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ABSTRACT

In this paper we consider the problem of modeling and predicting the rate of road carnage in Kenya in
the presence of randomly changing road conditions. In the literature review, accident prediction rate
models are typically regression models and discrete time series models. We study such models and
examine their strengths and weaknesses and propose a Semi-stochastic Mixture Model to describe
the relation between the highway accidents and the road environment dynamics.The aim of the
research paper is to propose a model that captures both the deterministic and stochastic nature of
road parameters to explain the cause of high rate of road accidents in Kenya. We apply the proposed
model to a simulated data set for the local condition. Our analysis from show that apart from annual
average daily traffic (AADT), road curvature is an important component of road carnage.
Keywords: Road system, Semi-stochastic mixture model, road curvature, road carnage,Simulation.

1 INTRODUCTION

Heavy commercial vehicles as means of cargo and human transport play an integral part in Kenyan
transport system. Statistics indicate that trucks and other articulated heavy commercial vehicles
account for the highest share in total road accidents as well as fatal accidents, Odero, W., Khayesi,M.
and Heda, P. M. (2003). Efforts are required to have better understanding of the factors that influence
accident.The knowledge about the relationship between the accident and the factors responsible is
inadequate, Asingo, P (2004). We have made an effort in this paper to precisely establish what factors
are responsible for accidents. The intention here is to predict the rate of road carnage and managed
if not eliminate them altogether. The causes of road accidents are such as, roadway geometric design,
traffic characteristics, human factor are considered in this paper.
Most of the studies encountered so far have focused on the risk factors such as drinking and driving,
restraint systems, and tried to determine their relationship with accident rate. Previous research
has shown that accidents involving trucks have a likelihood of producing a severe injury or fatal-
ity, Mayes, J. G.(1981). However the relative impacts of various factors; Roadway geometry, traffic
characteristics, and other factors have not been seriously factored in. We develop Accident rate Pre-
diction Model (ARPM) for vehicle accidents and use the same in quantifying the factors responsible
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high rates of accident. Indeed, if such road factors are scientifically identified through acceptable pro-
cedures, they can form the basis of policy formulation and decision making with guaranteed positive
results.
According to Chin and Quddus(2003), though Multiple Linear Regression models have been applied in
the previous studies where the response variables were the numbers of accidents, the Multiple Linear
Regression modeling is not appropriate for count data since counts are positive numbers yet the
response variable in Multiple Linear Regression analysis is assumed to follow a Normal distribution
which covers all numbers on a real interval. This method has limitations of predicting negative
numbers of accidents which is not logical. This undesirable statistical property limits Multiple
Linear Regression models to describe adequately the random, discrete and non negative accident
events. For such reasons, there is need to utilize techniques which can sufficiently describe the
specific characteristic of accidents. Such techniques include Poisson Regression, Negative Binomial
Regression, Chin and Quddus(2003).
Studies of road accidents in developing countries have indicated that accident rates tends to be par-
ticularly high on rural roads, Silyanov V.V.(1973). An analysis of road accidents involving personal
injury in Kenya Showed that single vehicle accidents were particularly prevalent on rural roads, be-
ing almost 50 percent of the total number of accidents occurring. In this situation it is possible
that design features of the road play a significant role, Jacobs D.G(1976). Regression analysis has
largely been used to establish and quantify relationships between the dependent variable and one or
more independent variables. Some researchers observe the presence of both Poisson and Binomial
distribution within the same study, Braga and Bond(2008).
In this paper we take a different perspective than the other approaches, we propose a Semi-Stochastic
Mixture Model(SSMM) to describe the relationship between road carnage in Kenya and dynamic
environmental conditions. This believed believed to be a more realistic and natural way to describe
emerging pattern of accidents that occur on Kenyans road sections. SSMM is envisaged to capture
both deterministic and stochastic nature of parameters that characterize road carnage.
We model the accident rate of occurrence as a homogenous process with a rate function that depends
depends on several road and environmental parameters. The whole of the Kenyan road system is
first considered here taking in consideration the macroscopic and microscopic traffic behavior. The
sections with high distribution of black spots per 5 kilometers of road stretch Figure 1.1 is considered
is considered as case study.
We now provide an overview of the contributions and findings of this paper. In section 2, we describe
the Semi stochastic Mixture model in detail,defining various variables in the model providing their
notations. Attempt is also made this section describe the road system using schematic diagrams help
identify the queue model for the road section.
In section 3, we describe the accident and road parameters on the road section black spots. In
particular we consider the simulated accident data on the Nakuru-Salgaa-Total junction black spot.
This is a section of the A104, the busiest road system which span Across East Africa and is plied by
heterogenous traffic drawn from countries across East Africa.
In section 4 the SSMM is applied to simulated data set and the prediction results provided. in section
5 we provide summary conclusive remarks. The rate of accident prediction model will be used to
improve the location with high frequency of accidents (Black spots) and help reduce the number of
accidents.

1.1 Review of models For Road Systems

There exists two major approaches in traffic crash modeling. One is the simple or Multiple lin-
ear regression, Equation(1.2) and the Stochastic modeling Equation(1.19) below. Such deterministic
models which are widely used are not suitable for an arbitrary and sporadic events like traffic crashes.
Much of the early work in the empirical analysis of accident data were done with the use of multiple
linear regression models. As has been pointed out, these models suffer from several methodological
limitations and practical inconsistencies in the case of accident modeling. To overcome these limi-
tations, researchers have turned to stochastic models, Journal of Science Applied Technology(2012).
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Figure 1.1: The sections with high distribution of black spots per 5 kilometers of road stretch

Accidents are random events, non linear forms of models would be more appropriate to use in the
calibration of accidents rate prediction model, Maher and Summergil(1996). Poisson model uses the
form

logE(Y ) = a+ bx (1.1)

Since the Poisson model, Equation(1.8) assumes a non-linear function, it is established to be more
effective for crash prediction than linear regression, Maher and Summergil(1996).
However such a model would only be suitable to the extent that there was no over reporting or under
reporting. According to Gouvieroux(1999), the Poisson distribution has some severe draw backs,
including its equidispersion, this limits its use.
Winkelmann(1996) proposed a Poisson Regression model that takes underreporting into account.
In his work, the number of reported events that is yi results only if absenteeism occuring was
assummed to be a Poisson distributed with probability pi captured by the binomial distribution.
Mukopadhyay(1997) derived a mixture of the Negative Binomial and the Binomial distribution. The
resulting mixture regression for underreported count is the Negative Binomial Regression model,
Mukhopadhyay(1997). Li, Trivedi and Guo(2003) suggested a mixture model of the poisson and
negative Binomial regression models that can be used to handle data that is under, over, or accurately
reported. According to Li, Trivedi, Guo(2003), misreporting occur when an individual reports the
number of events as yi, i = 1, 2, 3, ..., n Binomial and the Binomial distribution.The resulting mixture
regression for underreported count is the Negative Binomial Regression model, Mukhopadhyay(1997).
Li,Trivedi and Guo(2003) suggested a mixture model of the Poisson and Negative Binomial Regression
models that can be used to handle data that is under, over, or accurately reported. Stochastic
modeling has become increasingly important over the last few years, a clear case is the use of the
model in life insurance to predict risk and rewards, Wilson, Don(2004). Stochastic modeling builds
volatility and variability(randomness) into the simulations and hence provides a better representation
of real life in more angles Wilson, Don(2004). A brief discussion of these models are given below.

Review of Multiple linear regression

In this study, a further condition in choosing independent variables was that they should be simple
to define and for an engineer working in the field, reasonably easy to measure. As a preliminary
investigation of which variables were most closely correlated with accident rate, simple regressions of
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accident rate on each of the road features individually, were performed. Equations derived were of
the form: Equation, (1.2). Where y dependent variable and x is independent variable with a being
a constant and b1 a regression coefficient. However because many of the road design features are
inter-related, simple linear regression analysis may give a misleading impression of the relationships
that they have with accident rate. Multiple regression, in which the accident rate is expressed as a
function of several ‘independent’ variables simultaneously, is likely to be a better guide. Equations
derived were then of the form

y = a+ b1x1 + b2x2 + b3x3 + ...+ bnxn + eij (1.2)

where
y, x1, X2, Xn, b1, b2, bn

were as above. This model is weak in a number of areas; it made no provision for misreporting, over
or under reporting, which is a characteristic of count data, Pararai et al.,(2010). The model assumed
that all vehicles in the study had equal chance of failure, naturally this is not the case because the
vehicles and their drivers have different disposition to accidents. The parameters used were limited
to measurable characteristics only and yet there are other independent variables in accident rates
which are not only unpredictable but even when predicted, may not be measurable with any degree
of accuracy.

Stochastic models

Stochastic models are logical alternative for events that occur randomly and independently over
time. Unlike deterministic models stochastic models assume accident as random event. Okamoto et
al.(1989) suggested that the occurrence of traffic crashes follows stochastic distribution. Garber et
al.(1990) developed several models to describe the occurrence of crashes in using stochastic modeling
techniques, like Poisson Regression (PR), and Negative Binomial Regression (NBR).

Poisson Regression model

Let λi be expected number of accident on the stretch corresponding to individual type i λi is deter-
mined by k exogenous variables or characteristics.

Xi = (Xi,1, Xi,2Xi,3, ..., Xi,k) (1.3)

which represents a priori classification of variables. Since Poisson distribution has only one parameter,
namely the mean rate, λ we have little choice but to model λ as a function of x or λ(x). We can also
write

λ = exp(βXi) (1.4)

Where β is a vector of coefficients (K × 1). The Poisson distribution now becomes

P (Yi = y) =
e−exp(xiβ)(exp(xiβ))y

y!
(1.5)

It is important to note that λi is not a random variable and that λ1 is specific to vehicle and driver
No.1. The model assumes implicitly that the K exogenous variables (factors-measurable) provide
enough information to obtain appropriate values of the individual cars and driver probability of
accident, Dionee G. Vanasse C(1988). β parameters can be estimated by the maximum likely hood
method, Hausman, Hall and Griliches (1984). The model is assumed to contain all the necessary
information required to estimate the values of λi, there shall be no room for a posterioritarification
in the extended Poisson model, Equation(1.8), Deionne G. and Vanasse C(1988). When the vector
of explanatory variables does not contain all the significant information, a random variable, error,
Equation (1.6) is introduced into the regression component and possibly a constant term. According
to Gourieroux and Tragnon(1984), We can write
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λi = exp(Xiβ + ei) (1.6)

and better still with a constant component α as
λi = exp(α +Xiβ + ei) (1.7)

.
The α State of road at any one given time of the observation period is assumed to remain the same
for all the drivers and vehicles yielding a random α1.
Equivalently 1.9, can be re-written as
λi = exp(Xiβ × αi × ui)
where ui = exp(ei). If we assume ui follow a gamma distribution with
E(ui) = 1 and var(ui) = 1

a
The probability specification becomes,

Pr(Yi = y) =
γ(y + a)

y!γ(a)
[
exp(α + xiβ

(a)
]y (1.8)

This is a negative binomial distribution with parameters a and exp(α + xiβ)

and E(Yi) = exp(α + xiβ)

V ar(Yi) = exp(α + xiβ)[1 +
exp(α + xiβ)

a
] (1.9)

Clearly V ar(Yi) in the Equation(1.9) is a non linear increasing function of E(Yi).

Poisson Distribution model

Denote the number of accidents Ai,t for vehicle i at time t , hence
The rate of accidents

λit = exp(βo +Xi,t
′
β + e) (1.10)

According to Gouvieroux(1999), the Poisson distribution has some severe draw backs such as its
equidispersion and this limits its use. It also assumes that the vehicles have same accident frequency,
this may not be the case on different road stretches. It is only plausible that the rate may differ
across subgroups of the data sometimes defined by geography and time.

Negative Binomial model

If it is assumed that the parameter λ vary among individual road stretches then a combination of
them at a point of connectivity results into a more general model that will allow λ to vary among
individuals and hence perhaps a better λ for the mixture of λ′s. If we assume λ is also a random
variable and follows a gamma distribution with parameter a and 1

b
as proposed by Greenwood and

Yule(1920), Bichsel(1964) and Seal(1969), the distribution of the number of accidents during a given
period will be given by

Pr(Y1 = y) =
γ(y + a)

y!γ(a)
× 1/b

(1 + 1/b)y+a
(1.11)

This corresponds to a negative binomial distribution with

E(Yi) = λ

and

V ar(Yi) = λ[1 +
λ

a
] (1.12)

, where
λ = ab
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and the parameters a and 1
b
can be estimated by the method of moments or by maximum likely hood

method. The model assumes that variable Yi are independent car accidents and λ vary between
individuals.
The negative binomial regression model allows for over dispersion in the model and can be used to
quantify various parameters more effectively.
Li, Trivedi and Guo (2003), suggested a mixture model of the Poisson and negative binomial regres-
sion models that can be used to handle data that that is under, over and accurately reported.

Generalized Poisson Regression model

Famoye(1993), derived a generalized Poisson regression(GPR) model given by Equation (1.21)

P (Y = yi) =

(
µi

1 + αµi

)yi (1 + αyi)
yi−1

yi!
exp

[
−µi (1 + αyi)

1 + αµi

]
(1.13)

for yi ≥ 0 and µi is the log-link function.

Poisson-Gamma Model

This has properties similar to Poisson model, Equation (1.6) with dependent variable yi modeled as
a Poisson variable with mean µi and with the model error assumed to follow a gamma distribution.
Taking into account over-dispersion that is commonly observed in discrete or count data, Lord et
al.,(2005) considered a Poisson distribution,

g(yi;λi) =
e−λi × λi

yi!
(1.14)

When α < 0, the GPR can be used for under dispersed data.

Mixture Model of the Poisson and Negative binomial regression Models

Li, et al.(2003) Suggested a mixture model of the Poisson, Equation (1.8) and negative binomial
regression model, Equation(1.9) that can be used to handle data that is under, over and accurately
reported. The negative binomial regression took care of of the accurate counts while the Poisson
regression model took care of the under reported and over reported data.

zero inflated negative binomial regression models

Transportation safety analysts have typically justified the use of Zero Inflated (ZI) models because of
the improved statistical fit compared to traditional Poisson and NB models. Zero Inflated regression
models are two regime models. First probability model governs whether a count number is zero or
positive number, known as inflated model. Then the positive part of the distribution is described
by suitable stochastic distribution, known as base model. The other is structural zeros(true zeros)
which are inevitable and are part of the counting process. Beyond this, we base our choice on the
model providing the closest fit between the observed and predicted values.
In practice, even after accounting for zero inflation,the non-zero part of the count distribution is often
over-dispersed, Green W.H(1994). Green W.H(1994), described an extended version of the negative
binomial model for excess zero count data referred to as the Zero-Inflated Negative Binomial (ZINB).

P (Y = yi) = (1− Pi)
G(yi + 1

�
)

G(yi + 1)G(1
a
)

(ami)
yi

(1 + ami)
yi+1/a

is more appropriate than the ZIP. It has been established that the ZIP parameter estimates can be
severely biased if the non-zero counts are over-dispersed in relation to the Poisson distribution.
The Poisson regression model has been traditionally considered as the starting point in modeling
crash data, in this case we assume the mean of accident occurrence is equal to the its variance,
Miaou S. P.(1994) (this is the equal dispersion).
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Then if f1(y1|j1) , a probability distribution assume by Trunk Ti be Poisson, then

P (yi) =
exp (−θi) θiyi

yi!
(1.15)

where yiis the observed number of counts for trunk i=1,2,. . .,n and li is the mean of the Poisson
distribution. Such assumption ignores the heterogeneous nature of traffic, also in much of the crush
data , the variance is greater than the mean (over-dispersion), clearly some trunks Ti therefore shall
display over-dispersion resulting from extra variation in crash means across the sites and excess zero
counts. This way, applying a Poisson regression model for some trunk Ti is inaccurate and may
result in underestimation of the standard error of the regression parameter and narrow Confidence
intervals, leading to a biased selection of co variates, Miaou, S. P.(1994).

The NB model takes the unobserved heterogeneity of the Poisson mean into account by allowing the
variance to differ from the mean, that is

var[yi] = E [y] 1 + αE [yi] = E [yi] + αE [yi]
2 (1.16)

for a=0, the negative binomial reduces to the Poisson model.We are carefull not to let a=0, in this
second scenario. The NB model assumes that unobserved heterogeneity across road sections follows
a gamma distribution, while crashes within sites are Poisson distributed.
For the road sections, The competing models were the Negative binomial model and the traditional
Poisson model. The suitability of one over the other is determined by the statistical signicance of
the estimated coefficient a, Mehdi H.et al(2012).
When a is not significantly different from zero, the Negative Binomial(NB) model is the correct choice,
Mehdi H. et all (2012). However with excess zeros in crash data with resulting over dispersion, NB
model cannot handle the overdispersion due to high amounts of zeros. A better model would suitably
characterize the distribution along such a node that exhibits excess zeros. The Zero inflatio(ZI)
models are suitable for such road trunks, particularly some trunks will exhibit the Zero inflated
Poisson (ZIP) model, while still others will exhibit Zero inflated negative Binomial(ZINB) model
Clearly therefore given that trunks T 1 has a Poisson distribution model parameter li, T2,trunk has
a Negative Binomial model parameters T3, a Zero inflated Poisson model and still . . ,TK , has Zero
infalted Negative Binomial model parameters.
The trunks T 1,T2, T3,. . . ,TK contributes traffic to a road segment Si sampled randomly from
different models, consequently a mixture of distributions ex at Si.
Let Pi be the probability of excess zero for the section i and (1−Pi) be probability of accident (non-
zero) counts derived from the Poisson probability distribution. For count yi = 0 The probability
density for the ZIP model is

P (Y = yi) = Pi + (1− Pi) expµi (1.17)

and for the non zero road carnage counts count yi≥0 The probability density for the ZIP model is
where y is the number of road carnages for trunc Ti and mi is its expected crash frequency.mi is a
function of road trunc covariates, thus mi= exp(X

′
ib

′

i). The probability of being in the zero-crash-
state Pi is often fitted using logistic regression model, as follow:

logit (Pi) = log

(
Pi

1− Pi

)
= Zi

0γ (1.18)

logit(Pi) = log(
Pi

1− Pi
) = Z

′
i
0g = g0 + g1Z1 + g2Z2 + ...+ gNZN

where Z = (Z1, Z2, Z3, ..., ZN) is a function of the exploratory variables and g = g1, g2, ..., gN is the
estimable coefficient.
and log(mi) = X

′
ib
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For the trunks Tj with the Zero Inflated Negative Binomial probability density with mean mj and
dispersion parameter, ai.The Probability density function for For count yi = 0 The probability density
for the ZINB model given, mi and dispersion parameter is , a ,is given by:

P (Y = yi) = Pi + (1− Pi)
1

(1 + ami)
1
a

for the road carnage count yi = 0

and

P (Y = yi) = (1− Pi)
G(yi + 1

�
)

G(yi + 1)G(1
a
)

(ami)
yi

(1 + ami)
yi+1/a

for the road carnage count yi > 0.
To estimate the parameters of the Zero-Inflated models we use the maximum likelihood method.

Road Sections and Road Trunks

The road section Sii = 1, 2, .., n draw traffic from the access trunks Tii = 1, 2, ..., k .
Suppose standard Poisson distribution mean l1,is the suitable model for the road carnage along road
trunk T1 then

P (Yi = y) =
e−exp(xiβ)(exp(xiβ))y

y!
(1.19)

where
λi = exp(βXi) (1.20)

and suppose road carnage along road trunk T2 is modeled suitably by the standard Negative Binomial
(NB) distribution, then

P (Y = yi) =

(
µ2

1 + αµ2

)yi (1 + αyi)
yi−1

yi!
exp

[
−µ2 (1 + αyi)

1 + αµ2

]
(1.21)

where yi is considered the number of road accident on trunkT2 per annum. If Zero Inflated Poisson
(ZIP) distribution models the distribution of accidents along the joining trunk T3 , then

P (Y = yi) = Pi + (1− Pi)
1

(1 + ami)
1
a

for the road carnage count yi = 0.
Similarly if Zero Inflated Negative Binomial were the suitable model for the road trunk joining at
T4, then

P (Y = yi) = (1− Pi)
G(yi + 1

�
)

G(yi + 1)G(1
a
)

(ami)
yi

(1 + ami)
yi+1/a

for the road carnage count yi > 0.
Where mjis the mean and ai is the dispersion parameter.

The Mixture distribution at road section

Clearly, the traffic at any main highway section Si is sampled from the four independent accident
count models, hence at Si, the distribution of the accident is sampled from the Poisson model ,
Negative Binomial(NB) model , Zero-Inflated Poisson model and Zero inflated Negative Binomial
(ZINB) model. Hence,

P (Yi = y) =
e−exp(µiβ)(exp(µiβ))y

y!
+

(
µi

1 + αµi

)yi (1 + αyi)
yi−1

yi!
exp

[
−µi (1 + αyi)

1 + αµi

]
(1.22)

+Pi + (1− Pi)
1

(1 + ami)
1
a

+ (1− Pi)
G(yi + 1

�
)

G(yi + 1)G(1
a
)

(ami)
yi

(1 + ami)
yi+1/a

.
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Figure 1.2: The Kenya road system of the major road A104 with rate of accident Ai =
f(AADT, SS, LW, SW,NL,HC, V C, TD)

or perhaps a product of the individual Trunk distributions.
Clealy such a function would be cumbersome to manupulate for accurate probabilities of accidents
on any section Si and ignores the unique nature of the very point Si of the road section. Better model
is therefore developed.

1.2 Review of the Kenya Road system

In this chapter, the Kenya road system Figure 1.2, is reviewed and described using the schematic
diagrams and a suitable model is proposed.
Road systems depicts a complex process that results in a built up of heterogenous traffic whose model
of rate of accident can no longer reflect the individual component distribution at the time of joining
the main high way. For the Kenyan situation, there are series of accident black spots B1, B2, . . .Bn

along the major highways.
Close study of the Kenyan road system show that it is marked by two major road networks- the
Mombasa to Malaba, Mombasa to Busia(Mackinon Scarter road)-Historicaly the first 1000 kilometer
ox-cart earth track form Mombasa to Busia whose construction was started in 1890. The other road
begins from the border between Kenya and Tanzania to the south and all the way to Moyale at the
border between Kenya and Ethiopia to the North. Other county roads join in severally at distintinct
points. Vehicles that join the road arbitrarily must adjust to the phenomenon changes which include
High vehicle densities, very wide roads and high speeding traffic.
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Figure 1.3: Two way traffic road section joined in by many minor feeder roads

Schematic illustration of the road system

The black spots B1, B2, . . .Bn along the sections of the road sections Si are therefore identified on
the basis of an existing clasification by the Kenya National Roads Authority(KeNHA).
The black sports are examined to determine the nature of distribution of accidents within the prox-
imity of the black sports, and the rate of accidents on every section of a black sport within a stretcth
of 1 kilometres of the black sport, 500metres either direction .
Trunks T 1,T2, T3,. . . ,TK , that contribute traffic into the highway figure 1.3. The traffic along
the road section stretch Si is in effect a built up from a combination individual distributions. These
are either, Poisson , Negative Binomial(NB) model, Zero-Inflated Poisson model or Zero inflated
Negative Binomial (ZINB) model.

It is asumed that to any road section Si, the trunks T 1,T2, T3,. . . ,TK , contribute to the traffic
dynamics, the situation worsens when traffic proceed from a one way road system into a two way
road system as illustrated below, figure 1.4.

Their exists conflicts among major streams of traffic, Ruskin and Wang (2002). Sections immedi-
ately after some major intersections are of significant impact and have varried capacities from other
sections. The myth of purely behavioral explanation on part of the driver/rider for the growing bur-
den of road traffic accidents in Kenya is inadequate, Manyara G C(2014). Structural and physical
components of the road system is therefore considered .
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Figure 1.4: One way road segments merge into a two way
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Road carnage contributing conditions

Within the model of road carnage, eight categories of contributing condition are presented. Equally
eight black spot are considered sellected across the country road system. We therefore obtain an nxn
matrix. According to (Hussein M. , 2009) if number of equation equals the number of unknowns, the
system is defined and the solution can be obtained.

Conceptual framework for road carnage in kenya

On basis of the work conducted on the first part of this chapter, a conceptual framework, figure 1.5,
for determining the contribution of road parameters to rate of road carnages in kenyan road system as
a whole was developed. This involved identifying potential road crash related road parameters that
could exist on a stretch of road and that could be used as variable in the road carnage prediction and
control.The framework contains both the methods with which to collect and analyse road carnage
related data and a few suggested carnage mitigation measures to reduce, eradicate or manage the
road users own contribution to the cited cases.

The road system

The road network studied is composed of nodes and links. A node in this case seperates parts of
the same road with different characteristics for example, a dual carriege way may narrow to a single
stream or even several intersections flowing into a carriege way an a point and exits at another point,
Chao Yang(2013). In the case of Kenya such a road sytem is evidently turning into killer roads figure
1.6.
The road system and traffic schematic diagrams generally depicts a process where customers (road
users) arrive at a road sections according to some distribution with a mean arrival rate li.
Many sections of the road system are largely single lanes, clearly suggesting a single server system.
Customers arrive at this sections from a population size that cannot be determined in advance, thus
an infinite population. A part from a few cases like the, most modern Thika Superhighway and
very few sections of the roads , customers (traffic) arrive in a single lane for traffic towards a specifc
direction. Such traffic form a single queue.
The number of servers represented by number of lanes (servers) are for greater length, single lanes.
The capacity of the system is finite. The population, P from where the system draw clients is infinite.
i.e p =∞.

Queue Discipline

It is assumed that given the single lanes characterising greater lengths of road sections, the queue
discipline is first come first served with, occassional priorities being given to special vehicles on
emergency operations and Hospital Ambulances, i.e the discipline is FIFO. With this scenario every
driver try to be ahead of the other , ” beat the jam”. The Service time for these customers are
therefore independent with some exponential distribution mean say, m.
The study proposed an M/M/1 process for the road system. Kendall G D (1953).

1.3 Development of the mathematical Model for the Kenyan road system.

Model components

Every dorminant loop of the road system is examined and the following representative variables are
selected as independent variables.
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Figure 1.5: Conceptual framework for road carnage in kenya
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Figure 1.6: Killer roads

i. Shoulder width (SW)

Shoulders provides an area along the highway for vehicle to stop, swerve particularly during emer-
gency. Slow moving vehicles, pedestrians can use the shoulder and keep the carriageway free for
heavy and fast moving vehicles, Zegeer et al. (1981)
A report by Zegeer et al. (1981) on the “Effect of lane and shoulder widths on accident reduction on
rural two-lane roads” indicated that a paved shoulder widening of 2 feet per side reduces accidents
by 16%. Shoulder width has been a parameter with significant influence on safe operations of traffic
and hence selected as a variable. The area under consideration shows a wide variation in the shoulder
width from 0 to 3.10 m.

ii. Lane width (LW)

Traffic flow tends to be restricted when lane width reduces. This is because vehicles have to travel
closer together in lateral direction. Lane width, therefore, is treated as an important parameter. It
has been found that accident rate reduces as lane width increases.

iii. Traffic volume (AADT)

Traffic volume is believed to have considerable impact on the crash rate Williams Ackaah, Mohammed
Salifu (2011). For this study annual average daily traffic (AADT) is used as a parameter to indicate
traffic volume. Traffic volume, converted in to passenger car unit (pcu), for various segments was
collected and included in the model.

Curvature(C),

When the curves are disregarded the consequences become unbearable. Motorists on keep left traffic
policy are on a greater danger when negotiating a right bend.
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Figure 1.7: Danger signals by continuos yellow line mean nothing to drivers

Number of lanes (L)

Road sections with few lanes pose risks to motorists. Similar right bend curves pose greater risk of
road carnage in Kenya .
Kenya is known for having some of the most dangerous roads in world,WHO(2015), dangers seem
evident on curves, consequences of ignorring curvatures can be fatal even to the well trained drivers
figure1.5.

Curvatures with near Zero Shoulder width compounds the problem

Shoulders provides an area along the Highway for vehicle to stop, particularly during emergency or
swerve in the event of an unlikely encounter . Slow moving vehicles, pedestrians can use the shoulder
and keep the carriageway free for heavy and fast moving vehicles. A right bend curve without a
reasonable shoulder figure 1.7, clearly remain a death trap.

Lane Width(W)

Traffic flow tends to be restricted when lane width reduces. This is because vehicles have to travel
closer together in lateral direction. Lane width is hence treated as an important parameter. It has
been found that accident rates reduce as lane width increases.
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Spot speed(S)

Speed and travel time are the most common indicator of the performance of a traffic facility. Spot
speed is one of the major parameter that is used as an indicator of traffic performance. Spot speed
of a location has considerable impact on the traffic safety of the area. The data collected shows a
wide variation in the spot speed from 25kmph to 60kmph.
Clearly therefore the rate of accident alon trunk Ti, i = 1, 2, .., n , and consequently sections Si, are
a factor of the following variables, Table 1:

1. Road Shoulder width (S),

2. Lane Width (W)

3. Total Traffic Volume(AADT),

4. Roadway Number of Lanes (Lane),

5. Vertical Alignment,(VC)

6. Grade on Curve (C)

7. Sight Distance (Feet/m),

8. Shoulder Width (Foo)(SW),

Let the number of road accidents along trunk i be denoted by Ai, clearly Ai is a function of the
above variables for different road stretches, hence Ai can be expressed as

Ai = f(AADT,AD,W

NL, SC, V A,C, SD, S, V C) (1.23)

and therefore motivativated by IHSDM, a tool that was developed by the USA Federal Highway
Administration(FHWA) for assing the safety impacts of a geometric design, Koorey et al (2009) ,
also Zeegar et al (1992). The six variables are used in the model development with additional two
variables of serious concern to the Kenya’s case.
Ai = f(AADT, SS, LW, SW,NL,HC, V C, TD) . The Similar study conducted by Huang Su P.(2013)
used, A= f(P,V,R,E) where A is variable representing number of accidents. P represents Physical
features, V represents the vehicle condition, R is used to represent road condition parameters where
as E was used to represent prevailing Environmental factors such as the weather variations. The
variables for the model in this study are more detailed.

Boundary condition for the variables

Roadway Number of Lanes (Lane) ≥1
Lane Width(Foot/m) >1
Vertical Alignment >1
Grade on Tangent (%)
Grade on Curve (%),
Sight Distance (Feet/m)
Horizontal Alignment Degree on Curve (Degree),
Shoulder, Width (Foot/m),
Surface Condition (Good/Bad),

If the rate of accident along the road stretch T1 is denoted by y/1 , and the rate of accident along the
road stretch T2 denoted by y/2, proceeding this way, the rate of road accident along road stretch Ti
can be denoted by y/i where
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y
/
i = a11y1 + a12y2 + ...+ a1iyi

for i = 1, 2, ..., n. Considering varried trunks that join into a main higway, a linear system of equation
is proposed.

y
/
1 = a11y1 + a12y2 + ...+ a1nyn

y
/
2 = a21y1 + a12y2 + ...+ a2nyn

y
/
3 = a31y1 + a12y2 + ...+ a3nyn

y
/
4 = a41y1 + a12y2 + ...+ a4nyn

y
/
5 = a51y1 + a12y2 + ...+ a5nyn

.................................................

y/n = an1y1 + an2y2 + ...+ annyn (1.24)

where y/i stands for the derivative with respect to t. In the sequel, all the coefficients of aij of the
system are assumed to be real numbers.

Summary of model variables

The system can be reduced to a single homogenous linear constant-coefficient nth order equation.
The equation sql1 is conventionally written as ,

y
/
1 = ay (1.25)

where y =(y1, y2, ..., yn)T is the column vector of the unknowns and a = (aij) is the matrix of the
equation coefficient.
Let yk = (yk1, yk2, ..., ykn)T be linearly independent particular solution of the monogamous system,
equation (2.2) .The general solution of the homogenous system y

/
1 = ay expressed as a vector of

variables and constants
y = C1y1 + C2y2 + ...+ Cnyn (1.26)

The system is assumed to be linear differential, constant coefficient, homogenous and non- au-
tonomous. The Picard’s existence and uniqueness theorem is adopted here. It is assumed that
the system of equation is of the form

y/ = f(t, y) (1.27)

and
f(t, y) = A(t)y (1.28)

where
A(t) = [aij(t)] (1.29)

an nxn matrix of functions.

Theorem 1. (Existence and uniqueness)

Suppose that n×n matrix function function A(t) and the n×1 matrix q(t) are both continuous on
an interval, I in R.
Let t0e I. Then for every choice of the vector y0 initial value problem

y/ = f(t, y) (1.30)

has a unique solution y(t) which is defined on the same interval I, Coddington E.(1961).
For the system (1.24) and applying the existence and uniqueness theorem, there is a solution

y(t) = [y1(t), y2(t), ...., yn(t)]/ (1.31)
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Table 1: variables for modelling
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and the functons y1(t) ,y2(t),y3(t),...,yn(t) have a laplace transform. The laplace transform is adopted
here to determine the general solution.

Y1(s) = L(y1)

Y2(s) = L(y2)

Y3(s) = L(y3)

Y4(s) = L(y4)

Y5(s) = L(y5)

.............

.............

Yn(s) = L(yn) (1.32)

The equation above yields a system of algebraic equation of the form
sY1(s)− y1(0) = α1y1(s) + β1y1(s) + γ1y1(s) + ρ1y1(s) + ...+ ψ1y1(s)

sY2(s)− y2(0) = α2y2(s) + β2y2(s) + γ2y2(s) + ρ2y2(s) + ...+ ψ2y2(s)

sY3(s)− y3(0) = α3y3(s) + β3y3(s) + γ3y3(s) + ρ3y3(s) + ...+ ψ3y3(s)

sY4(s)− y4(0) = α4y4(s) + β4y4(s) + γ4y4(s) + ρ4y4(s) + ...+ ψ4y4(s)

.......................................................................................................

sYn(s)− yn(0) = αnyn(s) + βnyn(s) + γnyn(s) + ρnyn(s) + ...+ ψnyn(s) (1.33)

Let
Y = [y1, y2, ...., yn]/ (1.34)

the sytem of equation (1.34) can be written in matrix form
sY (s)− y(0) = AY (s) (1.35)

which is then easily written as the matrix equation
(sI − A)Y (s) = Y (0) (1.36)

Assuming that (sI − A) is invertible we can solve equation (1.34) for Y(s) and apply the inverse
laplace to the entries Y(s) to find the unknown function, y(t).
(sI − A) is then written in a square matrix form as

S − α1 − β1 − γ1 − ρ1 − ψ1 − δ1 − ω1 − φ1

−α2 + S − β2 − γ2 − ρ2 − ψ2 − δ2 − ω2 − φ2

−α3 − β3 + S − γ3 − ρ3 − ψ3 − δ3 − ω3 − φ3

−α4 − β4 − γ4 + S − ρ4 − ψ4 − δ4 − ω4 − φ4

−α5 − β5 − γ5 − ρ5 + S − ψ5 − δ5 − ω5 − φ5

−α6 − β6 − γ6 − ρ6 − ψ6 + S − δ6 − ω6 − φ6

−α7 − β7 − γ7 − ρ7 − ψ7 − δ7 + S − ω7 − φ7

−α8 − β8 − γ8 − ρ8 − ψ8 − δ8 − ω1 + S − φ8 (1.37)

let
p(s) = det(sI − A) = S8 − Tr(A)s+ detA (1.38)

Clearly p(S) is a non zero polynomial function of degree 8 and hence det(sI-A).
For the purpose of laplace transform the interestes is focused on (sI-A), Equation (1.35) is solved for
Y(S) to get
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Y (S) = (sI − A)−1y(0) (1.39)

but

(sI − A)−1 =
1

p(s)
[Cij(s)] (1.40)

= [
Cij
p(S)

]

if Z1(s), Z2(s), Z3(s)...Z8(s) be the first upto the eigth columns of (sI − A)−1 respectively,
clearly each entry of Z1(s), Z2(s), Z3(s)...Z8(s) is a rational function of S.
Taking

Z1(t) = L−1Z1(s), Z2(t) = L−1Z2(s), Z3(t) = L−1Z3(s), ..., Z8(t) = L−1Z8(s) (1.41)

The entries of Zwill be of the form

C1e
r1t + C2e

r2t + C3e
r3t + C4e

r4t...+ C8e
r8t

if P (S) has distinct roots then r1, r2, r3, r4r5, r6, r7, and r8 are all unique values, with C1, C2, C4, C5, C6, C7

and C8 being appropriate constants.
Consider equation (2.1) it can be shown that

Y (s) = Z(s)y(0) (1.42)

hence
Y (s) = y1(0)Z1(s) + y2(0)Z2(s) + ...+ y8(0)Z8(s)

and applying laplace transform
y(t) = y1(0)Z1(t) + y2(0)Z2(t) + ...+ y8(0)Z8(t)

let
Z(t) = [Z1(t), Z2(t), .., Z8(t)]

which implies that
Z(t) = L−1((sI − A)−1) (1.43)

The solution y(t) of the system (1.32) can be expressed in matrix form y(t) = Z(t)y(0) whic implies
that = Z(t)y

0
given y/ = Z(t)y with the initial condition y(0) = y

0
and Z(t) = L−1((sI − A)−1).

According to Existence and uniqueness theorem , the the unique solution to the initial value problem
equation(1.32) is

y(t) = eAty0

where
eAt = L−1((sI − A)−1)

.
The difficulty in manually determining ((sI − A)−1) is at this point acknowledged, especially for
the 8X8 matrix in this study. The matlab program is therefore adopted for the subsequent data
manipulation.
In this applications, time t plays the role of the independent variable, and the associated system of
differential equations is conventionally written in the following notation:
Clearly for the prediction of the rate of road carnage for the road system depicted by the scenario ,
the model is

Xn = C1An1e
λ1t + C2An2e

λ2t + C3An3e
λ3t + ...+ CmAnme

λmt (1.44)

The equation can be extended to non linear systems. For the purpose of this study linears system
are considered.
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Table 2: Simulated data for the road parameters with IVP

Empirical Study

This model was deloped using MatlabR2013b (The Mathworks inc., Rice University) and R statistics
version 2.12.1 (The R foundation for Statistical computing). A Time step of 0.125 was used to
simulate 2013 to 2015 data. The probability disribution function used to generate random test
data for parameters Ri is poisson, where as for AADT(T), Curvature(C), Gradient(G), Hours before
Midnight(HBM) normal distribution was used similaly for the Shoulder(S), Spot speeds(SS), Lane
width(W) and number of lanes (L) were generated by a discrete uniform distribution. The following
8 by 8 matrix was threfore obtained for the eight variables corresponding to the the 8 black spots
across the 8 former administrative boundaries as per the KNTSA classification of black spots. With
Ri(0), i = 1, ..., 8, as the initial values for every black spot segment BSi, i = 1, ..., 8.The Riis generate
using a poisson distribution l=3.

This 8 by 8 matrix is hence solved using matlab for its eigenvalues and vectors which were used to
obtain the constants fot the general sotution,(1.44) .Our problem indeed becomes an initial value
problem.

2 RESULT

Using the road parameters and the initial values provided, the constants for the specific equation is
y1=43.36, y2=37.6, y3=21.60, y4=23.48, y5=1.25, y6=1.25, y7=4.7, y8=4.2 , with e =2.7 hence we
obtain the specific equation for the initial values provided as
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ω(t) = ψ1∗0.35∗ε.6.8∗t+ψ2∗0.26∗ε.0.07∗t+ψ3∗0.18∗ε.−0.024∗t+ψ4∗0.162∗ε.0.0006∗t+ψ5∗0.16∗ε.−0.0002∗t+ψ6∗0.16∗ε.−0.0002∗t

+ψ7 ∗ 0.16 ∗ ε.0.0012∗t + ψ8 ∗ 0.06 ∗ ε.−0.0001∗t (2.1)
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Figure 2.1: Simulation result showing a shock at t=9

given the initial condition we obtain the phase diagram figure below with

The Figure 5.0.10 above reveal that right from the onset values are zero or near zero but at t =9 ,
the accident values can be seen as indefinite. A clear indication of a shock that characterises accident
occurences.
A futher simulation was conducted with lower curvature and keeping the AADT at a mean of 3000
and a curvature(C) with a low mean of 12 metres.
and using initial values R1(0) = 6, R2(0) = 7,R3(0) =5,R4(0) =3,R5(0) =3,R6(0) =2, R7(0)=2, R3(0)
=4, simulated as poisson distribution mean l=5, n = 8

The model obtained is
ω(t) = ψ1∗−0.325∗ε.379.5∗t+ψ2∗−0.0999∗ε.−0.324∗t+ψ3∗∗−0.0999ε.−0.324∗t+ψ4∗0.1019∗ε.0.3150∗t+ψ5∗0.1019∗ε.0.3150∗t+ψ6∗0.0531∗ε.0.1921∗t

+ψ7 ∗ 0.0195 ∗ ε.0.0762∗t + ψ8 ∗ 0.0195 ∗ ε.0.0762∗t (2.2)

with the following constants y1=-11.89, y2=0.58, y3=0.581, y4= -0.399, y5= -0.399, y6=-2.807,
y7=1.89, y8=1.89 with e =2.7
When ploted the following curves are obtained. The constants are obtained using table 3.

The figure 2.2 depicts a graph is zero elsewhere except at about t=1.625.

Similarly the figure 2.3 depicts a graph that is zero elsewhere except at about t = 9.
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Table 3: Change of the data set to reflect low curves
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Figure 2.2: A plot with near infinite at about 1.6 on a 3 year time span .
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Figure 2.3: The 3 dimensional plot of the derac-delta fucntion

26



Figure 2.4: The 3 dimensional plot of the derac-delta fucntion
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The 3 dimensional plot of the derac-delta fucntion figure 2.4, equally show a curve that is very
tall with narrow spikes and representing a large force exerted on a system over a very short time
frame. Such a pattern characterize forcing functions, for this study we adopt an impulse function or
commonly reffered to as delta function, usually denoted by d(t).Straud K .A.(2003).
The delta function is suitable for representing impulsive force between two bodies in collision , in this
case two vehicle crashes or a vehicle crashing on to another object that could be a road guardrail ,
road bank or vehicle rolling off the road.
The nature of road carnages is revealed by figure 2.4 , which characterizes a linear system that
originaly was stable and is excited by a sudden large force, Marcel B.F(2000).
The impulses that characterize carnages can be modelled by providing the initial values(IVP), Marcel
B.F(2000).
Mathematically such a time variable function is described by the dirac delta function symbolised by

δ(t− τ) (2.3)

Clearly the simulation results depict a Dirac delta distribution with zeo or near zero elsewhere except
one point τ = a in our two cases, t = 9 for the Function 5.0.10 and t = 1.65 for the function 5.0.12.
At these points the function can be thought of as either undefined or having an indefinite value. The

Simulation Results

The simulation results exhibit a distribution with zero or near zero everywhere except one point,
t = t in our two cases, t = 9 for the function 2.23 and t = 1.65 for the function 2.24. At this these
point the function can be thought as either undefined or having an indefinite value.
revealing impulse response. An impulse in this case is the sudden change in the vehicular flow of
activities (traffic) in the system as a result of external forces.
An action of a force acting instantaneously at a time τ and imparting a unit impulse to some mass
is evident, Malhan J . A (2002)
If the external forcing function Ψ(t) = δ(t−τ Malhan J . A (2002), is adopted , with

´ t1
t0
f(t)dt = I(t).

This is used to represent a momentum imparted to a system over a short time interval t0 ≤ t ≥ t1.
The function δ(t− τ) is called the dirac delta function with the property that

´∞
0

d(t− t)dt = 1 and
that it is zero elsewhere except at t = t where it is undefined.
The function can be used to represent the impulse that characterize vehicle crash phenomenon , this
time at a point t = t after t0 .
The intergral of the distribution functions about the value t = τ is unity. ie area under the “curve”
equals 1, quite synonimous with probability distributions.

Conclusion

We have proposed a semi-stochastic mixture model to predict the rate of road carnages in kenya. This
model has an additive risk function with eight components. The first component models the impact
that annual average daily traffic(y1), has on the rate of road carnages, the second spot speed(y2) ,
third, lane width (y3), fourth is road shoulder width(y4), fifth factor is number of lanes, sixth factor
is Horizontal curvature(y6),the seventh factor is the vertical gradient(y7) and finaly the Hours before
midnight (y8). Our analysis of the simulated data set show that in addition to other critical facors
in determining rate of road carnages the road curvature variability is important in explaining risk
of road carnage. Other studies have explained the greater contribution of other road variables in
explaining rates of road carnage, to the best of our knowledge this is one of the study that shows
road curvatures as an important variable to consider when modelling rate of road accident carnages.
Future reseach should focus in in investigating the explanation for this relationship.
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