a liquid film in condensation process and a 

polymer sheet of filament extruded continuously from a die are examples of practical applications of continuous 

moving surfaces. Gas blowing, continuous casting and spinning of fibers also involve the flow due to a stretching 

sheet. 

On observing the literature Crane [1] has given the closed form of solution for steady two-dimensional 

flow incompressible viscous boundary layer flow generated by a stretching surface. Further Crane’s works has 

been extended under various diverse physical aspects. Here we refer only some recent studies on flow heat and 
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mass transfer of non-Newtonian Casson fluid over stretching surfaces. There are so many works available on 

studies of various fluid flows due to stretching surfaces. But there are few works on casson fluid and heat transfer 

on stretched surfaces which are solved analytically. Hayat et.al [2] Studied Soret and Dufour effects on MHD flow 

of casson fluid solution of governing equations are found by homotopy analysis method, here the only PST heating 

condition is used to analyze heat transfer characteristics. Nadeem et.al [3] studied the MHD flow of casson fluid 

due to an exponentially shrinking sheet where they used adomain decomposition method (with 

Pade’sapproximation)for obtaining the solution and they studied only flow analysis. Pramanik [4] studied flow of 

Casson fluid and Heat transfer past an exponentially porous stretching sheet with thermal radiation, to analyze 

Heat transfer characteristic author used constant surface temperature condition (CST) and used numerical method 

for obtaining solution. Bhattacharyya et.al [5] studied exact solution of casson fluid over a permeable 

stretching/shrinking sheet. But these authors ignored the heat transfer analysis which was very important. 

Bhattacharyya [6] studied the MHD stagnation point flow of casson fluid and heat transfer over a 

stretching sheet with thermal radiation. The author used the constant surface temperature (CST) heating condition 

to analyze heat transfer and numerical method is used to solve the connected BVP’s. Swati et.al [7] studied Casson 

fluid flow over an unsteady stretching surface. The authors used numerical Method used to obtain the solution. 

Quasim and Noreem [8] studied flow and heat transfer of casson fluid due to permeable shrinking sheet with 

viscous dissipation but the CST heating condition is  used to analyse heat transfer analysis and Runge-Kutta 

numerical method is used to obtain solution of governing equations.  

Where as Haq et.al [9]studied the convective heat transfer of Casson fluid for  nanofluid model and 

studied the heat transfer analysis for shrinking sheet problem. Hussain et.al [10] studied the flow of Casson 

nanofluid with viscous dissipation and convective heating boundary condition. Ramesh et.al [11] studied the heat 

transfer of dusty fluid with convective heating boundary condition. Rahaman et.al[12]studied the mixed 

convection boundary layer flow past vertically stretching sheet  with convective heating condition. Ishak et.al [13] 

investigated the radiation effects of thermal boundary layer flow with convective heating condition. Rahaman [14] 

and Rahaman et.al[15] studied the radiative heat transfer in nanofluid with convective heating boundary conditions 

with variable fluid properties. Pantokratoras [16] investigated the effect of Grashof number on thermal boundary 

layer past vertical plate with convective heating boundary condition. Merkin et.al [17] investigated the mixed 

convection effects on the boundary layer flow over vertical plate in a porous medium in a constant convective 

boundary condition. Kameshwaran et.al [18] obtained the dual solutions of flow and heat transfer of casson fluid 

due to stretching or shrinking sheet. Makinde [19] studied the effects of variable viscosity on the thermal boundary 

layer over a permeable plate with radiation and convective surface boundary condition.   Makinde and Aziz[21] 

studied boundary layer flow of nanofluid  past a stretching sheet with convective boundary condition. Alsaedi et.al 

[22] studied the effects of heat generation/absorption on a stagnation point flow of a nanofluid over  surface with 

convective boundary condition. Nandeppanavar [21] studied the flow and heat transfer analysis for two different 

heating conditions (PST and PHF) analatically. 

Hence in this paper we obtained the numerical Solution for casson fluid flow and heat transfer governing 

equations with convective boundary condition.  

 

2. Mathematical Formulation: 

Let us Consider the flow of an incompressible casson fluid past a stretching sheet coinciding with the plane y = 0, 

the flow being confined to y> 0.  Two equal and opposite forces are applied along the x-axis so that the wall is 

stretched keeping the origin fixed. Assuming the rheological equation of Casson fluid. Considering the rheological 

equation of stress transfer (τ ) for an incompressible and isotropic flow of non-Newtonian Casson fluid can be 

written as: 

0
u v

x y

∂ ∂
+ =

∂ ∂
,                                                                                                         (1)  

2

2

1
1

u u u
u v

x y y
ρ µ

β

   ∂ ∂ ∂
+ = +   

∂ ∂ ∂  
,                                                      (2) 

Where u and v are the velocity components of the fluid in x and y directions respectively and υ  is kinematic 

viscosity and β  is the Casson parameter (non-Newtonian parameter). 

The boundary conditions for the problem are 

( ) , 0, 0

0,

wu x cx v y

u as y

= = = 


→ → ∞                                                                                                          

(3) 

with c > 0, the stretching rate. The Eqns. (1) and (2), subjected to the boundary condition (3), admit a self-

similar solution in terms of the similarity function f  and the similarity variableη  defined by 
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( )' , , .
c

u c x f v c yη υ η
υ

= = − =                                                                                      (4) 

           It can be easily verified that Eq. (1) is identically satisfied and substituting the above transformations in Eq. 

(2) we obtain 

2 1
' '' 1 '''f f f f

β

 
− = + 

 
.                                                             (5) 

Similarly the boundary conditions (3) can be written as: 

( ) ( )

( )

' 1 , 0 0
.

' 0,

f f at

f as

η η η

η η

= = = 


→ → ∞
                                                         (6)

  

The exact solution of (5), satisfying the boundary conditions (6) is given by: 

1
11

1 1f e

η

β

β

−

+

 
 

= + − 
  
 

  ( β  is positive )                                                                                              (7) 

 

3. Heat transfer analysis 

The Energy equations with boundary layer approximations can be written as: 

2

2
,p

T T
C u v k

x y

T
y

ρ
 ∂ ∂

+ = 
∂ ∂ 

∂
∂

         (8) 

where   k is the thermal conductivity,   is the density of the fluid,  is the specific heat at constant pressure .  

 

3.1 Convective temperature boundary condition: 

It is assumed that the bottom surface of the plate is heated by convection from a hot fluid of uniform temperature  

fT  which provides a heat transfer coefficient fh . Under this assumption the thermal boundary conditions may be 

written as, i.e  

The CTBC (Convective temperature boundary condition) is: 

( ) 0
,

f f

T
k h T T at y

y

T T as y∞

∂ 
− = − = 

∂ 
→ → ∞                                                                                           

(9)                                                                                                    

where T∞ is the temperature of the fluid far away from the sheet (temperature of ambient cold fluid). 

T is the uniform temperature on the top surface of the plate. Hence we have  fT T T∞> > . 

 Defining the non-dimensional temperature ( )θ η as 

( ) .
f

T T

T T
θ η ∞

∞

−
=

−
                                                                                                                              (10) 

Where fT the temperature of the sheet. 

Using Eqn. (10), Eqs. (8) and (9) can be written as 

'' Pr ' 0fθ θ+ = ,                                                                                                                                  (11)  

( ) ( )( )
( )

' 1       at     0,

0                         as     .

iBθ η θ η η

θ η η

= − = 


→ → ∞                                                                                            (12)

 

Where 

Pr
pC

k

µ
=  is the Prandtl number.   

ρ p
C
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i

h
B is the thermal Biot number

k a

υ
=

   
 

4.  Numerical Solution 

The set of non-linear differential equations (5 and 11) subject to the boundary conditions (5and 12) are integrated 

numerically using a very efficient method known as Runge-Kutta Fehlberg method with shooting technique. The 

most important factor of this method is to choose the appropriate finite values of  η → ∞   in order to determine 

η
∞

for the boundary value problem stated by Eq.(5 &12), we start with some initial guess value for some particular 

set of physical parameters to obtain ''(0) & '(0)f θ . The solution procedure is repeated with another large value 

of η
∞

until two successive values of ''(0) & '(0)f θ differ only by the specified significant digit. The last value 

of η
∞

is finally chosen to be the most appropriate value of the limit η → ∞  for that particular set of parameters. 

The value of η  may change for another set of physical parameters. Once the finite value of η is determined then 

the coupled boundary value problem given by Eq. (5) - (11) are solved numerically using the method of 

superposition. In this method the third order Non-linear Eqs. (5) and second order Eqs.(11) have been reduced to 

five simultaneously ordinary differential equations as follows: 

Let us call 
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The Boundary value problem is given by 
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  The boundary conditions now becomes  

}1 2 3 1 4 5 2 2 4
(0) 0, (0) 1, (0) , (0) 1, (0) , ( ) 0, ( ) 0y y y s y y s y y= = = = = ∞ = ∞ =                                 (15)              

Where 1 2&s s determined such that it satisfied 2 4( ) 0 & ( ) 0.y y∞ = ∞ = Thus, to solve this resultant system, 

we need five initial conditions, but we have only  two initial conditions on f and one initial condition on θ .The 

third condition on f (i. e. f’’(0))and second condition on θ (i,e '(0)θ ) are not prescribed which are to be 

determined by shooting method by using the initial guess values 1 2&s s until the boundary conditions 

2 4( ) 0, ( ) 0f f∞ = ∞ = (or  2 4( ) 0, ( ) 0y y∞ = ∞ = ) are satisfied. In this way, we employ shooting technique 

with Runge-Kutta Fehlberg scheme to determine two more unknowns in order to convert the boundary value 

problem to initial value problem. Once all the five initial conditions are determined the resulting differential 
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equations can then be easily integrated, without any iteration by initial value solver. For this purpose, Runge kutta 

scheme has been used In this manner any non linear equation involved in boundary value problem can easily be 

solved by this technique. To study the behavior of the velocity and temperature profiles, curves are drawn for 

various values of the parameters that describe the flow. 

 

5. Results and Discussion: 

The flow and the heat transfer differential equation of a non-Newtonian fluid are non-linear differential equations 

and are solved Numerially  using Runge-Kutta Fehlberg method with shooting technique. Geometry of considered 

problem is given by the Figure (1). The velocity distribution is presented in Figs. 2.  The  temperature distribution is 

presented through the plots Fig. (2) to Fig.(7).  

Fig1: shows the geometry of the considered problem, which shows the heated plate, flow direction etc. 

Fig.2: shows the influence of Casson parameter β  on velocity profile. We observe that the magnitude of velocity 

in the boundary layer decreases with an increase in the Casson fluid parameter β . It is noticed that when Casson 

parameter approaches infinity, the problem will reduce to a Newtonian case.  Hence increasing value of Casson 

parameter β  , decreases the velocity and boundary layer thickness. 

Fig. 3: shows the effect of the Casson parameter β  on the temperature profiles. The temperature and the thermal 

boundary layer thickness are increasing as decreasing function of β
.  Effect of casson parameter it leads to increase 

the temperature field, it also cause the thickening of the thermal boundary layer due to increase in the elastic stress 

parameter.
 

Fig.4 shows the effect of the Prandtl number Pr  on temperature profile. On observing this plot we can conclude that 

the temperature and the thermal boundary layer thickness decrease as the Prandtl number increase. 

Fig. (5), shows the effect of the thermal Biot number Bi on the temperature profile, Fig.(5) is plotted for the different 

Biot number parameter on observing the temperature profile increases with increasing values of thermal Biot number 

 

6. Conclusions 

• Here numerical Solutions for flow and convective heat transfer problems are obtained. 

• The effects of the Casson fluid parameter β  on flow and temperature are quite opposite. 

• The thermal boundary layer thickness decreases with increasing Prandtl number on convective heat transfer 

phenomenon   

• When β  tends to infinity, as reduce to results the Newtonian case 

• Skin friction decreases with an increase in the Casson fluid parameter   
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Fig. 1: Geometry of the Problem 
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 Fig 2: Velocity Profile for different values of Casson parmeter β  
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Fig. 3: Temperature Profile for different values of Casson parmeter β when  Pr=3.0 and Bi=1.0 
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Fig. 4: Temperature Profile for different values of Prandtl number Pr when β =1.0 and Bi=1.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Temperature Profile for different values of Biot number (Bi<1.0) when β =1.0 and Pr =3.0 
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