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Abstract 

The propagation of extensional and flexural motions of generalized thermoelastic waves in a homogeneous, 

transversely isotropic plate of finite width is considered.  The frequency equations for the plates in closed form and 

suitable mathematical conditions for symmetric and antisymmetric wave modes propagation are derived. Numerical 

calculations for three various theories of generalized thermoelasticity is carried out. In each case the real and 

imaginary parts of the frequency equation as a function of phase velocity for different values of thermal relaxation 

times are illustrated graphically. It is found that, the frequency equations of the extensional and flexural motions can 

be oscillate with respect to the medial of the plate. Moreover, it gets modified due to the thermal relaxation times and 

anisotropic effects. Finally, the results for the coupled thermoelasticity can be obtained as particular cases of the 

results by setting thermal relaxation times equal to zero 

Keywords: Frequency equations; Extensional and flexural modes; Thermal relaxation times; Harmonic wave 

propagation 

 

1. Introduction 

Owing to the technological advances in recent years, plate elements are commonly selected as design components in 

many engineering structures, especially in the aerospace, marine and construction sectors, because of their ability to 

resist loads. With the evolution of light plate-structures, tremendous research interests in the vibration of the plates 

are generated. The negligence of considering vibration as a design factor can lead to excessive deflections and 

failures. The vibration design aspect is even more important in micro-machines such as electronic packaging, micro-

robots, etc. because of their enhanced sensitivities to vibrations. Moreover, the frequency equation in anisotropic 

plates find use in many engineering structures and other areas of practical interest, such as slabs on columns, printed 

circuit boards or solar panels supported at a few points. With their potential applications of extensional and flexural 

modes of vibration of plates for considering the theories of generalized thermoelasticity has received considerable 

attention from researchers. The propagation of elastic waves in the layered media which are anisotropic in nature 

become very important and have long been of interest to researchers in many fields [1], [2], [3] and [5].   

The coupled theory of thermoelasticity has been extended by including the thermal relaxation time in the constitutive 

equations with Lord and Shulman [6] and Green and Lindsay [4]. These theories eliminate the paradox of infinite 

velocity of heat propagation and are termed generalized theories of thermoelasticity. This exists in the following 

differences between the two theories:  

(i) The Lord-Şhulman (L-S) theory involves one relaxation time of thermoelastic process )( oτ  and that of Green 

and Lindsay (G-L) involves two relaxation times ),( 1ττ o .  (ii) The (L-S) energy equation involves first and second 

time derivatives of strain, whereas the corresponding equation in (G-L) theory needs only the first time derivative of 

strain. (iii) In the linearized case according to the approach of (G-L) theory the heat cannot propagate with finite 

speed unless the stresses depend on the temperature velocity, whereas according to (L-S) theory the heat can 

propagate with finite speed even though the stresses there are independent of the temperature velocity. (iv) The Lord-

Şhulman (L-S) theory can not be obtained from Green and Lindsay (G-L) theory.  Extensive theoretical efforts have 

been made so far to model thermoelastic waves in solids. The propagation of generalized thermoelastic waves in 

plates of an anisotropic media with different hypotheses has considered by [7], [10], [11], [12], [13], [15], [16] and 

[17].   

In this paper, analysis for the propagation of thermoelastic waves in a homogenous transversely isotropic plate is 

carried out in the framework of the generalized theory of thermoelasticity. Commencing with a formal analysis of 
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waves in a heat-conducting layered plate of a transversely isotropic media, the frequency equation as function of the 

phase velocity of thermoelastic waves is obtained by invoking continuity at the interface and boundary of conditions 

on the surfaces of layered plate. Numerical solution of the frequency equations for a magnesium  material is carried 

out for different values of relaxation times and illustrated graphically. Finally, when the two thermal relaxation times 

are neglected, one may get the results as in [8] and [9]. 

2. Formulation of the problem and its solution  
We consider an infinite, homogeneous, transversely isotropic, thermally conducting elastic plate of thickness 2d 

initially at uniform temperature oT . We take origin of the co-ordinate system ),,( 321 xxx on the middle surface of 

the plate. The 21 xx −  plane is chosen to coincide with the middle surface and 3x -axis normal to it along the 

thickness. The fundamental system of field equations consists of the equations of motion for homogeneous 

anisotropic generalized thermoelasticity in the absence of body forces and heat sources are given by: 

,, ijij u&&ρσ =                                                                                                                                (1) 

),()( .,, jiikojiijooeijij uuTTTCTK &&&&&& δτβτρ +=+−                                                        (2) 

),( 11 TTec kijklijklij
&δτβσ +−=  klijklij c αβ = ,  .2/)( ., ijjiij uue +=               (3) 

The use of symbol lkδ  makes the above equations possible for three of generalized thermoelasticity materials. 

For 1=k , one obtains L-S (Lord and Shulman) theory where 0,01 >= oττ  and for 2=k , G-L (Green and 

Lindsay) theory is considered with the thermal relaxation times oτ  and 1τ  satisfy the inequality 01 >≥ oττ . 

While for the C-D (Classical Dynamical Coupled) theory, the thermal relaxation times satisfy  

.0,01 === lko δττ  

The elastic coefficients ijklc  are a fourth rank tensor which has 1834 = constants. But since ijσ  and ije  are 

symmetric tensors. So, the tensor ijklc  remains unchanged under a permutation of i  and j  or k  and l , i.e.,  

.; ijlkijkljiklijkl cccc ==  According to these symmetries, we are left with 36 independent elastic constants 

instead of 81. We now introduce a compact matrix notation [9]. Therefore, we report complete determinations of the 

matrices: 

 ipiklpqijkl eecc == ,  and pij σσ =                                                                                   (4) 

 (where 135,234,333,222,111,61, =====−=qp  and 126 = ). 

      We assume an infinite, homogeneous, transversely isotropic, thermally conducting elastic plate of thickness d2  

initially at uniform temperature oT .  We consider the faces of the plate to be the planes dx ±=3  referred to as a 

rectangular set of Cartesian axes 321 xxOx . We suppose that the 1x -axis to be in the direction of the propagation of 

waves so that all particles on a line parallel to 2x  -axis are equally displaced. Therefore, all the field quantities will 

be independent of 2x -coordinate. The motion is assumed to take place in the dimensions ),( 21 xx . Here, 21,uu  

are the displacements of a point in the 21 xx −  directions, respectively. In view of the governing equations (1) and 

(2)  in non-dimensional form can be rewritten as: 

,)( 11,1213,3333,1211,1 uTTucucu k &&& =+−++ τδ                                                           (5) 

33,1233,3111,313,13 )(
2

uTTucucuc k &&& =+−++ τδβ ,                                                 (6) 

)].([)( 3,313,31,1011,1133,11, uuuuTTTKT okko &&&&&&&&& τδβτδετ +++=+−+                 (7) 

After excluding the asterisk (*) for convenience,  comma notation is used for spatial derivatives and we have 

introduced the following dimensionless quantities: 
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where 
2/1

111 )/( ρν c=  is the velocity of   longitudinal waves, )/(11 eCKk ρ=  is the thermal diffusivity in the 

x-direction, 1ε  is the thermoelastic coupling constant, 
*
1ω  is the characteristic frequency of the medium and 

*
oτ , 

*
1τ   are the dimensionless thermal relaxation constants.  

 The stresses and temperature gradient relevant to our problem in the plate are: 

),()( 13,311,11333 TTucucc &τβσ +−+−=        ),( 1,33,1231 uucTo += βσ                           (9) 

As we considering plane harmonic wave traveling in the x-direction therefore we may take the solutions for 31,uu  

and   T of Eqs. (5), (6) and (7) is follows: 

{ } { } [ ])(exp)(),(),(,, 31 ctxizhzgzfTuu −= ζ                                                                               (10) 

where )/c( ζω=  is the phase velocity, ζ  and ω  are the wave number, circular frequency, respectively and 

1i −= . 

Now using solutions (10) into equations (5), (6) and (7) we get 

,0hDgicf)cDc( a3
2222

2 =−++− ζτζζζ                                                                          (11) 

,0Dhig)ccDc(Dfic a
222

2
2

13 =++−+ τβζζζ                                                                 (12) 

0h)cDK(Dgcfci 2222
1

2
1 =+−++ τζζζτβεζτε                                                        (13) 

where 

.,, 1
3

cici
x

D ao ζττζδττ +=+=
∂

∂
=                                                                       (14) 

The solutions of equations (11)-(13) can be written in the form: 

,)]zMexp(Q)zMexp(P[)z(f
3

1j
jjjj∑ −−=

=

ζζ                                                                   (15)      

∑ −−=
=

3

1j
jjjjj )],zMexp(Q)zMexp(P[m)z(g ζζ                                                             (16)  

∑ −−=
=

3

1j
jjjjj )]zMexp(Q)zMexp(P[l)z(h ζζζ                                                              (17) 

where 

 ,
]cc)cc(M[i

M]c)1cMc([
m

2
213

2
j

j3
22

j2
j

−+−

+−+
=

β

β
    ,/])1[ 3

22
2 ajjjj mMiccMcl τ−−+=          (18) 

)3,2,1j(Q,P jj =  are arbitrary constants, and 21 M,M  and  3M  are the roots of the following equation 

03
2

2
4

1
6 =+++ LMLMLM                                                                                                      (19) 
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where 
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The displacement components and temperature of the plate become: 

∑ −+−=
=

3

1
1 ],(exp[)]exp()exp([

j
jjjj ctxizMQzMPu ζζζ                                           (20) 

,](exp[)]exp()exp([
3

1
3 ∑ −−−=

=j
jjjjj ctxizMQzMPmu ζζζ                                     (21) 

.]ctx(iexp[)]zMexp(Q)zMexp(P[lT
3

1j
jjjjj∑ −+−=

=

ζζζζ                                 (22) 

3. Boundary conditions 

The non-dimensional boundary conditions at the surfaces dx ±=3  of the plate are given by:  

(i)Mechanical conditions (stress-free surfaces) 

.0,0 1333 == σσ                                                                                                                     (23) 

 (ii) Thermal condition (thermally insulated) 

.03, =T                                                                                                                                                (24) 

The use of equations (20), (21) and (22) in equations (23) and (24), with the help of equations (9), leads to a system 

of the following coupled equations for the arbitrary unknown coefficients 21321 Q,Q,P,P,P  and 3Q :  

∑ =−+−+−
=

3

1j
jjjjjajj1 ,0]ctx(iexp[)]dMexp(Q)dMexp(P)[liMmciF( ζζζτβ

∑ =−−−−
=

3

1j
jjjjjj ,0]ctx(iexp[)]dMexp(Q)dMexp(P)[Mim( ζζζ   

,0]ctx(iexp[)]dMexp(Q)dMexp(P)[Ml(
3

1j
jjjjjj∑ =−+−−

=

ζζζ  

∑ =−−++−
=

3

1j
jjjjjajj1 ,0]ctx(iexp[)]dMexp(Q)zMexp(P)[liMmciF( ζζζτβ

∑ =−−−−
=

3

1j
jjjjjj ,0]ctx(iexp[)]dMexp(Q)dMexp(P)[Mim( ζζζ  

.0]ctx(iexp[)]dMexp(Q)dMexp(P)[Ml(
3

1j
jjjjjj∑ =−−+−

=

ζζζ                      (25) 

where .ccF 23 −= We notice that the above six equations which are coming from applying the boundary 

conditions (24) must be satisfied simultaneously. 

 

4. Frequency equation 
The system of equation (25) has a nontrivial solution if and only if the determinant of the coefficients 



Advances in Physics Theories and Applications                                                              www.iiste.org 

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) 

Vol 13, 2013         
 

38 

 

amplitudes iP  and ,Qi  where ( 3,2,1i = ) vanishes. After applying algebraic reductions and manipulations this 

leads to the frequency equation (also called dispersion equation or secular equation) for thermally insulated plate 

oscillations. The frequency equation which corresponds to the extensional and flexural motions of the plate with 

respect to the medial plane 03 =x  may be written as: 

0332211 =∆+∆−∆ GGG ,    0332211 =∆−∆−∆ GGG                            (26) 

where we have used: 

,1 jajjj liMmciFG τβ+−=     ,, jjjjjj MlEMimS −=−=           (27) 

,,, 122131331223321 ESESESESESES −=∆−=∆−=∆               (28) 

with  3,2,1=j  and jm  and  jl  are given in Eqs. (18). 

The frequency equations (26) correspond to the extensional and flexural motions of the plate with respect to the 

medial plane 03 =x .  

5. Numerical Results and discussion 
With the view of illustrating theoretical results obtained in the preceding sections, we now present some numerical 

results. The materials chosen for this purpose is single crystal of magnesium, the physical data for which is given by 

[14]: 

ρ =
31074.1 × 3Kgm−

, 11c =
11105974.0 × 2Nm−

, 12c =
11102624.0 ×  

2Nm−
, 

13c =
1110217.0 × 2Nm−

, 33c =
1110617.0 × 2Nm−

, 44c =
11103278.0 × 2Nm−

, 

1β =
61068.2 × 12 degNm −−

, 3β =
61068.2 × 12 degNm −−

, oT = 298 deg , 

eC =
31004.1 × 11 degJkg −−

, 
*
1ω =

51058.3 × 1s− , 1ε =
21002.2 −× , 

1K =
2107.1 × 11 degWm −−

, 2K =
2107.1 × 11 degWm −−

.  

We restrict our attention to make the dimensionless phase velocity η  and the dimensionless wave number ξ  to be 

11
2 c/cρη =  and 2/dζξ = respectively. 

The complex roots of characteristics equation (19) have been computed with the help of Cardan's procedure, which 

are then employed to solve frequency equations (FE) (26). Then, the real and imaginary parts of the (FE) (26) for the 

extensional and flexural motions are obtained for the phase velocity  η  for different values of thermal relaxation 

times by utilizing iteration method and illustrated graphically in Figs. (1a,b) – (7a,b). 

The real and imaginary parts of the frequency equations multiplied by 
1610−  are plotted in Figs. (1a, 1b) 

and (2a, 2b) for the extensional and flexural motions respectively, versus the phase velocity η  for (G-L) 

model (i.e., o1 5ττ = , )3.0,2.0,1.0o =τ . For the extensional and flexural motions in Figs. (1a, 1b), it is 

easy to see that Re(FE) and Im(FE)  starts from zero as 0=η  and vary linearly until 9.0=η . After that, 

in the period 0.29.0 −=η , one may find from Fig. (1a) for extensional motions, that Re(FE) decreases 

nonlinearly as η  increases when ).3.0,2.0( =oτ  But Re(FE) for flexural motion decreases slowly and 

attains a minimum value, then rises again in Fig. (1b) when )1.0( =oτ . While, for extensional and 

flexural motions in Figs. (2a, 2b), one may observe for extensional motion that Im(FE), in the period 

0.29.0 −=η , increases nonlinearly as η  increases, while the contrary happens for Im(FE) for flexural 

motion. In addition, Re(FE) and Im(FE) decrease due to increasing the thermal relaxation times for the all 

two pervious cases in the period ( 0.29.0 −=η ). Figs. (3a, 3b) and (4a, 4b) represent variations of the 

real and imaginary parts for extensional and flexural motions of (FE) multiplied by 
2510−  with respect to 
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the phase velocity η  in case of (L-S) model for various values of the first thermal relaxation time oτ  (i.e. 

3.0,2.0,1.0,0,0 o1 === τδτ ). From Figs (3a, 3b) and (4a,4b), it is noted that the behavior and 

trend of the variations of Re(FE) and Im(FE) are almost similar as in case of Im(FE) for (G-L) model in 

Figs. (1a,1b) and (2a,2b). Figs. (5a, 5b) exhibit changes of Re(FE) and Im(FE) multiplied by 
2010−  

versus η  in case of (C-D) model for extensional and flexural motions. The trend and behavior of these 

profiles are similar to that of previous Figures, while in this case, both of Re(FE) and Im(FE) are identical. 

This means that the value of (FE) are real only. 

 

6. Conclusions 
Analysis for the propagation of thermoelastic waves in arbitrary anisotropic plates, for extensional 

(symmetric) and flexural (antisymmetric) motions, is carried out in the framework of the generalized theory 

of thermoelasticity. The case of layered half space is considered. It is noted that the frequency equation of 

the waves gets modified due to the thermal and anisotropic effects and is also influenced by the thermal 

relaxation times. The increasing ratios of thermal relaxation times tend to increase the values of the 

frequency equation of different modes. When the phase velocity is small, it is seen that there is no change 

for Re(FE) and Im(FE) among the three various models of generalized thermoelasticity. The obtained 

solutions can be used for material systems of higher or less symmetries such as monoclinic, orthotropic, 

cubic, and isotropic as it is contained implicitly in the analysis.  
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Nomenclature 
ρ  density, 

t  time, 

iu  displacement in the ix  direction, 

ijK  thermal conductivities, 

eC  specific heat at constant strain, 

oτ , 1τ  thermal relaxation times, 

ijσ  components of stress tensor 

ije  components of strain tensor, 

ijβ  thermal moduli, 

klα  coefficients of linear thermal expansion tensor, 

,T oT  Temperature and reference temperature, 

ijklc  fourth-order tensor of the elasticity 

ijδ  Kronecker's delta, 

1v  velocity of   longitudinal waves, 

1k  thermal diffusivity in the x-direction, 

1ε  thermoelastic coupling constant 

*
1ω  

characteristic frequency of the medium 

*
oτ , 

*
1τ  

dimensionless thermal relaxation constants 
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Figs. (1a) and (1b): The real parts of the frequency equation 

for the symmetric and antisymmetric motions multiplied by 

1610−  versus the phase velocity  for (G-L) model for 

different values 
.1τ  

Figs. (2a) and (2b): The imaginary parts of the frequency 

equation for the symmetric  and antisymmetric motions 

multiplied by 
1610−  versus the phase velocity  for (G-

L) model for different values 
.1τ  
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Figs. (3a) and (3b): The real parts of the frequency equation 

for the symmetric and antisymmetric motions multiplied by 

2510−  versus the phase velocity  for (L-S) model for 

different values 
.0τ  

Figs. (4a) and (4b): The imaginary parts of the frequency 

equation for the symmetric and antisymmetric motions 

multiplied by 
2510−  versus the phase velocity  for (L-S) 

model for different values 
.0τ  
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Figs. (5a) and (5b): The real and Imaginary parts of the 

frequency equation for the symmetric and antisymmetric 

motions multiplied by 
2010−  versus the phase velocity  for 

(C-D) model. 

Figs. (6a) and (6b): The real parts of the frequency 

equation for (G-L) and (L-S) models    multiplied by 

1910−  multiplied by 
2510− respectively, for the 

symmetric and antisymmetric motions versus the phase 
velocity.   
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Figs. (7a) and (7b): The imaginary parts of the frequency equation for (G-L) and (L-S) models multiplied by 

1610−  and multiplied by 
2110−  respectively, for the symmetric and antisymmetric motions versus the phase 

velocity.   

 
 
 


