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Abstract 

Second harmonic generation due to linearly polarized laser pulse propagating through quantum plasma immersed 

in a transverse wiggler magnetic field is studied using the quantum hydrodynamic (QHD) model. The effects 

associated with the Fermi pressure, the Bohm potential and the electron spin have been taken into account. Wiggler 

magnetic field plays both a dynamic role in producing the traverse harmonic current as well as kinematical role in 

ensuring phase-matching. The quantum dispersive effects also contribute to the intensity of second harmonics.  
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1. Introduction 

The study of electron-wave interaction in the presence of background plasma has attracted a lot of interest over 

the past few decades. The physical phenomenon of interaction of a high-intensity laser radiation with plasma leads 

to a number of relativistic and nonlinear effects such as self modulation, self-focusing, Raman scattering, and 

harmonic generation [1-2]. The generation of harmonic radiation is an important area of laser-plasma interaction 

for its value in many applications [3-10]. Harmonic generation offers an alternative source for short wavelength 

generation and important tool for diagnostics of nonlinear media. With the development of high intensity short 

pulse lasers, the electron motion becomes highly nonlinear, giving rise to nonlinearity rather than the 

anharmonicity of the bounded electron oscillation in atoms and molecules. Theory for coherent emission in the 

direction of propagation of laser beam, referred to as relativistic harmonic generation, has been established [1,11]. 

It pronounces that because of the mismatch between the phase velocities of the laser pulse and the generated 

harmonics under the collective response of the plasma, the conversion efficiency should be low unless a means for 

phase-matching [12] is applied. Matsumoto and Tanaka [13] have presented analysis of quasi phase-matched 

second-harmonic generation in the reflection by backward propagating interaction and showed that bistability 

appears in the generated second-harmonic power if the amount of phase mismatch is suitably chosen. Meyer and 

Zhu [14] claimed to have observed the second relativistic harmonic generated under the condition of beam 

filamentation. However, such second harmonic light has been later identified by several groups [15,16] to be 

associated with the transverse-density depression derived by laser self-channeling or filamentation, as is evident 

from its broad angular width caused by the plasma density gradient [14].  To increase the efficiency of the harmonic 

generation process which is significantly affected due to the phase mismatch between the fundamental and 

generated harmonics radiation several schemes have been proposed to make harmonic generation a resonant one. 

Singh et. al. [17] has shown that a density ripple in a plasma could be properly employed for resonant second 

harmonic generation. Nitikant and Sharma [18,19] found that wiggler magnetic field plays both  a dynamic role in 

producing the transverse harmonic current and a kinematical one in ensuring phase- matching. Parashar and 

Pandey [20] proposed the employing of a density ripple to compensate for the momentum mismatch between the 

pump and second- harmonic wave in plasma and semiconductor respectively. Shkolnikov et al. [21] demonstrated 

the feasibility of optimal quasi phase matching for higher-order harmonic generation in gases and plasmas with 

modulated density. Rax and Fisch [22] studied phase modulated relativistic third harmonic generation employing 

resonant density modulation in plasma. Agrawal et al. [23] have studied resonant second harmonic generation of 

a millimeter wave in a plasma filled waveguide in the presence of a helical magnetic wiggler. Weissman et. al. 

[24] have studied second harmonic generation in Bragg-resonant quasi-phase-matched periodically segmented 

waveguides. Ding et al. [25] have developed a theory for quasi-phase-matched backward second and third 

harmonic generation in a periodically doped semiconductor. 

 All the above work has been done for classical plasma. Classical plasma physics has mainly focused on 

regimes of high temperatures and low densities, in which quantum mechanical effects play no role. Plasma where 

the density is quite high and the de–Broglie thermal wavelength associated with the charged particle i.e.,

( )Tmk BB πλ 2h=  approaches the electron Fermi wavelength 
Feλ  and exceeds the electron Debye radius 

Deλ
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( ),~., DeFeBviz λλλ > the study of quantum effects becomes important. Furthermore, the quantum effects 

associated with the strong density correlation start playing a significant role when 
Bλ  is of the same order or larger 

than the average inter-particle distance )(~
31−

on , i.e., 1
3 ≥Bon λ  hold in degenerate plasma. However, the other 

condition for degeneracy is that the Fermi temperture ( )FT  which is related to the equilibrium density )( on  of 

the charged particles must be greater than the thermal temperture )(T   of the system. The high-density, low-

temperature quantum Fermi plasma is significantly different from the low-density, high-temperature “classical 

plasma” obeying Maxwell-Boltzman distribution. During the last decade, there have been many papers devoted to 

influence of spin on dynamics of plasma [26-28]. Recently, the quantum kinetic studying of the waves in plasma 

made [29]. The growing interest in investigating new aspects of dense quantum plasmas motivated by its potential 

applications in modern technology e.g., microelectronics devices, quantum plasma echoes, metallic nanostructures, 

metal clusters, thin metal films, quantum well and quantum dots, nano-plasmonic devices, quantum x-ray free 

electron lasers,  in super dense astrophysical environment (e.g. in the interior of Jupiter, white dwarfs, and neutron 

stars), in high intensity laser produced plasmas,  in metallic nanostructures , in nonlinear quantum optics, in dusty 

plasmas and in next generation of laser based plasma compression experiment (LBPC) etc.  

The present paper deals with the analysis of second harmonic generation in quantum plasma in the 

presence of a wiggler magnetic field. The effect of quantum Bohm potential, Fermi pressure and electron spin has 

been analyzed.  The recently developed quantum hydrodynamic (QHD) model [30, 31] has been used to describe 

the interaction phenomena of second harmonic generation in quantum plasma. The QHD model consists of a set 

of equations describing the transport of charge density, momentum (including the Bohm potential) and energy in 

a charged particle system interacting through a self consistent electrostatic potential. QHD model is a macroscopic 

model and application is limited to those systems that are large compared to Fermi length of the species in the 

system. The advantages of the QHD model over kinetic descriptions are its numerical efficiency, the direct use of 

the macroscopic variables of interest such as momentum and energy and the easy way the boundary conditions are 

implemented.  

In second harmonic generation, two photons of energy 
oωh  and momentum 

ok
r

h combine to produce a 

photon of second harmonic radiation of energy 
2ωh under the phase matching condition 

okk
r

h
r

h 22 = , where  

ook ω,
r

 and
22 ,ωk

r
 are the frequency and wave number of fundamental and second harmonic wave respectively. 

Since quantum plasma is a highly dispersive medium, the phase matching conditions are not satisfied, thereby 

making the process non-resonant. If the process is made a resonant- one the efficiency of the process can be 

enhanced significantly. Our main focus is to enhance the second harmonic generation in quantum plasma by 

satisfying the phase matching condition in the presence of wiggler magnetic field. The wiggler provides additional 

momentum to make process resonant which leads to enhance the efficiency of harmonic generation. The laser 

imparts an oscillatory velocity to plasma electrons and exerts a ponderomotive force on them at ).2,2( oo k
r

ω  As 

the plasma electrons acquire oscillatory velocity at the second harmonic, the wiggler magnetic field beats with it 

to produce a second harmonic current at ),2,2( ωω kk oo

rr
+

 
which drives the second harmonic radiation.  

 

2. Nonlinear current density (using QHD Model) 

Consider a linearly polarized laser beam with electric field, 

   
)exp(ˆ tzkEyE oooy ω−=

r
                                                                       (1)        

propagating through high density quantum plasma, where propagation constant ck opoo /)1( 2122 ωωω −= . 

An external wiggler magnetic field )exp(ˆ zkByB woww =
r

 is applied in the transverse direction. The plasma 

frequency and the wiggler frequency are being defined as [ ] 212 )/( oop men εω = and )./( cmeB owow =ω

respectively.  The interaction dynamics is governed by the following set of QHD equations. 
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where, v
r

 is the velocity, h  is the Planck’s constant divided by 2π, Fv is the Fermi velocity and S
r

 is the spin 

angular momentum with 2h=oS  and 
Bg µµ )2(−=  ,with 0023193.2=g   

and meB 2h=µ   being the 

Bohr magneton. The third term on the right–hand side of eq. (2) denotes the Fermi electron pressure. The fourth 

term is the quantum Bohm force and is due to the quantum corrections in the density fluctuation. The last term is 

the spin contribution to the momentum. The above equations are applicable even when different spin states are 

well represented by a macroscopic average. The wave equation for the current source is.   
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where, J
v

 is the current density.  

Perturbative expansion of the set of QHD equations governing the electron plasma dynamics for the first 

order of the electromagnetic field gives 
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From the equation of motion eq. (6), the components of the quiver velocity imparted to the plasma 

electron are written as, 
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From the above equations, it is evident that wiggler field effects the motion of electron both in 

longitudinal as well as in the transverse direction. Due to the above oscillations the first order perturbations in 

electron density are, 
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Due to the presence of the magnetic field, electrons attain a spin angular moment. The dynamics of spin 

angular magnetic moment leads to dispersion. The components of first order perturbed spin angular momentum 

are obtained using eq. (3) as, 
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The perturbed density and spin motion of electrons due to oscillatory velocities generate oscillating 

current. The current density is the sum of conventional source current )( nevJc −=  and the spin current due to 
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Eqs. (18) - (20) contain the collective effects of the laser and magnetic fields on the plasma electrons. The 

first term in eqs. (18-20) arises due to the action of the radiation field on plasma electrons while the second term 

denotes the effect of wiggler field, under the influence of electron spin and other quantum effects. First order 

velocity beats with wiggler magnetic field at )2,2( woo kk
rr

+ω to produce ponderomotive force, .)2(

pF The 

plasma electrons acquire oscillatory velocity at )2,2( woo kk
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The second order perturbed electron density and the spin magnetic moment are found to be,

    



Advances in Physics Theories and Applications                                                                                                  www.iiste.org 

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) 

Vol.57, 2016 

 

55 
 

[ ] ).(exp)(exp 2)2(

2

)2(

1

)2( tzkiEzkin ooowxxx ωηη −+=
                                    (24)                                                    

[ ] ).(exp)(exp 2)2(

2

)2(

1

)2( tzkiEzkin ooowyyy ωηη −+=
                                   (25)                                        

[ ] ).(exp)(exp 2)2(

2

)2(

1

)2( tzkiEzkin ooowzzz ωηη −+=
                                   (26) 

).(exp)(exp 2)2(

1

)2( tzkiEzkiSS ooowxx ω−=
                                          (27)                                               

[ ] ).(exp)(exp 2)2(

2

)2(

1

)2( tzkiEzkiSSS ooowyyy ω−+=
                                   (28)                                     

[ ] ).(exp)(exp 2)2(

2

)2(

1

)2( tzkiEzkiSSS ooowzzz ω−+=
                                   (29)                                      

where, 

,

)1(

1

)1(

1)2(

1

o

xxo

x

vk

ω
η

η =
 

,
2

)2( )2(

1)2(

2

o

xwoo
x

vkkn

ω
η

+
=

 

,

)1(

1

)1(

1)2(

1

o

yyo

y

vk

ω

η
η =

 

[ ],
2

)2( )1(

1

)1(

2

)1(

2

)1(

1

)2(

1

)2(

2 yyyyyo

o

wo

y vvvn
kk

ηη
ω

η ++
+

=
 

,

)2(

1)2(

1

o

zoo

z

vkn

ω
η =

  

,
2

)2( )2(

2)2(

2

o

zwoo
z

vkkn

ω
η

+
=

 

,
2

)( )1(

1

)1(

1

)1(

1)2(

1

o

zowB

o

xxwo

x
i

SBSvkk
S

ω
µ

ω h
−

+
=

  

,
22

)1(

1

)1(

1

)1(

1)2(

1

o

zB

o

yyo

y
i

SSvk
S

ω
µ

ω h
+=

  

,
2

)1(

2

)1(

2)2(

2

o

yyo

y

Svk
S

ω
=

 

,
2

)1(

1)2(

1

o

yB

z
i

S
S

ω

µ

h
−=   and .

2

)1(

1

)1(

1)2(

2

o

zzo
z

Svk
S

ω
−=   

First order velocity betas with first order density perturbation and spin angular momentum perturbation 

to produce second harmonic currents at ).2,2( ωω kkoo

rr
+  The second order current densities are,
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Thus, the total second order nonlinear current (using eqs. (30-32)) is,  
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There also exists a self-consistent second harmonic field,
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3. Second harmonic field 

The wave equation governing the generation of second harmonic is given by, 
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On simplifying the above equation, we get the normalized amplitude  
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The second harmonic power density can be written as 
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and the fundamental power density can be written as, 
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The ratio of second harmonic power density to that of the fundamental power density gives the efficiency of second 

harmonic generation as, 
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In figure 1, the power efficiency )/( 2 oPP (in %) has been plotted as a function of normalized wiggler 

frequency )/( oow ωω , for different values of plasma density. The figure shows that for a constant plasma density, 

the harmonic grows with an increase in the wiggler field. The maximum efficiency is attained at about 

76.0/ ≈oow ωω . Maximum efficiency appears at higher densities with increase in the wiggler field. The cut off 

value for the harmonic generation and the saturation value for magnetic field also increase with plasma density. 

The strong magnetic field and quantum effects both contribute to increase in the cut-off value of second harmonic 

generation.   

The figure 2 is plotted for the power efficiency )/( 2 oPP  (in %) of second harmonic generation in 

magnetized quantum plasma as function of magnetic field strength 
oc ωω / , where mcebc /=ω   ( byB y

ˆ=
r

 

is static magnetic field), for the different values of normalized electron density. It is seen that the power efficiency 

variation is completely different in the phase-mismatched condition (in absence of wiggler). In the Phase mismatch 

condition, the second harmonic efficiency reduces with the increase in magnetic field and plasma density. 

Figure 3 shows the variation of power efficiency )/( 2 oPP  (in %) of second harmonic generation as a 

function of normalized electric field parameter 
oa  at different densities. The resonant power efficiency increases 

sharply for lower values of intensity, however at higher values it saturates. 

In addition, we can conclude that the efficiency for phase matched is distinguished from efficiency of 

phase mismatched.  The power efficiency of second harmonic generation in phase mismatched condition is always 

below the phase matched one. It is worth mentioning that in low density plasma we need a super strong magnetic 

field to get maximum power efficiency of harmonic generation whereas in quantum plasma which is highly dense, 

the excitation of efficient harmonics becomes easy by applying lesser magnetic field strength. The quantum 

diffraction also enhance the harmonic generation. A balance between the plasma density and applied field is 

required to obtain optimum efficiency. 
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Figure 1: Variation of power efficiency )/( 2 oPP (in %) for phase-matched second harmonic with normalized 

wiggler frequency )/( oow ωω  for ,10 328 cmno = 271.0=oa and different values of normalized electron 

density.  
 

 

Figure 2: Variation of power efficiency )/( 2 oPP (in %) for phase-mismatched second harmonic with respect 

to the normalized wiggler frequency )/( oow ωω  for for ,10 328 cmno = 271.0=oa and different values of 

normalized electron density.   
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Figure 3: Variation of power efficiency )/( 2 oPP (in %) for phase-matched second harmonic with respect to the 

laser intensity )( oa  for ,1082.2 18 Hzow ×=ω 32810 cmno = and different values of normalized electron 

density.
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