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Abstract : Inverse of Dielectric Function of highly doped  GaN has been calculated by using Lindhard formalism.  

For simplicity collisional damping,  nonparabolicity and the coupling  between various  electrons and holes  were  

neglected. The inverse of the dielectric function for both Fermi- Dirac and Maxwell Boltzman distribution showed 

antiscreening peak at small phonon wave vector. On the contrary, both Thomas Fermi and Debye inverse of 

dielectric function showed screening as expected at same phonon wave vector. There is a sharp growth in the 

antiscreening peak in the inverse of dielectric function at carrier temperature 77 K and 300K, accompanied with a 

singularity at carrier concentration greater than 324
105

−
mx .  
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1.  Introduction 
 

In the early 1970s, interest in GaN-based devices has risen rapidly (Nakamura et al. 1995, 1994; 

Mohammed and Morkoc 1996; Gelmont et al. 1993; O’Leary et al. 2006). There has been considerable 

interest in GaN due to its wide band gap and favorable material properties, such as high electron mobility 

and very high thermal conductivity. The large band gap energy of the III-nitrides insures that the 

breakdown electric field strength of these materials is much larger than that of GaAs ( You  and Ong 

2000;  Adachi 1994; Fawcett et al.1970 ).    

Early studies of electron transport in polar materials neglected screening of the electron-polar interaction 

by free carries. At moderate and high carrier densities, however, it is important to include not only 

screening of this interaction, but also electron-electron interaction and scattering by ionized impurities. 

Ehrenreich  (Ehrenreich 1959)  investigated screening of the electron polar optical phonon mode 

interaction.  Although he went so far as to treat the dynamical aspect of screening, eventually he 

describes the interaction in terms of static screening later. The influence of screening on carrier mobility 

was studied, in a series of paper (Doniach 1959; Ravish et al. 1970, 1971) on the theory of transport. 

There was a further step towards using the dynamic screening potential rather than static one on the inter 

carrier interaction potential   (Meyer and Bartoli 1983; Ridley 1985; Abou El-Ela 1986, 1988; Lugli and 

Ferry 1983; Lugli 1985). The treatment of electron collision with plasmon-phonon coupled mode has 

grown in importance for plasma frequency exceeding the phonon frequency ( Lugli and  Ferry 1983; 

Lugli 1985)  in view of the widespread interest in high carrier concentrations. 

For carrier densities of 324102 −mx    
and above in GaN screening becomes of considerable importance and its 

dynamics nature must be taken into account.  The dielectric function ),k( ωq  is considered as one of the most 

interesting factors in the investigation of electron interaction with optical phonon mode including dynamic screening 

behavior in semiconductor,  

The Lindhard formalism ( Lindhard 1954;  Ridley 1988;  Ziman 1972) is a very good approximation to the dielectric 

function in the weak coupling limit. It correctly predicts a number of properties of the electron gas such as screening 

and plasmon dispersion. This approach is commonly called the self-consistent field approximation (SCF),  in which 

we assume that the electron respond to the total potential ),v( ωq  and try to determine this function self-

consistently. 

 

 

2. The Dielectric Function in Highly Doped Semiconductor  

 

The Lindhard formula for the dielectric constant is 
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),(k ωq∞  is the high-frequency dielectric contribution from the valence band electrons, oε  is the permittivity of 

free space and ∞ε  is the corresponding permittivity. The summation in Eq. (1) is over all electron states in the 

conduction band weighted by the distribution function )kE  (fo , the crystal volume is denoted by V , e  is the 

electronic charge and 
k

E  is the electron energy at wave vector k .  The formula is evaluated in the usual manner 

with α approaching zero (collisional damping is neglected). Also, for simplicity nonparabolcity and the coupling 

between various electron and hole bands has been neglected, since these effects give a correction of second order. 

Then, one obtains  
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This could be rewritten as         

dk

dk

 

)(
m

)(
m

f
km

                                             

  

)(
m

)(
m

km
    

2 π

V
S

2

*

2

*

0
2

*

0

2

*

2

*

2

*

2





















++−

+−+

∫+

∫





















+−−

+++

=

∞

∞

αiω1

αiω1

ln    )(E

αiω1

αiω1

ln    )(Ef

o

o

hh
h

hh
h

h

hh
h

hh
h

h

kq2k

q

kq2k

q

q

kq2k

q

kq2k

q

q

k

k                     (3) 

                                                                          

Then we rewrite Eq. (1) as  
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A system of electrons under degenerate conditions can be studied assuming Fermi-Dirac statistics for the energy 

distribution in Eq. (4).  For non-degenerate conditions the energy distribution takes a Maxwellian form  and 

),k( ωq   can be written as   

  

           ω),(kω),(kω),k( IR qqq  i+=                                                      (5)   

                                                         

Where  ),(k R ωq
 
and ),(k I ωq  are the real and the imaginary part of dielectric function respectively 

 

 

2.1 Calculation the Real Part of Dielectric Function 

 

In order to calculate the real part ),(k R ωq of the dielectric function, using Fermi-Dirac and Maxwellian form of 

the distribution, we introduce the dimensionless variables for the simplicity: 
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The inverse of dielectric function depends on both the wave vector q 
 and the frequency of the phonon qω . For 

simplicity, we assume that qω  equals the longitudinal phonon frequency ω . 

 
foE and 

fE Define as Fermi energy at 

T  =0 and 
eT
 
respectively at  carrier concentration N  where   

eT   is  the electron temperature. 
        

 
The Fermi-Dirac distribution becomes 
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While the Maxwellian-Boltzmann distribution takes the form 
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The real part ),(k R ωq for Fermi-Dirac distribution is obtained as 
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The real part ),(k R ωq for the Maxwellian form is derived using Eqs. (4), and (8) and one obtains  
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In order to avoid the singularities in the integral function (10) we divided these integral into the following intervals 
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Static Dielectric Function  

 

The static screening function is obtained with 0→ω ; For Fermi-Dirac distribution we use Thomas- Fermi screening 

length defined by 
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For Maxwellian distribution, on the other hand, we use Debye screening length define as 
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To obtain Debye screening we put eBfo Tk
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in Thomas- Fermi  
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2.2 Calculation the Imaginary Part of Dielectric Function 
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which may be rewritten after using dimensionless parameter, as 
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3.Results and discussion 

 

 

We have studied the real and imaginary parts of the dielectric function, which were derived in previous section. This 

function depends on both the wave vector q  and the frequency of the phonon qω . For simplicity, we assumed that 

qω  equals the longitudinal phonon frequency ω .  

 Both real and imaginary parts are strong functions of carrier concentration N  and electron temperature eT  through 

their dependence on Fermi energy. Table (1) summarizes the variation of 
ωh

fE
 with both N  and eT .   Our  GaN 

used parameters  are taken  from O’Leary  et al.(2006), which were originally reported by  Foutz et al.(1999) and 

Lambrecht and Segall (1994). 

 

Inverse of real part of dielectric function ( 
),(k

),(k

R ω
ω

q

q∞  )  versus normalized phonon wave vector  ( X  ) for various 

electron concentrations of 0.5x10
24

, 2.5x10
24

, 5x10
24 

and  7.5x10
24 

 m
-3 

at electron temperature 300K  and 77K were 

presented in Figs. (1- a-d) and Figs. (2- a-d) respectively; where ok
 
is defined as electron wave vector 

corresponding optical phonon energy ωh . In each graph we present the variation due to Fermi-Dirac distribution, 

Maxwell Boltzmann distribution and static dielectric function by using both Thomas Fermi and Debye screening. 

For small phonon wave vector the qω
 
is actually greater than ω  and the real part of inverse Lindhard dielectric 
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function is greater than one as could be seen in the Figs. (1- a-d) with both  Fermi-Dirac and Maxwell Boltzmann 

distributions; In other words, the interaction potential is enhanced. This is commonly known as the antiscreening 

effect (Meyer and Bartoli 1983;  Ridley 1985; Abou El-Ela 1986;  Ridley 1988 )  which occurs when the phase 

velocity of the phonon is larger than the thermal velocity of the electron. In such a situation, the free electrons cannot 

be adjusted rapidly enough to screen lattice potential; therefore, the build-up of charge results in the enhancement of 

the lattice potential. On the other hand, for large phonon wave vector the phonons have a comparable or smaller 

phase velocity than the thermal velocity of the electron; so that, these phonons are screened by the free carriers, 

leading to the normal response to the electron motion. 

 

The following point can be concluded from the graphs (1- a-d) and (2- a-d} 

1- The real part of inverse Lindhard dielectric function for both Fermi-Dirac and Maxwell distributions showed 

antiscreening at small X  while both Thomas Fermi and Debye real part of inverse Lindhard dielectric function 

showed screening as expected at the corresponding  X . 

2- At electron temperature 300K and carrier concentrations less than 2.5x10
24

 m
-3

, both Fermi-Dirac and Maxwell 

Boltzmann distribution function have similar influence on the variation of real part of inverse Lindhard dielectric 

function with X , but this is not same for electron temperature 77K. 

3- There is a sharp growth in the antiscreening peak in the real part of inverse Lindhard dielectric function at both 

carrier temperatures 77K and 300K, accompanied with a singularity at carrier concentration more than 5x10
24

 m
-3

. 

4- Taking account of the imaginary part of the dielectric function is important to avoid singularity. 

 

The Inverse of Lindhard dielectric function variation at lattice temperature300K of the real and total part is shown in 

Figs. (3-a,b)  with carrier concentrations 0.5x10
24

 m
-3 

and 2.25x10
24

 m
-3

 respectively. The behavior shown in Fig.(3-

a), is determined by the real part, since imaginary part is only important at carrier concentration above 1x10
24

 m
-3

; 

the influence of the imaginary part is to prevent [ ] 1−
+ ),(k),(k

2

I

2

R
ωω qq from diverging as is shown in Fig. (3-

b).  

Figs. (4-a,b) represent Inverse of total Lindhard dielectric function at lattice temperature 300K for  various carrier 

concentration, and for several values of electron temperature. 

The inverse of total Lindhard dielectric function value increases with increasing carrier concentration, while cooling 

the electron temperature also increases the value of antiscreening peak. In addition, the position of this peak was 

shifted to higher normalized phonon wave vector. The inverse of total Lindhard dielectric function value can be 

divided into three regions according to normalized phonon wave vector value  ( X  )   

a- For  0.7 ≥ X ,  behaved as antiscreening and has a value larger than 1. 

b- For  0.7 ≤ X ≤

 

1.0, behaved as screening and has a value smaller than 1. This behavior appears very strongly only 

at high electron temperature or high carrier concentration. 

c- For X  ≥1, the motion of the free electron does not affect the phonon vibrations and has a value approximately 

equals 1 

 

4. Conclusion                                                                                        

In present work, we have investigated the inverse of dielectric function in bulk GaN by applying the Lindhard 

formalism. For simplicity nonparabolicity, collisional damping  and the coupling between various electrons and 

holes have been neglected. The main emphasis of inverse dielectric function for both Fermi- Dirac and Maxwell 

Boltzman distribution showed antscreening peak at small phonon wave vector.  At electron temperature 300K and 

carrier concentrations less than 2.5x10
24

 m
-3

, both Fermi-Dirac and Maxwell Boltzmann distribution function have 

similar influence on the variation of the inverse dielectric function with phonon wave vector, but this is not so for 

electron temperature 77K.  Taking account of the imaginary part of the dielectric function is important to avoid the 

singularity. The principle purpose of this study is to show how the various parameters such as, carrier concentrations 

and electron temperature could change the shape of dielectric function; consequently it become easier to understand 

the influence  of dielectric function on scattering rate of polar optical phonon  mode. 
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                     Table (1) the variation of f∆  with both N  and eT in GaN 

 

)m10x1(N 324 −
 γ  

o∆  
f∆  

300K 
f∆  

77K 

0.5 0.2825 0.1247 -0.4095 0.07914 

2.0 0.5651 0.3144 0.049105 0.3015 

2.5 0.6318 0.3648 0.13389 0.3499 

5.0 0.8935 0.5791 0.436 0.5869 

7.5 1.094 0.7588 0.6536 0.7361 
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Figs. (1-a,b) the real part of inverse Lindhard dielectric function at lattice temperature 300K for various distribution 

function for electron concentrations  0.5x10
24

 and 2.5x10
24

respectively.  
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Figs. (1-c,d) the real part of inverse Lindhard dielectric function at lattice temperature 300K for various distribution 

function for electron concentrations   5x10
24 

and  7.5x10
24 

 respectively 
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Figs. (2-a,b) the real part of inverse Lindhard dielectric function at lattice temperature 77K for various distribution 

function for electron concentrations   0.5x10
24

  and  2.5x10
24

respectively. 
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Figs. (2-c,d,) the real part of inverse Lindhard dielectric function at lattice temperature77K for various distribution 

function for electron concentrations  5x10
24

 and  7.5x10
24  

respectively. 
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Figs. (3-a,b) Inverse of Lindhard dielectric function at lattice temperature300K showing the real and the total part 

with carrier concentration of 0.5x10
24

 and 2.5x10
24

respectively 
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Figs.(4-a,b) Inverse of total Lindhard dielectric function at lattice temperature 300K for carrier concentration 

1.0x10
24

  and  2.0 x10
24

respectively respectively, and for several values of electron temperature. 


