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ABSTRACT 

Present work is mainly concern with the mathematical function, considered to represent the axial magnetic flux 

density distributions of proposed triple pole-pieces magnetic lenses which is used as rotation free lenses. This 

function has, in fact, three-optimization parameters. The only important parameter is the bore radius of the lens 

in the proposed model. This parameter can be affect on the projector properties of the lens, when the other two 

optimization parameters (maximum value of flux density and lens length) are constants, where the literature 

survey proved that unaffected on the lens properties. Results have clearly shown that the optimization parameter 

for current function, have a considerable effect on the lens distortion, lens magnification, and the reconstructed 

pole-pieces. Furthermore, the results obviously show the excellent ability for converting the form of the chosen 

mathematical function in order to represent the magnetic field of triple pole-pieces lenses. 
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1. INTRODUCTION 

The main fundamental concept of the electron and ion optics is based on the analogy between geometrical light 

optics and the motion of charged particle beams in electromagnetic fields. The elementary charged particles have 

the duality nature similar to the light according to De Broglie and Busch discoveries which state that a wave 

associated with a moving particle and time independent fields (magnetostatic fields) of a solenoid acts on 

charged particles in a way similar to that of glass lens on light rays. Therefore, in the field of the electron optical 

instruments electrons or ions used in the imagining processes instead of photons in the optical devises. This 

means that visible light in optical microscope is replaced by electron beams of varying wavelength depending on 

the accelerated voltage in the electron microscope. The elementary component in the electron microscope and 

other electron optical instruments is the electron lens (electrostatic or magnetic lens) which can be defined as any 

axially symmetric electrostatic or magnetostatic field distribution has a focusing effect on any charged particle 

beam. 

Many investigations have been concerns with the inverse design problems of electrostatic and magnetic electron 

lenses by using some objective functions, for more details see [1]. 

The present work deals with the second approach including evaluation of the projector focal properties and 

determined the pole-piece profiles of the symmetrical magnetic field distributions by using a new mathematical 

target function. 

 

2. MATHEMATICAL MODEL 
In general, synthesis (inverse design) optimization procedure in the field of electron and ion optics contrary on 

the analytical treatments begins with a specific target function to represent the axial magnetic field, potential or 

trajectory distributions along the optical axis of the electron lens. This technique has been depended in all 

previous investigations of symmetrical and asymmetrical double pole-piece magnetic electron lenses. However, 

this procedure starts with any one of the mentioned target functions, where begins with a specific target function 

to represent the axial magnetic field in current study. The proposed mathematical model has been introduced. 
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Where Bmax is the maximum value of axial flux density, z is the axial distance on the optical axis, and rb is the 

bore radius of the lens. Also, it is important to investigate the scalar magnetic potential V according to the 

relation; 

gradVB oz µ−=                                                                                                               (2) 
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Where µo is the magnetic space permeability and equal to 4πx10
-7

H.m
-1

 .By using the analytical solution of 

Laplace’s equation, the shape of the pole piece that would produce the desired field can be determined. For 

axially symmetric systems the electrostatic or magnetic scalar potential V(r,z) can be calculated from the axial 

distribution of the same potential V(z) by the following series expansion [2]-[3]. 
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Where Rp is the radial height of the pole-piece, VP is the potential value at the pole-piece surface, which is 

equivalent to half of the lens excitation NI and Vz
"
 is the second derivative of the magnetic scalar potential with 

respect to the z-coordinate. By taking the first two terms of equation (3) under consideration, the equipotential 

surfaces are given by the formula [4]-[5]. 
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It is easy then to use equation (1) to assigning the imaging magnetic field distribution along the optical axis z1 ≤ 

z ≤ z2. By using the magnetic field determinations, the one can calculate the electron beam trajectory r(z) and its 

correspondence departure r
'
(z) with optical axis z. Typically, this task can be achieved by solving the paraxial ray 

equation given by the following expression [6]-[7].  
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Where η represents the charge-to-mass quotient, Vr is the relativistically corrected accelerating voltage and r is 

the height of the electron beam trajectory from the optical axis.  

In the present work the radial Dr and spiral Ds distortion coefficients can be determined by using the following 

integrals [6]. 
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Where rα and rγ  are two linearly independent solutions of the paraxial-ray equation (5). The limits of integration 

are the two terminals points' z1 and z2 of the magnetic field. The magnification of doublet projector lenses 

determine at first and second loop, using the formula [8]. 

2
minP )(F

L
M

ℓ
=                                                                                                                    (8) 

Where M is the magnification of the doublet projector lens, ℓ is the distance between the center of two peak of 

the field (here in proposed lens ℓ = 20 mm), L is the distance between the face of the second lens and the screen 

(in current work imposed L=35 mm), and (FP)min is the minimum projector focal length. 

 
3. RESLUTS AND DISCUSSION 
Obviously equation (1) implied three optimization parameters namely Bmax, z, and rb (in current work kept Bmax, 

and z constants). In order to clarify the effect of varying the optimization parameter rb ,    five values have been 

chosen (rb = 1, 2, 3, 4, and 5mm) and the optical axis chosen to be 40mm. The axial magnetic flux density 

distribution (Bz) should be compute it according to equation (1) for various values of bore radius and plot it as a 

function of axial distance (z) as shown in figure 1. From figure 1 one notice the increasing values of rb with 

remain Bmax constant leads to increasing the area under magnetic field curve, i.e. increasing the lens excitation 

NI. 
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Figure 1. The axial magnetic field distributions of a doublet lens at rb = (1, 2, 3, 4, and 5mm) and L=40mm. 

 
The magnetic scalar potential V(z) distribution should be computed from equation (2) , as shown in figure 2. 

According to figure (2), can shows the V(z) distribution curves correspond to each chosen value for rb , and seen 

that whenever  rb increases, the gradient of V(z) with optical axis increases too. However, this means, directly, 

the extension of Bz(z) distribution, along the optical axis will be excess as shown in figure 1. 

The total reconstructed pole-piece profiles that capable to produce each V(z) distribution, correspond to different 

values of rb , are plotted in figure 3. It can be seen that the parameter rb has an important effect on these shapes, 

which may due to the variance in V ̋ (z) distributions along the optical axis when rb varies.  

The net effect of the imaging field on the beam trajectory shown in figure 4 is therefore, described as a function 

of optical axis for various values of rb leads to out parallel beams, and that is mean truth behavior due to using 

this lenses with projector role (i.e. infinite operation mode). 

The minimum projector focal length Fpmin at first and second loop as a function of the bore radius rb is shown in 

figure 5. It should be mentioned that, with increase the values of rb ,  at first loop Fpmin kept constant, but in 

second loop is decreased. 
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Figure 2. The axial magnetic scalar potential of a doublet lens at rb = (1, 2, 3, 4, and 5mm) and L=40mm. 

 

 

Figure 3. The total reconstructed pole-piece shapes at different values of rb. 
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Figure 4. The electron beam trajectory along optical axis at different values of rb. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. The minimum projector focal length (Fp)min at first and second loop, as a function of rb. 

 
Figure (6) shows the radial distortion coefficients, Dr1 in the case of (Fp)min1 and Dr2 in the case of (Fp)min2 at first 

and second loop respectively, at different values of bore radius rb . It should be mentioned that, when increase 
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the values of  rb , the values of  Dr1 and Dr2 are sharply decreasing (in low values of rb<2mm), then stay slight 

variation for rb>2mm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The radial distortion coefficients Dr1 and Dr2 at first and second loop as a function of rb , in the cases of 

(Fp)min1 and (Fp)min2 respectively. 

 

The values of spiral distortion coefficients, Ds1 in the case of  (Fp)min1 and Ds2 in the case of (Fp) min2 at first and 

second loop respectively, represented at different values of bore radius rb , as shown in figure 7. It should be 

mentioned that when increase the values of  rb , the values of  Dr2 are sharply decreasing (in low values of rb < 2 

mm), then stay slight variation for rb>2mm, while the values of  Dr1 are increasing from negative values toward 

x-axis (zeros distortion).  

The main two defects, radial Dr and spiral Ds distortions, which the projector lenses suffer from it at the 

minimum projector focal length (Fp)min in addition to (Fp)min at first and second loop as a function of the 

excitation parameter NI/Vr
1/2

  as shown in figures 8 and 9 respectively. 

From figure 8, it should be mentioned that all of (Fp)min1 at first loop kept constant approximately at 20 mm, the 

values of Dr1 drop with increasing the values of  NI/Vr
1/2

 , while the values of Ds1 increase from negative values 

approaching to zero, with increasing the values of  NI/Vr
1/2

. 

From figure 9, the one can see there is a slow decrement in straight line represented the values of Fpmin2 at second 

loop, a sharp increase in Ds2 , while there is a slight decreasing happen in Dr2 values, all of these happened with 

increase the values of  NI/Vr
1/2

 . 
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The values of half width w , air gap width s , and excitation parameter NI (area under field curve) increasing 

linearly with increasing the bore radius rb , as shown in figure 10. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. The spiral distortion coefficients Ds1 and Ds2 at first and second loop as a function of rb , in the cases of 

Fpmin1 and Fpmin2 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. The radial distortion coefficient Dr1 , and spiral distortion coefficients Ds1 in the first loop at minimum 

projector focal length Fpmin1, in addition to Fpmin1 as a function of NI/Vr
1/2

. 
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Figure 9. The radial distortion coefficient Dr2 , and spiral distortion coefficient Ds2 in the second loop at 

minimum projector focal length Fpmin2, in addition to Fpmin2 as a function of NI/Vr
1/2

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. The half-width w, air gap-width s, and excitation parameter NI as a function of rb. 

 
The magnification of the projector lens, computed from the equation (8) at the first loop M1, and second loop M2 

for the various values of bore radius rb . These values represented in figure (11), thus, the one can see the 
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in M2 values from hundred thousand times to single thousand times during 2mm from rb values. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 11. The magnification of the proposed projector lens at first and second loop as a function of rb. 

 

4. CONCLUSIONS 
According to the previous results, several remarks can be stated. The most important of them is that, the 

mathematical nature of a model which is used to approximate the magnetic field plays an important role to 

specify its optical properties. In that sense one may replacing the conventional investigation of a magnetic lens 

by a carful choice of mathematical model to approximate imaging field distribution. 

When uses any analytical target function to represent any axial function, such as the magnetic flux density 

distribution or the scalar magnetic potential or electron beam path ... etc., must take into account that the 

magnetic field (magnetic flux density distribution) is equal to zero or close to it at the ends (terminals) of optical 

axis. Otherwise, the part of the excitation will be losing and thus will increase the margin of error in the 

calculations and cannot get reliable results. 

According to the results of the present work one may noticed that, the proposed lens have the same 

magnification (same minimum focal projector lens), regardless of the bore diameter values in the first loop. 

While decrease the magnification (increase the minimum focal projector lens) with increase the bore diameter 

values in the second loop.  

The net effect of the imaging field on the beam trajectory leads to out parallel beams, and that is mean truth 

behavior due to using this lenses with projector role (i.e. infinite operation mode). 

The proposed lens have low values of radial  and spiral distortion coefficients for values of bore radius greater 

than 2 mm at minimum focal projector lens in the case of first and second loop.  

Effect of decrease the bore radius leads to decrease each of half width of magnetic field, air gap width, and 

excitation parameter. Thus, this means improve the lens properties regardless of the magnetic flux density 

especially that required the use of the lens as free rotation - projector lens.    
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