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ABSTRACT  
 Quantum decoherence in all its locus of essence, and expression is the loss of coherence or ordering 
of the phase angles between the components of a system in a quantum superposition. Detrimental 
ramifications, and pernicious implications of this dephasing leads to classical or probabilistically 
additive behavior. Quantum decoherence gives the appearance of wave function collapse (the 
reduction of the physical possibilities into a single possibility as seen by an observer. Here it is to be 
noted that perception is not the reality and what you see is not what you see ;what you do not see is 
what you do not see; what you see is what you do not see ;and what you do not see is what you 
see.)… Thus in all its wide ranging manifestations, it justifies the propositional subsistence and 
corporeal reality that justifies the framework and intuition of classical physics as an acceptable 
approximation: decoherence is the mechanism by which the classical limit emerges out of a 
perceptual field   of quantum starting point and it determines the location of the quantum-classical 
boundary. Decoherence occurs when a system interacts with its environment in 
a thermodynamically irreversible way. This prevents transitive states, substantive sub states and 
determinate orientation different elements in the quantum superposition of the system and 
environment's wavefunction from interfering with each other. Decoherence has been a subject of 
active research since the 1980s. Decoherence can be viewed as the principal frontier of diurnal 
dynamics that results in loss of information from a system into the environment (often modeled as 
a heat bath), since every system is loosely coupled with the energetic state of its surroundings, with 
particularistic predicational pronouncements. . Viewed in isolation, the system's dynamics are non-
unitary (although the combined system plus environment evolves in a unitary fashion). Thus, the 
dynamics of the system aphorism and anecdote of the system alone are irreversible. As with any 
coupling, entanglements are generated in its theme and potentialities between the system and 
environment, which have the effect of sharing quantum information with—or transferring it to—
the surroundings. It is a blatant and flagrant misconception that collapse of wave function is 
attributable and ascribable to wave function collapse; Decoherence does not generate actual wave 
function collapse. It only provides an explanation for the appearance of the wavefunction collapse, 
as the quantum nature of the system "leaks" into the environment. So, the wave function collapse is 
the figment of the observer’s imagination, product of puerile prognostication and resultant 
orientationality of his phantasmagoria.  One cannot have the apodictic knowledge of reality that is; 
components of the wavefunction are decoupled from a coherent system, and acquire phases from 
their immediate surroundings. A total superposition of the global or universal wavefunction still 
exists (and remains coherent at the global level), but its ultimate fate remains an interpretational 
issue. This is a very important pharisaical provenience and plagenetious precocity with all the 
disembodied resemblances of the system in total form; specifically, decoherence does not attempt 
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to explain the measurement problem. Rather, decoherence provides an explanation for the 
transition of the system to a mixture of states that seem to correspond to those states observers 
perceive. Moreover, our observation tells us that this mixture looks like a proper quantum 
ensemble in a measurement situation, as we observe that measurements lead to the "realization" of 
precisely one state in the "ensemble".Decoherence represents a challenge for the practical 
realization of quantum computers, since they are expected to rely heavily on the undisturbed 
evolution of quantum coherences. Simply put; they require that coherent states be preserved and 
that decoherence is managed, in order to actually perform quantum computation. In the following 
we give a model for decoherence of the environment, coupled quantum states, at determinate and 
differential levels ,internal resonance in coupled spin systems, and the conflict in the Quantum state 
operations and decoupling. 
 
KEY WORDS Coupled quantum states, Quantum mechanics  
 
INTRODUCTION: 

Quantum Coupling is an effect in quantum mechanics in which two or more quantum systems are 

bound such that a change in one of thequantum states in one of the systems will cause an 

instantaneous change in all of the bound systems. It is a state similar to quantum entanglement but 

whereas quantum entanglement can take place over long distances quantum coupling is restricted 

to quantum scales. 

Trapped ion quantum computers utilize the quantum coupling effect by suspending particles 

representing qubits in an array of ion traps. These particles are then induced into a state of 

quantum coupling by using optical pumping by a laser. Information can be stored in this state by 

coupling two or more qubits. While the individual particles may fluctuate their values, the quantum 

states of the two qubits remain locked in relation to each other, via Coulomb force. Any action by 

one of the coupled ions instantaneously alters the other to maintain the relative value. This allows 

the computer to hold information despite the instability of the individual particles. 

In benzene, C6H6, the charges of the individual carbon atoms exhibit coupling. There are 

three double bonds and three single bonds in alternating positions around the ring. The 

measurement of the energy in any individual bond will result in a puzzling result resembling an 

impossible "one and a half bond". This is because the bonds are in a quantum superposition of 

double and single bonds at any particular bond position. The coupling effect causes the charge at all 

points on the ring to be altered when a bond at any one point is altered, in order to maintain 

the relative charge between atoms. This results in an illusionary "bond and a half" bond between all 

6 carbon atoms. 

REVIEW STUDY: Nonequilibrium Dynamics of Coupled Quantum Systems (See G. Flores-Hidalgo, 

Rudnei O. Ramos) 

The nonequilibrium dynamics of coupled quantum oscillators subject to different time dependent 

quenches are analyzed in the context of the Liouville’s-von Neumann approach. Authors consider 

models of quantum oscillators in interaction that are exactly soluble in the cases of both sudden and 

smooth quenches. The time evolution of number densities and the final equilibration distribution 

for the problem of a quantum oscillator coupled to an infinity set of other oscillators (a bath) are 

explicitly worked out. 

Recovering classical dynamics from coupled quantum systems through continuous measurement 

(See Shohini Ghose, Paul M. Alsing, Ivan H. Deutsch, Tanmoy Bhattacharya, Salman Habib, and Kurt 

Jacobs) 

Continuous measurement in the quantum to classical transition has a role to play for a system with 
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coupled internal (spin) and external (motional) degrees of freedom. Even when the measured 

motional degree of freedom can be treated classically, entanglement between spin and motion 

causes strong measurement back action on the quantum spin subsystem so that classical 

trajectories are not recovered in this mixed quantum-classical regime. The measurement can 

extract localized quantum trajectories that behave classically only when the internal action also 

becomes large relative to h-bar. 

Coupled Quantum Dots  

 Coherent optical manipulation of triplet-singlet states in coupled quantum dots" 

Hakan E. Tureci, A. Imamoglu and J.M. Taylor, Phys. Rev. B 75: Art. No. 235313 (2007) 

A system of two coupled quantum dots (sometimes called an “artificial molecule”) represents the 

most basic example of a quantum system interacting with another quantum system. As such, these 

structures could be used to study fundamental quantum mechanical effects such as entanglement 

and decoherence. Some Physicists have recently used coupled quantum dots to demonstrate 

conditional dynamics, whereby the quantum state of one system controls the evolution of the state 

of another quantum system. 

"Strong electron-hole exchange in coherently coupled quantum dots"(S. Falt, M. Atature, Hakan E. 

Tureci, Y. Zhao, A. Badolato, A. Imamoglu, Phys. Rev. Lett. 100, 106401 (2008)) 

The structures HERE are grown by embedding two layers of self-assembled quantum dots, typically 

separated by 5-20 nm, inside a single heterostructures. Dots in the top layer tend to form directly 

on top of dots in the bottom layer because of the strain field produced by the latter, resulting in 

stacks of vertically coupled dots. Optical manipulation of the dynamics of an individual stack, is 

done so that the probability that one quantum dot makes a transition to an optically excited state is 

controlled by the presence or absence of an optical excitation in the neighboring dot. The 

interaction between the two dots is mediated by the tunnel coupling between optically excited 

states and can be optically gated by applying a laser field of the right frequency. This interaction 

mechanism could form the basis of an optically effected controlled-phase gate between two solid-

state qubits. 

Authors also talk about the study of the conditional coupling between electrons or hole spins in 

separate quantum dots and to demonstrate conditional coherent quantum dynamics. In parallel, 

study quantum dot pairs where the exchange interaction gives rise to spin singlet and triplet 

ground states that are delocalized over the two dots. Such entangled states could be used to define 

two-level systems that are more robust against the nuclear spin decoherence and that can be 

manipulated using resonant optical excitations. 

Coherent electron–phonon coupling in tailored quantum systems (See P. Roulleau, S. Baer, T. Choi, F. 

Molitor, J. Güttinger, T. Müller, S. Dröscher, K. Ensslin & T. IhnAffiliationsContributions) 

The coupling between a two-level system and its environment leads to decoherence. Within the 

context of coherent manipulation of electronic or quasiparticle states in nanostructures, it is crucial 

to understand the sources of decoherence. Here authors study the effect of electron–phonon 

coupling in a graphene and an in As nanowire double quantum dot (DQD). Reported measurements 

reveal oscillations of the DQD current periodic in energy detuning between the two levels. These 

periodic peaks are more pronounced in the nanowire than in graphene, and disappear when the 

temperature is increased. Authors` attribute the oscillations to an interference effect between two 

alternative inelastic decay paths involving acoustic phonons present in these materials. This 

interpretation predicts the ramifications of oscillations to wash out when temperature is increased, 

as observed experimentally. Following images are reproduced from Nature’s abstract on the same 
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work. 

 

 

                         

 

                                              

 

Dissipations in coupled quantum systems (See for details Hashem Zoubi, Meir Orenstien, 

and Amiram Ron) 

Authors investigate the dynamics of a composite quantum system, comprised of coupled 

subsystems, of which only one is significantly interacting with the environment. The validity of the 

conventional ad hoc approach—assuming that relaxation terms can be extracted directly from the 

master equation of the subsystem interacting with the reservoir—has been examined. They derived 

the equation of motion for the composite system’s reduced density matrix—applying only the 

factorization approximation, but not the conventional sequence of Markoff, coarse grain, and 

secular approximations. The conventional ad hoc approach is applicable to zero-temperature 

reservoir, but fails for finite temperatures. It is further shown that at finite temperatures, the 

standard procedure does not even yield a master equation for the composite system, and its 

dynamics has to be studied by the equations of motion which are developed here. For 

demonstration we considered systems of a three-level atom, the two excited states are coupled to 

each other, and only one of them communicates with the ground state via a radiation reservoir. 

Absolute Dynamical Limit to Cooling Weakly-Coupled Quantum Systems( See X. Wang, Sai 

Vinjanampathy, Frederick W. Strauch, Kurt Jacobs) 

Cooling of a quantum system is limited by the size of the control forces that are available (the 

"speed" of control). We consider the most general cooling process, albeit restricted to the regime in 

which the thermodynamics of the system is preserved (weak coupling). Within this regime, authors 

further focus on the most useful control regime, in which a large cooling factor and good ground-

state cooling can be achieved. Authors present a control protocol for cooling, and give clear 

structural arguments, as well as strong numerical evidence, that this protocol is globally optimal. 

From this the authors obtain simple expressions for the limit to cooling that is imposed by the 

speed of control. 
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'Return to equilibrium' for weakly coupled quantum systems: a simple polymer expansion (SeeW. De 

Roeck, A. Kupiainen) 

Recently, several authors studied small quantum systems weakly coupled to free boson or fermion 

fields at positive temperature. All the approaches we are aware of employ complex deformations of 

Liouvillians or Mourre theory (the infinitesimal version of the former). Authors present an 

approach based on polymer expansions of statistical mechanics. Despite the fact that approach is 

rudimentary in its thematic and discursive form, elementary, results are slightly sharper than those 

contained in the literature up to now. Authors show that, whenever the small quantum system is 

known to admit a Markov approximation (Pauli master equation \emph{aka} Lindblad equation) in 

the weak coupling limit, and the Markov approximation is exponentially mixing, then the weakly 

coupled system approaches a unique invariant state that is perturbatively close to its Markov 

approximation. 

Decoherence-protected quantum gates for a hybrid solid-state spin register (T. van der SAR, Z. H. 

Wang, M. S. Blok, H. Bernien, T. H. Taminiau, D.M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, V. V. 

Dobrovitski) 

Protecting the dynamics of coupled quantum systems from decoherence by the environment is a key 

challenge for solid-state quantum information processing. An idle qubit can be efficiently insulated 

from the outside world via dynamical decoupling, as has recently been demonstrated for individual 

solid-state qubits. However, protection of qubit coherence during a multi-qubit gate poses a non-

trivial problem: in general the decoupling disrupts the inter-qubit dynamics, and hence conflicts 

with gate operation. This problem is particularly CARDINAL, salient for hybrid systems, wherein 

different types of qubits evolve and  decohere  at vastly different rates. Here Authors present the 

integration of dynamical decoupling into quantum gates for a paradigmatic hybrid system, the 

electron-nuclear spin register. Design harnesses the internal resonance in the coupled-spin system 

to resolve the conflict between gate operation and decoupling. Authors experimentally demonstrate 

these gates on a two-qubit register in diamond operating at room temperature. Quantum 

tomography reveals that the qubits involved in the gate operation are protected as accurately as idle 

qubits. Illustration and exemplary notification is made about the proposed design by Grover's 

quantum search algorithm, achieving fidelities above 90% even though the execution time exceeds 

the electron spin dephasing time by two orders of magnitude. Results directly enable decoherence-

protected interface gates between different types of promising solid-state qubits. Ultimately, 

quantum gates with integrated decoupling may enable reaching the accuracy threshold for fault-

tolerant quantum information processing with solid-state devices. 

Stark tuning spin qubits in diamond for quantum optical networks (Victor Acosta ,  Charles Santori  , 

Andrei Faraon , Zhihong Huang , Kai-Mei Fu , Alastair Stacey , David Simpson , Timothy Karle , Brant 

Gibson , Liam McGuiness, Kumaravelu Ganesan , Snjezana Tomljenovic-hanic , Andrew Greentree , 

Steven Prawer , Raymond Beausoleil) 

Integrated diamond networks based on cavity-coupled spin impurities offer a promising platform 

for scalable quantum computing. A key ingredient for this technology involves heralding 

entanglement by interfering indistinguishable photons emitted by pairs of identical spin qubits. 

Here the demonstration of the authors bear ample testimony and infallible observatory to the 

required control over the internal level structure of nitrogen-vacancy (NV) centers located within 

100 nm of the diamond surface using the DC Stark effect. By varying the voltages applied to 

lithographically-defined metal electrodes, we tune the zero-phonon emission wavelength of a single 

NV center over a range of $\sim $0.5 nm. Using high-resolution emission spectroscopy direct 

observation is done of electrical tuning of the relative strengths of spin-altering lambda transitions 

to arbitrary values. Under resonant excitation, dynamic feedback is applied to stabilize the optical 
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transition against spectral diffusion. Progress on application of gated control to single NV centers 

coupled to single-crystal diamond photonic crystal cavities and other nanophotonics structures are 

presented.  

NUCLEAR SPUN RELAXATION STUDIES IN MULTIPLE SPIN SYSTEMS( B. D. NAGESWARA RAO) 

Nuclear spin relaxation in multiple spin systems in diamagnetic liquids, studied by the techniques of 

high-resolution nuclear magnetic double resonance and T1-measurements, is discussed. The 

principle of the double resonance method along with features of strong and weak irradiation 

spectra and in homogeneity effects are given. The information obtainable on relaxation mechanisms 

is presented, including a discussion of the isotropic random field model, its applicability and 

limitations in relation to intermolecular dipolar interactions. Scalar coupling with quadrupole nuclei 

and symmetry features of relaxation effects are also considered. T1-measurements are discussed 

with emphasis on cross-relaxation effects, multiple exponential relaxation decays and their analysis. 

It is pointed out that even for systems dominated by a single exponential decay mode the dipolar 

relaxation rate is not usually a linear superposition of the intermolecular and intermolecular 

contributions. 

It has been generally recognized that the study of nuclear spin relaxation is a simple but powerful 

tool for probing the micro dynamical behaviour in liquids since the relaxation parameters are often 

direct measures of various types of correlation times for fluctuations in molecular orientation, 

angular velocity, position and so on16. In practice, for liquids containing several spins per molecule 

the determination and analysis of the relaxation parameters are usually complicated, owing to, 

among other causes, the multiplicity and line width variations in the resonance spectra that arise 

from the chemical environments of the spins7, and the cross-relaxation effects and internal motions 

that arise from their geometrical arrangement91t. 

Quantum gate operation in the presence of decoherence.FromDecoherence-protected quantum gates 

for a hybrid solid-state spins register (T. van der Sar, Z. H. Wang, M. S. Blok,H. Bernien, T. H. aminiau, 

D. M. Toyli, D. A. Lidar, D. D. Awschalom,R. Hanson & V. V. Dobrovitski) 

 

 

A–c, Challenge of high-fidelity quantum gates for qubits (orange, electron spin; purple, nuclear spin) 

coupled to a decohering environment. a, without decoherence protection, the fidelity of two-qubit 

gates is limited by interactions with the environment. b, Dynamical decoupling efficiently preserves 

the qubit coherence (protected storage) by turning off the interaction between the qubit and its 

environment. However, this generally also decouples the qubit from other qubits and prevents two-

qubit gate operations. In the eventuality of the fact, the decoupling and the gate are separated in 

time; the unprotected gate is still susceptible to decoherence-induced errors. The goal is to perform 

dynamical decoupling during the gate operation, thus ensuring that the gates are protected against 

decoherence. The gate operation should therefore be compatible with decoupling. The dephasing 

rate of the nuclear spin is negligible in our experiments. However, nuclear spin protection can easily 
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be incorporated using another layer of decoupling. d, The two-qubit system used in this work: a 

nitrogen–vacancy (NV) colour centre in diamond carries an electron spin S = 1 (orange) coupled to 

a 14N nuclear spin I = 1 (purple). The states of the electronic qubit, |0  and |1 , are split by 1.4 GHz 

in an external field B0 = 510 G. The states |0↑  and |0↓  are split by 5.1 MHz owing to nuclear 

quadrupole and Zeeman interactions. The hyperfine coupling yields an additional splitting, such 

that the levels |1↑  and |1↓  are separated by 2.9 MHz. The Rabi driving is applied in resonance 

with this transition. e, Dynamics of the electron–nuclear spin system in the limit   , 

visualized in a coordinate frame that rotates with frequency 1.4 GHz in the electron spin subspace 

and frequency 2.9 MHz in the nuclear spin subspace. In this frame, the states |1↑  and |1↓  have the 

same energy. The Rabi driving field, which is directed along the x axis, coherently rotates the 

nuclear spin if the electronic qubit is in |1  (the resulting rotation around the x axis by angle θ is 

denotedRX (θ)). However, the Rabi driving is negligible for the states |0↑  and |0↓ , which differ in 

energy by A = 2π × 2.16 MHz. The phase accumulation between |0↑  and |0↓ corresponds to a 

coherent rotation of the nuclear spin around the z axis with frequency A (denoted RZ (α), 

where α is the rotation angle). 

Decoherence-protected quantum gates for a hybrid solid-state spin register (T. van der Sar, Z. H. 
Wang M. S. Blok, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson& V. V. 
Dobrovitski) 

Protection of qubit coherence during a multi-qubit gate is a non-trivial problem. Decoupling 
disrupts the interqubit dynamics and hence conflicts with gate operation. This problem is 
particularly salient for hybrid systems, in which different types of qubit evolve and decohere at very 
different rates. Authors make a through presentation of the integration of dynamical decoupling 
into quantum gates for a standard hybrid system, the electron–nuclear spin register. Design 
harnesses the internal resonance in the coupled-spin system to resolve the conflict between gate 
operation and decoupling. Authors experimentally demonstrate these gates using a two-qubit 
register in diamond operating at room temperature.  

ESSENTIAL PREDICATIONS AND INTERFACIAL INTERFERENCE OF MATTER AND ANTIMATTER:A 

NECESSARY PRELUDE FOR DECOUPLING AND DECOHERENCE IN ENVIRONMENT: 

Physicists at the Stanford Linear Accelerator Center (SLAC) in California and the High Energy 

Accelerator Research Organization (KEK) in Japan are colliding particles and anti-particles at high 

energies to study minute differences between the ways matter and antimatter interact. Their goal is 

to contribute to our understanding of the workings of the universe at its largest and smallest scales, 

from revealing the origin of matter shortly after the Big Bang, to uncovering the secrets of 

elementary particles and their interactions. 

 After decades of particle physics experiments, we now know that every type of particle has a 

corresponding antimatter particle, called an anti-particle. A particle and its anti-particle are 

identical in almost every way - they have the same mass, for example - but they have opposite 

charges. The existence of the positron, the positively charged anti-particle of the negative electron, 

was first hypothesized by Dirac in 1928. Its existence was experimentally proven in 1933 by 

Anderson, who received the 1936 Nobel Prize for this achievement. Since then, physicists have 

discovered the anti-particles of all the known elementary particles, and have even been able to 

combine positrons with antiprotons to make antihydrogen "antiatoms".  
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Matter and antimatter are created together. 

 

 

 

 

Fig 1. Particles and antiparticles (such as the pair highlighted in pink) are created in pairs from the 

energy released by the collision of fast-moving particles with atoms in a bubble chamber. Since 

particles and antiparticles have opposite electrical charges, they curl in opposite directions in the 

magnetic field applied to the chamber. 

From the physicists' point of view, what is strange about antimatter is that we don't see more of it. 

When we collide high-energy particles in accelerators, their energy is converted into equal amounts 

of matter and antimatter particles (according to Einstein's famous formula, the energy (E) it takes 

to create matter and antimatter of total mass (m) is E=mc^2). 

For example, you can see matter and antimatter particles created in the bubble chamber photo on 

the left. The photo shows many bubble tracks generated by charged particles passing through 

superheated liquid. Due to the magnetic field applied to the chamber, positive particles curl to the 

right and negative particles curl to the left. The two curled tracks highlighted in pink show an 

electron-positron pair created by the collision of a gamma ray photon (a highly energetic particle of 

light) with an atom in the chamber, in a process called pair production.  

Where did all the antimatter go? 

Since we see matter and antimatter created in equal amounts in particle experiments, we expect that 

shortly after the Big Bang, when the universe was extremely dense and hot, equal amounts of matter 

and antimatter were created from the available energy. The obvious question is, therefore, where did 

the antimatter go?.   

One survivor for every billion. 

Based on numerous astronomical observations and the results of particle physics and nuclear 

physics experiments, we deduce that all the matter in the universe today is only about a billionth of 

the amount of matter that existed during the very early universe. As the universe expanded and 

cooled, almost every matter particle collided with an antimatter particle, and the two turned into 

two photons - gamma ray particles - in a process called annihilation, the opposite of pair 

production. But roughly a billionth of the matter particles survived, and it is those particles that 

now make the galaxies, stars, planets, and all living things on Earth, including our own bodies. 

The universe and the particles. 

The survival of a small fraction of the matter particles indicates that, unlike what we wrote above, 

matter and antimatter are not exactly identical. There is a small difference between the ways they 

interact. This difference between matter and antimatter was first observed in particle accelerators 

in 1964 in an experiment for which Cronin and Fitch were awarded the 1980 Nobel Prize, and its 

connection to the existence of matter in the universe was realized in 1967 by Sakharov.  

 

Physicists call this difference CP violation. Jargon, but it just means that if you are conducting a 

particular experiment on particles, from which you deduce a certain theory of the laws of physics, 
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then conducting the same experiment on anti-particles would lead you to deduce different laws. The 

only way to end up with a consistent set of physical laws is to incorporate the matter-antimatter 

difference into your theory. Because this difference is small, conducting any old experiment would 

not reveal it. For example, if your experiment involves gravity, you would find that apples are 

attracted by massive bodies like the earth, and that anti-apples are also attracted by massive bodies. 

So gravity affects matter and antimatter identically, and this experiment would not reveal CP 

violation. A much more sophisticated experiment is required. 

Sophisticated experiment 

The new generation of experiments at SLAC and KEK, called BaBar and Belle, offer new tools with 

which to probe the nature of CP violation, hopefully shedding light on what happened a tiny fraction 

of a second after the Big Bang, and expanding our understanding of elementary particles and their 

interactions. These experiments work as follows: an accelerator accelerates electrons and positrons 

to high energies. They are then "stored" in bunches of about a hundred billion particles each, 

running around in a circular accelerator called a storage ring at about 0.99997 of the speed of light. 

Electrons are made to go one way, and positrons go the other way, so that the bunches cross 

through each other every time they go around the ring. 

Making quarks 

On some bunch crossings, a positron and an electron come close enough to collide, and the high 

energy that they have been given by the accelerator turns into a new particle & anti-particle pair: a 

B meson and its anti-particle, called a B-bar meson (mesons are particles composed of a quarkand 

an anti-quark). These mesons undergo radioactive decay within about a picosecond (a trillionth of a 

second). Because they are quite heavy - their mass is about five times that of the proton - they can 

decay in numerous ways into different combinations of lighter particles.  

Physicists have built a living-room size detector (see pictures) around the collision point in order to 

detect the lighter particles which are produced in the decay of the two mesons. These detectors 

allow them to identify the types of particles produced, measure their momenta and energies, and 

trace them to their points of origin to within less than a 10th of a millimeter.  

 

The huge amounts of data collected by the detectors is stored in large databases and analyzed by 

computer "farms" with many hundreds of computers. Together, BaBar and Belle have produced 

almost 300 million B mason & B-bar meson pairs, and physicists around the world are hard at work 

analyzing the mountains of data and publishing their results. 300 million is a large number, but 

when it comes to some CP violation measurements, it can be barely enough. 

Measuring CP violation 

Physicists detect differences between matter and antimatter and determine the strength of CP 

violation by measuring the ways the B and the B-bar decay. For example, decays into particular sets 

of particles exhibit a peculiar time structure which is different for B and B-bar decays.  

 

To expose this behavior, the physicists conduct the following analysis: 

First, they select "events" in which they see one of the heavy mesons undergoing the desired decay. 

This is done by looking at all particle signatures in the detector and determining which 

combinations of particles may have been produced in the decay of interest, given the constraints 

imposed by Einstein's theory of relativity. 

Next, they analyze the decay products of the other meson to determine whether it was a B or a B-
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bar. This process is called "tagging", and it makes use of the fact that B-bar meson decay tends to 

produce a certain particle, such as an electron, whereas the decay of a B usually produces the 

corresponding anti-particle, such as a positron. 

Third, by measuring the points of origin of the decay products of the two mesons, they can find the 

distance between them, which is typically about a quarter of a millimeter. They divide this distance 

by the velocity with which the mesons move, to obtain the difference between their decay times, 

known as dt, which is typically about a picosecond. 

Finally, they plot the number of events observed in different ranges of dt. 

Fig 2. The difference between the red and the blue lines shows the 

difference in how a particle and its antiparticle behave. This is CP 

violation, and indicates that matter and anti-matter are not exactly 

opposites. 

Observation template: 

A plot appears to the left, with events in which the other Meson was "tagged" as a B shown in red, 

and those in which it was "tagged" as a B-bar shown in blue. You can see that the plots are not the 

same: events with a B tag tend to have a larger dt than events with a B-bar tag. This subtle 

difference is exactly what we are looking for: this is CP violation, observed for the first time in 

almost four decades! 

Using their results, BaBar and Belle have measured with high precision a parameter called sin(2 

beta), which describes part of the mechanism thought to be responsible for CP violation. According 

to our understanding of particle physics, if sin (2 beta) had been equal to zero, there would have 

been no CP violation, and matter and antimatter would have been identical. Recalling that the 

difference between matter and antimatter is necessary for the existence of matter in the universe 

today, a zero value for sin (2 beta) would have meant that the universe would have been a totally 

different place, with no stars or planets, not even people to ponder the mysteries of the universe 

and the underlying laws of physics.  

Particle physicists are motivated to study CP violation both because it's an interesting phenomenon 

in its own right and because it is intimately related to the universe as a whole and to our very 

existence within it. 

What next? 

Having measured sin(2 beta), BaBar and Belle are now collecting more data about B and B-bar 

decays and measuring more CP violation parameters, to improve our understanding of the 

difference between matter and antimatter.  

More data is coming from other experiments as well. Physicists at the CDFand D0 experiments 

in Fermilab are also studying the decays of B mesons produced in collisions of protons with anti-

protons. Additional experiments using the Large Hadron Collider at CERN, which will produce B 

mesons copiously by colliding protons with protons at even higher energies, are scheduled to begin 

operation in a few years.  

There are many open questions that these experiments seek to address. Some of the most intriguing 

questions are prompted by the fact that the matter-antimatter difference we see in the laboratory 

appears too small to be solely responsible for all the matter in the universe today. This suggests that 

there may be additional differences between matter and antimatter, additional sources of CP 
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violation that we have not been able to detect yet, but which could have played an important role 

during the very early universe, when most matter and antimatter annihilated and a small fraction of 

the matter survived.  

Physicists are searching for these unknown CP violation effects. We never know what exactly this 

quest will yield, but as has always been the case in the history of particle physics, we expect to learn 

a great deal about nature in the process. ( For more details Please see Abner Soffer of Colorado 

State University) 

NOTATION : 

Coupled Quantum Systems And Decohering Environment: 

    : Category One Of Coupled Quantum System               

    : Category Two Of Coupled Quantum System 

    : Category Three Of Coupled Quantum System     

    : Category One Of Decohering Environment 

    : Category Two Of Decohering Environment  

    :Category Three Of Decohering Environment 

 

Conflict Between Quantum Gate Operation And Decoupling And Internal Resonance In Coupled 

Spin Systems: Module Numbered Two: 

    : Category One Of  Conflict Between Quantum Gate Operation And Decoupling           

    : Category Two Of Conflict Between Quantum Gate Operation And Decoupling 

    : Category Three Conflict Between Quantum Gate Operation And Decoupling 

    : Category One Of  Internal Resonance In Coupled Spin Systems 

    : Category Two Of Internal Resonance In Coupled Spin Systems  

    : Category Three Of Internal Resonance In Coupled Spin Systems 

 

(   )
( ), (   )

( ), (   )
( ), (   )

( ), (   )
( ), (   )

( ) (   )
( ), (   )

( ), (   )
( )  

(   )
( ), (   )

( ), (   )
( ): are Accentuation coefficients  

 

(   
 )( ), (   

 )( ), (   
 )( ), (   

 )( ), (   
 )( ), (   

 )( ), (   
 )( ), (   

 )( ), (   
 )( ),    

(   
 )( ), (   

 )( ), (   
 )( )  are Dissipation coefficients 

 

Governing Equations of The System Decohering Environment And Coupled Quantum Systems: 

The differential system of this model is now 
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( )    [(   
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( )    [(   
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 )( )  (   

  )( )(   ,  )]     3 

    

  
= (   )

( )    [(   
 )( )  (   

  )( )( ,  )]     4 



Advances in Physics Theories and Applications                                                                                                                 www.iiste.org 

ISSN 2224-719X (Paper)  ISSN 2225-0638 (Online) 

Vol 6, 2012  

 

35 

 

    

  
= (   )

( )    [(   
 )( )  (   

  )( )( ,  )]      5 

    

  
= (   )

( )    [(   
 )( )  (   

  )( )( ,  )]      6 

 (   
  )( )(   ,  ) =  First augmentation factor  7 

 (   
  )( )( ,  ) =   First detritions factor  8 

Governing Equations of the System Conflict Between Quantum Gate Operations And Decoupling 

And Internal Resonance In Coupled Spin Systems: 

The differential system of this model is now  
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( )    [(   
 )( )  (   

  )( )(   ,  )]     9 
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( )    [(   
 )( )  (   

  )( )((   ),  )]      14 

 (   
  )( )(   ,  ) =  First augmentation factor  15 

 (   
  )( )((   ),  ) =   First detritions factor  16 

Coupled Quantum Systems And Decohering Environment And The Conflict Between Quantum 

Gate Operation And Decoupling And Internal Resonance In Coupled Spin Systems - The Final 

Governing Equations 
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Where (   
  )( )(   ,  )  , (   

  )( )(   ,  )  , (   
  )( )(   ,  )   are first augmentation coefficients for 

category 1, 2 and 3   

 (   
  )( , )(   ,  )  ,  (   

  )( , )(   ,  )  ,  (   
  )( , )(   ,  )  are second augmentation coefficients 

for category 1, 2 and 3    
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  )( , )(   ,  ) are second augmentation coefficients for 
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  )( )(   ,  )  ,  (   
  )( )(   ,  )  are first augmentation coefficients 

for category 1, 2 and 3 

   (   
  )( , )(   ,  )  ,  (   

  )( , )(   ,  )  ,  (   
  )( , )(   ,  )  are second detrition coefficients for 

category 1, 2 and 3    

29 
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Where  (   
  )( )(   ,  )  ,  (   

  )( )(   ,  )  ,   (   
  )( )(   ,  )   are first detrition coefficients for 

category 1, 2 and 3    

 (   
  )( , )( ,  )  ,  (   

  )( , )( ,  )  ,  (   
  )( , )( ,  )   are second detrition coefficients for category 

1, 2 and 3    
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Where we suppose  

(A) (  )
( ), (  

 )( ), (  
  )( ), (  )

( ), (  
 )( ), (  

  )( )  0,  

      ,  = 1 ,14,15 

(B) The functions (  
  )( ), (  

  )( ) are positive continuous increasing and bounded. 

Definition of (  )
( ),   (  )

( ): 

     (  
  )( )(   ,  )  (  )

( )  (  ̂   )
( )  

     (  
  )( )( ,  )    (  )

( )  (  
 )( )  (  ̂   )

( ) 

34 

 

 

 

 

(C)        (  
  )( ) (   ,  ) = (  )

( ) 

     lim   (  
  )( ) ( ,  ) =   (  )

( )      

Definition of (  ̂   )
( ), (  ̂   )

( ) : 

            Where (  ̂   )
( ), (  ̂   )

( ), (  )
( ),   (  )

( )  are positive constants     

              and    = 1 ,14,15  

35 

They satisfy  Lipschitz condition: 

  |(  
  )( )(   

 ,  )  (  
  )( )(   ,  )|  (  ̂   )

( )|        
 |  (  ̂   )( )   

|(  
  )( )(  ,  )  (  

  )( )( ,  )|  (  ̂   )
( )||    ||  (  ̂   )( )   

36 

With the Lipschitz condition, we place a restriction on the behavior of functions 

(  
  )( )(   

 ,  )   and (  
  )( )(   ,  )  . (   

 ,  ) and (   ,  )  are points belonging to the interval  
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[(  ̂   )
( ), (  ̂   )

( )] . It is to be noted that (  
  )( )(   ,  ) is uniformly continuous. In the eventuality of 

the fact, that if (  ̂   )
( ) = 1 then the function  (  

  )( )(   ,  ) , the first augmentation coefficient  would 

be absolutely continuous.  

Definition of (  ̂   )
( ), (  ̂   )

( ) : 

(D) (  ̂   )
( ), (  ̂   )

( ),  are positive constants 

      
(  )

( )

(  ̂   )( )   ,
(  )

( )

(  ̂   )( )  1 

37 

  Definition of (  ̂   )
( ), (  ̂   )

( ) : 

(E) There exists two constants (  ̂   )
( )  and (  ̂   )

( )  which together with 

(  ̂   )
( ), (  ̂   )

( ), ( ̂  )
( )    (  ̂   )

( )  and the constants 

(  )
( ), (  

 )( ), (  )
( ), (  

 )( ), (  )
( ),   (  )

( ),  = 1 ,14,15, 

       satisfy the inequalities  
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( )  1  
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Where we suppose  

(F) (  )
( ), (  

 )( ), (  
  )( ), (  )

( ), (  
 )( ), (  

  )( )  0,       ,  = 16,1 ,1  39 

(G) The functions (  
  )( ), (  

  )( ) are positive continuous increasing and bounded. 40 

Definition of (p )
( ),   (r )

( ):  

(  
  )( )(   ,  )  (  )

( )  (  ̂   )
( )

  41 

   (  
  )( )( ,  )    (  )
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 )( )  (  ̂   )

( )  42 

(H) lim    (  
  )( ) (   ,  ) = (  )

( ) 43 

 lim   (  
  )( ) ((   ),  ) =   (  )

( )  44 

Definition of (  ̂   )
( ), (  ̂   )

( ) : 

Where (  ̂   )
( ), (  ̂   )

( ), (  )
( ),   (  )

( ) are positive constants  and    = 16,1 ,1  

 

They satisfy  Lipschitz condition:  

|(  
  )( )(   

 ,  )  (  
  )( )(   ,  )|  (  ̂   )

( )|        
 |  (  ̂   )( )   45 

|(  
  )( )((   )

 ,  )  (  
  )( )((   ),  )|  (  ̂   )

( )||(   )  (   )
 ||  (  ̂   )( )   46 

With the Lipschitz condition, we place a restriction on the behavior of functions (  
  )( )(   

 ,  )   

and(  
  )( )(   ,  )  . (   

 ,  ) and (   ,  ) are points belonging to the interval  [(  ̂   )
( ), (  ̂   )

( )] . It is 

to be noted that (  
  )( )(   ,  ) is uniformly continuous. In the eventuality of the fact, that if (  ̂   )

( ) =

1  then the function  (  
  )( )(   ,  )  , the SECOND augmentation coefficient would be absolutely 

continuous.  

 

  Definition of (  ̂   )
( ), (  ̂   )

( ) :  

(I) (  ̂   )
( ), (  ̂   )

( ),  are positive constants 47 
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(  )

( )

(  ̂   )( )   ,
(  )

( )

(  ̂   )( )  1 

Definition of (  ̂   )
( ), (  ̂   )

( ) : 

There exists two constants (  ̂   )
( )  and (  ̂   )

( )  which together 

with  (  ̂   )
( ), (  ̂   )

( ), ( ̂  )
( )    (  ̂   )

( )  and the constants 

(  )
( ), (  

 )( ), (  )
( ), (  

 )( ), (  )
( ),   (  )

( ),  = 16,1 ,1 , 

  satisfy the inequalities  
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( ) (  ̂   )
( )  1  48 

 

(  ̂   )( )    (  )
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( )  (  ̂   )
( )  1  49 

Theorem 1: if the conditions IN THE FOREGOING above are fulfilled, there exists a solution satisfying 

the conditions 

Definition of     (0) ,   (0) : 

   ( )   (  ̂   )
( )

 (  ̂   )( )    ,        (0) =   
  0  

  ( )   (  ̂   )
( ) (  ̂   )( )      ,         (0) =   

  0  

50 

if the conditions IN THE FOREGOING above are fulfilled, there exists a solution satisfying the 

conditions 

Definition of     (0) ,   (0) 

   ( )   (  ̂   )
( ) (  ̂   )( )    ,        (0) =   

  0 

  ( )   (  ̂   )
( ) (  ̂   )( )      ,         (0) =   

  077 

51 

PROOF:  

Consider operator   ( )   defined on the space of sextuples of continuous functions    ,           

which satisfy                                              

52 
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T̅  (t) = T  
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Where  (  )  is the integrand that is integrated over an interval (0,  ) 
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Consider operator   ( )   defined on the space of sextuples of continuous functions    ,            
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which satisfy          
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Where  (  )  is the integrand that is integrated over an interval (0,  ) 

70 

(a) The operator  ( ) maps the space of functions satisfying CONCATENATED EQUATIONS into 

itself .Indeed it is obvious that 

    ( )     
  ∫ [(   )

( ) (   
  (  ̂   )

( ) (  ̂   )( ) (  ))] 
 

 
  (  ) =  

           (1  (   )
( ) )   

  
(   )( )(  ̂   )( )

(  ̂   )( ) ( (  ̂   )( )  1)  

71 

 From which it follows that 

(   ( )     
 )  (  ̂   )( )  

(   )( )

(  ̂   )( ) [((  ̂   )
( )     

 ) 
(  

(  ̂   )( )    
 

   
 )

 (  ̂   )
( )]  

(  
 ) is as defined in the statement of theorem 1 

72 

Analogous inequalities hold also for      ,    ,    ,    ,      

(b) The operator  ( )  maps the space of functions satisfying GLOBAL EQUATIONS into 

itself .Indeed it is obvious that 
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( ) (  ̂   )( ) (  ))] 
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 From which it follows that 
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74 

Analogous inequalities hold also for      ,    ,    ,    ,      

It is now sufficient to take 
(  )

( )

(  ̂   )( )   ,
(  )

( )

(  ̂   )( )  1  and to choose 

(  ̂   )
( ) and (  ̂   )

( ) large to have 
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77 

In order that the operator  ( ) transforms the space of sextuples of functions    ,    satisfying GLOBAL 

EQUATIONS into itself 

 

The operator  ( ) is a contraction with respect to the metric  

 (( ( ),  ( )), ( ( ),  ( ))) =  

   
 

    
    

 

 |  
( )( )    

( )( )|  ( ̂  )( ) ,   
    

 |  
( )( )    

( )( )|  ( ̂  )( )    

78 

 Indeed if we denote   

Definition of  ̃,  ̃ :     (  ̃,  ̃ ) =  ( )( ,  ) 

It results 
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Where  (  ) represents integrand that is integrated over the interval  0, t  

From the hypotheses  it follows 

79 

| ( )   ( )|  (  ̂  )( )  

 

(  ̂  )( ) ((   )
( )   (   

 )( )  (  ̂  )
( )  (  ̂  )

( )(  ̂  )
( )) (( ( ),  ( )   ( ),  ( )))  

And analogous inequalities for          . Taking into account the hypothesis the result follows 

80 

Remark 1: The fact that we supposed (   
  )( ) and (   

  )( ) depending also on t can be considered as not 

conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition 

necessary to prove the uniqueness of the solution bounded by (  ̂  )
( ) (  ̂  )( )      (  ̂  )

( ) (  ̂  )( )  

respectively of   . 

If instead of proving the existence of the solution on   , we have to prove it only on a compact then it 

suffices to consider that (  
  )( ) and (  

  )( ),  = 1 ,14,15  depend only on T   and respectively on 

 (             ) and hypothesis can replaced by a usual Lipschitz condition. 

81 

Remark 2: There does not exist any    where    ( ) = 0        ( ) = 0   

From 19 to 24 it results  

   ( )    
  [ ∫ {(  

 )( ) (  
  )( )(   ( (  )), (  ))}  (  )

 
 ]  0  

   ( )    
  ( (  

 )( ) )  0   for t  0 

82 

Definition of  ((  ̂  )
( ))

 
, ((  ̂  )

( ))
 
     ((  ̂  )

( ))
 
 : 83 
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Remark 3: if     is bounded, the same property have also              . indeed if  

    (  ̂  )
( ) it follows 

    

  
 ((  ̂  )

( ))
 
 (   

 )( )    and by integrating  

    ((  ̂  )
( ))

 
=    

  2(   )
( )((  ̂  )

( ))
 
 (   

 )( )  

In the same way , one can obtain 

    ((  ̂  )
( ))

 
=    

  2(   )
( )((  ̂  )

( ))
 
 (   

 )( )  

 If             is bounded, the same property follows for     ,      and      ,      respectively. 

Remark 4: If         bounded, from below, the same property holds for              .  The proof is 

analogous with the preceding one. An analogous property is true if     is bounded from below. 

84 

 Remark 5: If  T    is bounded from below and lim   ((  
  )( ) ( ( ),  )) = (   

 )( ) then       . 

Definition of  ( )( ) and    : 

Indeed let     be so that for        

(   )
( )  (  

  )( )( ( ),  )    ,     ( )  ( )( )  

85 

Then  
     

  
 (   )

( )( )( )        which leads to  

     (
(   )( )( )( )

  
) (1       )     

        If we take t  such that      =   
 

 
  it results  

     (
(   )( )( )( )

 
) ,     =    

 

  
  By taking now      sufficiently small one sees that T    is unbounded. 

The same property holds for      if lim   (   
  )( ) ( ( ),  ) = (   

 )( ) 

We now state a more precise theorem about the behaviors at infinity of the solutions OF THE GLOBAL 

SYSTEM 

86 

It is now sufficient to take 
(  )

( )

(  ̂   )( )   ,
(  )

( )

(  ̂   )( )  1  and to choose 

(  ̂   )
( )     (  ̂   )

( ) large to have 

87 

(  )
( )

( ̂  )( ) [(  ̂  )
( )  ((  ̂   )

( )    
 ) 

 (
(  ̂   )( )   

 

  
 )

]  (  ̂   )
( )  

88 

(  )
( )

( ̂  )( ) [((  ̂   )
( )    

 ) 
 (  

(  ̂   )( )   
 

  
 )

 (  ̂   )
( )]  (  ̂   )

( )  

89 

In order that the operator  ( ) transforms the space of sextuples of functions    ,    satisfying GLOBAL 

EQUATIONS into itself 

 

The operator  ( ) is a contraction with respect to the metric  

 (((   )
( ), (   )

( )), ((   )
( ), (   )

( ))) =  

   
 

    
    

 

 |  
( )( )    

( )( )|  ( ̂  )( ) ,   
    

 |  
( )( )    

( )( )|  ( ̂  )( )    

90 

Indeed if we denote   

Definition of    ̃,    ̃ :     (    ̃,    ̃ ) =  ( )(   ,    ) 

91 

It results 

| ̃  
( )

  ̃ 
( )

|  ∫ (   )
( ) 

 
|   

( )
    

( )
|  (  ̂  )( ) (  ) (  ̂  )( ) (  )   (  )    

92 
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∫  (   
 )( )|   

( )
    

( )
|  (  ̂  )( ) (  )  (  ̂  )( ) (  )

 

 
   

(   
  )( )(   

( )
,  (  ))|   

( )
    

( )
|  (  ̂  )( ) (  ) (  ̂  )( ) (  )   

   
( )

|(   
  )( )(   

( )
,  (  ))  (   

  )( )(   
( )

,  (  ))|   
 (  ̂  )( ) (  ) (  ̂  )( ) (  )   (  )  

Where  (  ) represents integrand that is integrated over the interval  0,    

From the hypotheses  it follows 

 

|(   )
( )  (   )

( )|e (  ̂  )( )  

 

(  ̂  )( ) ((   )
( )   (   

 )( )  ( Â  )
( )  (  ̂  )

( )(  ̂  )
( ))d (((   )

( ), (   )
( )  (   )

( ), (   )
( )))  

93 

And analogous inequalities for G  and T . Taking into account the hypothesis the result follows  

Remark 1: The fact that we supposed (   
  )( ) and (   

  )( ) depending also on t can be considered as not 

conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition 

necessary to prove the uniqueness of the solution bounded by (  ̂  )
( )e(  ̂  )( )  and (  ̂  )

( )e(  ̂  )( )  

respectively of   . 

If instead of proving the existence of the solution on   , we have to prove it only on a compact then it 

suffices to consider that (  
  )( ) and (  

  )( ),  = 16,1 ,1  depend only on T   and respectively on 

(   )(and not on  t) and hypothesis can replaced by a usual Lipschitz condition. 

94 

Remark 2: There does not exist any t  where G  (t) = 0 and T  (t) = 0   

From 19 to 24 it results  

G  (t)  G 
 e[ ∫ {(  

 )( ) (  
  )( )(   ( (  )), (  ))}  (  )

 
 ]  0  

T  (t)  T 
 e( (  

 )( ) )  0   for t  0 

95 

Definition of  (( M̂  )
( ))

 
, (( M̂  )

( ))
 
 and (( M̂  )

( ))
 
 : 

Remark 3: if G   is bounded, the same property have also  G   and G   . indeed if  

G   ( M̂  )
( ) it follows 

    

  
 (( M̂  )

( ))
 
 (   

 )( )G   and by integrating  

G   (( M̂  )
( ))

 
= G  

  2(   )
( )(( M̂  )

( ))
 
 (   

 )( )  

In the same way , one can obtain 

G   (( M̂  )
( ))

 
= G  

  2(   )
( )(( M̂  )

( ))
 
 (   

 )( )  

 If G   or G    is bounded, the same property follows for G   ,  G   and  G   ,  G   respectively. 

96 

Remark 4: If G    is bounded, from below, the same property holds for  G   and G   .   The proof is 

analogous with the preceding one. An analogous property is true if G   is bounded from below. 

97 

 Remark 5: If  T    is bounded from below and lim   ((  
  )( ) ((   )(t), t)) = (   

 )( ) then T     . 

Definition of  ( )( ) and    : 

Indeed let t   be so that for t  t   

(   )
( )  (  

  )( )((   )(t), t)    , T   (t)  ( )( )  

98 

Then  
     

  
 (   )

( )( )( )    T   which leads to  

T    (
(   )( )( )( )

  
) (1  e    )  T  

 e      If we take t  such that e    =   
 

 
  it results  
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T   (
(   )( )( )( )

 
) ,     = log

 

  
  By taking now      sufficiently small one sees that T   is unbounded. 

The same property holds for T    if lim   (   
  )( ) ((   )(t), t) = (   

 )( ) 

We now state a more precise theorem about the behaviors at infinity of the solutions  

100 

Behavior of the solutions OF THE GLOBAL SYSTEM: 

Theorem 2: If we denote and define 

 Definition of  (  )
( ) , (  )

( ) , (  )
( ) , (  )

( ) : 

(a)   )
( ) , (  )

( ) , (  )
( ) , (  )

( )   four constants satisfying 

 (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )(    ,  )  (   
  )( )(    ,  )   (  )

( )   

  (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )( ,  )  (   
  )( )( ,  )   (  )

( )  

101 

Definition of  (  )
( ), (  )

( ), (  )
( ), (  )

( ),  ( ),  ( ) : 

(b) By   (  )
( )  0 , (  )

( )  0  and respectively (  )
( )  0 , (  )

( )  0  the roots of    the 

equations  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( ) = 0 and  (   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( ) = 0  

102 

Definition of  ( ̅ )
( ), , ( ̅ )

( ), ( ̅ )
( ), ( ̅ )

( ) : 

  By ( ̅ )
( )  0 , ( ̅ )

( )  0  and  respectively  ( ̅ )
( )  0 , ( ̅ )

( )  0  the  roots of the equations 

(   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( ) = 0  and  (   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( ) = 0  

103 

Definition of  (  )
( ) , (  )

( ) , (  )
( ), (  )

( ), (  )
( ) :- 

(c) If we define (  )
( ) , (  )

( ) , (  )
( ), (  )

( )    by 

      (  )
( ) = (  )

( ), (  )
( ) = (  )

( ),    (  )
( )  (  )

( ) 

       (  )
( ) = (  )

( ), (  )
( ) = ( ̅ )

( ) ,    (  )
( )  (  )

( )  ( ̅ )
( ), 

      and  (  )
( ) =

   
 

   
   

    (   )
( ) = (  )

( ), (  )
( ) = (  )

( ),    ( ̅ )
( )  (  )

( )   

104 

and analogously 

       (  )
( ) = (  )

( ), (  )
( ) = (  )

( ),    (  )
( )  (  )

( ) 

       (  )
( ) = (  )

( ), (  )
( ) = ( ̅ )

( ) ,    (  )
( )  (  )

( )  ( ̅ )
( ), 

     and (  )
( ) =

   
 

   
   

    (   )
( ) = (  )

( ), (  )
( ) = (  )

( ),    ( ̅ )
( )  (  )

( )  where (  )
( ), ( ̅ )

( ) 

are defined  respectively 

105 

Then the solution of GLOBAL CONCATENATED EQUATIONS satisfies the inequalities 

    
  ((  )( ) (   )( ))     ( )     

  (  )( )  

where (  )
( ) is defined  

 

      (  )( )    
  ((  )( ) (   )( ))     ( )  

 

(  )( )    
  (  )( )   

106 

( 
(   )( )   

 

(  )( )((  )( ) (   )( ) (  )( ))
[ ((  )( ) (   )( ))    (  )( )  ]     

   (  )( )     ( )  

(   )( )   
 

(  )( )((  )( ) (   
 )( ))

  (  )( )    (   
 )( )       

   (   
 )( ) )  
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  (  )( )     ( )     

  ((  )( ) (   )( ))    
108 

 

(  )( )    
  (  )( )     ( )  

 

(  )( )    
  ((  )( ) (   )( ))   109 

(   )( )   
 

(  )( )((  )( ) (   
 )( ))

[ (  )( )    (   
 )( ) ]     

   (   
 )( )     ( )    

(   )( )   
 

(  )( )((  )( ) (   )( ) (  )( ))
[ ((  )( ) (   )( ))    (  )( ) ]     

   (  )( )   

110 

Definition of (  )
( ), (  )

( ), (  )
( ), (  )

( ):- 

Where (  )
( ) = (   )

( )(  )
( )  (   

 )( )   

             (  )
( ) = (   )

( )  (   )
( )  

              (  )
( ) = (   )

( )(  )
( )  (   

 )( )   

             (  )
( ) = (   

 )( )  (   )
( )  

111 

Behavior of the solutions of GLOBAL EQUATIONS 

If we denote and define 

112 

Definition of  (  )
( ) , (  )

( ) , (  )
( ) , (  )

( ) : 

(d)   )
( ) , (  )

( ) , (  )
( ) , (  )

( )   four constants satisfying 

113 

 (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )(T   ,  )  (   
  )( )(T   ,  )   (  )

( )   114 

 (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )((   ),  )  (   
  )( )((   ),  )   (  )

( )  115 

Definition of  (  )
( ), (  )

( ), (  )
( ), (  )

( ) : 116 

By   (  )
( )  0 , (  )

( )  0 and respectively (  )
( )  0 , (  )

( )  0 the roots  

(e) of    the equations  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( ) = 0  117 

and  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( ) = 0 and 118 

Definition of  ( ̅ )
( ), , ( ̅ )

( ), ( ̅ )
( ), ( ̅ )

( ) : 119 

By ( ̅ )
( )  0 , ( ̅ )

( )  0 and  respectively  ( ̅ )
( )  0 , ( ̅ )

( )  0 the 120 

roots of the equations (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( ) = 0 121 

and  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( ) = 0  122 

Definition of  (  )
( ) , (  )

( ) , (  )
( ), (  )

( ) :- 123 

(f) If we define (  )
( ) , (  )

( ) , (  )
( ), (  )

( )    by 124 

(  )
( ) = (  )

( ), (  )
( ) = (  )

( ),    (  )
( )  (  )

( )  125 

(  )
( ) = (  )

( ), (  )
( ) = ( ̅ )

( ) ,    (  )
( )  (  )

( )  ( ̅ )
( ),  

      and   (  )
( ) =

   
 

   
   

126 

    (   )
( ) = (  )

( ), (  )
( ) = (  )

( ),    ( ̅ )
( )  (  )

( )  127 

and analogously 

(  )
( ) = (  )

( ), (  )
( ) = (  )

( ),    (  )
( )  (  )

( )  

 (  )
( ) = (  )

( ), (  )
( ) = ( ̅ )

( ) ,    (  )
( )  (  )

( )  ( ̅ )
( ), 

128 
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and (  )
( ) =

   
 

   
   

(   )
( ) = (  )

( ), (  )
( ) = (  )

( ),    ( ̅ )
( )  (  )

( )   129 

Then the solution of GLOBAL EQUATIONS satisfies the inequalities 

  G  
 e((  )( ) (   )( ))     ( )  G  

 e(  )( )  

130 

(  )
( ) is defined   

 

      (  )( ) G  
 e((  )( ) (   )( ))     ( )  

 

(  )( ) G  
 e(  )( )   131 

( 
(   )( )   

 

(  )( )((  )( ) (   )( ) (  )( ))
[e((  )( ) (   )( ))  e (  )( )  ]  G  

 e (  )( )  G  ( )  

(   )( )   
 

(  )( )((  )( ) (   
 )( ))

 e(  )( )  e (   
 )( )    G  

 e (   
 )( ) )    

132 

T  
 e(  )( )     ( )  T  

 e((  )( ) (   )( ))    
133 

 

(  )( ) T  
 e(  )( )     ( )  

 

(  )( ) T  
 e((  )( ) (   )( ))   134 

(   )( )   
 

(  )( )((  )( ) (   
 )( ))

[e(  )( )  e (   
 )( ) ]  T  

 e (   
 )( )     ( )    

(   )( )   
 

(  )( )((  )( ) (   )( ) (  )( ))
[e((  )( ) (   )( ))  e (  )( ) ]  T  

 e (  )( )   

135 

Definition of (  )
( ), (  )

( ), (R )
( ), (R )

( ):- 136 

Where (  )
( ) = (   )

( )(  )
( )  (   

 )( )   

             (  )
( ) = (   )

( )  (   )
( )  

137 

(  )
( ) = (   )

( )(  )
( )  (   

 )( )   

             (R )
( ) = (   

 )( )  (   )
( ) 

 

PROOF : From GLOBAL EQUATIONS we obtain  

  ( )

  
= (   )

( )  ((   
 )( )  (   

 )( )  (   
  )( )(   ,  ))   (   

  )( )(   ,  ) 
( )  (   )

( ) ( )   

Definition of  ( ) :-          ( ) =
   

   
 

It follows 

  ((   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( ))  

  ( )

  
  ((   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )) 

 From which one obtains  

Definition of ( ̅ )
( ), (  )

( ) :- 

(a) For 0  (  )
( ) =

   
 

   
  (  )

( )  ( ̅ )
( ) 

       ( )( )  
(  )( ) ( )( )(  )( ) 

[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

     ,    ( )( ) =
(  )( ) (  )( )

(  )( ) (  )( )  

 it follows (  )
( )   ( )( )  (  )

( ) 

138 

 In the same manner , we get 

  ( )( )  
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

      ,   ( ̅)( ) =
( ̅ )( ) (  )( )

(  )( ) ( ̅ )( )    

139 
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   From which we deduce (  )
( )   ( )( )  ( ̅ )

( ) 

(b) If  0  (  )
( )  (  )

( ) =
   

 

   
  ( ̅ )

( ) we find like in the previous case, 

      (  )
( )  

(  )( ) ( )( )(  )( ) 
[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

   ( )( )   

            
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 ( ̅ )
( )  

140 

(c) If  0  (  )
( )  ( ̅ )

( )  (  )
( ) =

   
 

   
   , we obtain 

  (  )
( )    ( )( )  

( ̅ )( ) ( ̅)( )( ̅ )( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 (  )
( ) 

And so with the notation of the first part of condition (c) , we have  

Definition of   ( )( ) :- 

(  )
( )    ( )( )  (  )

( ),     ( )( ) =
   ( )

   ( )
 

In a completely analogous way, we obtain  

Definition of   ( )( )  :- 

(  )
( )    ( )( )  (  )

( ),     ( )( ) =
   ( )

   ( )
   

Now, using this result and replacing it in CONCATENATED SYSTEM OF EQUATIONS we get easily 

the result stated in the theorem. 

Particular case : 

If (   
  )( ) = (   

  )( ),      (  )
( ) = (  )

( )  and in this case (  )
( ) = ( ̅ )

( )  if in addition (  )
( ) =

(  )
( ) then   ( )( ) = (  )

( ) and as a consequence    ( ) = (  )
( )   ( ) this also defines (  )

( ) for 

the special case  

Analogously if  (   
  )( ) = (   

  )( ),      (  )
( ) = (  )

( ) and then 

 (  )
( ) =  ( ̅ )

( ) if in addition (  )
( ) = (  )

( )  then      ( ) = (  )
( )   ( )  This is an important 

consequence of the relation between (  )
( ) and ( ̅ )

( ), and definition of (  )
( ). 

141 

PROOF : From GLOBAL EQUATIONS we obtain (PLEASE REFER PART ONE OF THE PAPER) 

  ( )

  
= (   )

( )  ((   
 )( )  (   

 )( )  (   
  )( )(T  , t))  (   

  )( )(T  , t) 
( )  (   )

( ) ( )  

142 

Definition of  ( ) :-          ( ) =
   

   
 

143 

It follows 

  ((   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( ))  

  ( )

  
  ((   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )) 

144 

From which one obtains  

Definition of ( ̅ )
( ), (  )

( ) :- 

(d) For 0  (  )
( ) =

   
 

   
  (  )

( )  ( ̅ )
( ) 
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       ( )( )  
(  )( ) ( )( )(  )( ) 

[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

     ,    ( )( ) =
(  )( ) (  )( )

(  )( ) (  )( )  

 it follows (  )
( )   ( )( )  (  )

( )  

    In the same manner , we get 

  ( )( )  
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

      ,   ( ̅)( ) =
( ̅ )( ) (  )( )

(  )( ) ( ̅ )( )    

146 

   From which we deduce (  )
( )   ( )( )  ( ̅ )

( )  

(e) If  0  (  )
( )  (  )

( ) =
   

 

   
  ( ̅ )

( ) we find like in the previous case, 

      (  )
( )  

(  )( ) ( )( )(  )( ) 
[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

   ( )( )   

            
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 ( ̅ )
( )  

147 

(f) If  0  (  )
( )  ( ̅ )

( )  (  )
( ) =

   
 

   
   , we obtain 

  (  )
( )    ( )( )  

( ̅ )( ) ( ̅)( )( ̅ )( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 (  )
( ) 

And so with the notation of the first part of condition (c) , we have  

148 

Definition of   ( )( ) :- 

(  )
( )    ( )( )  (  )

( ),     ( )( ) =
   ( )

   ( )
 

149 

In a completely analogous way, we obtain  

Definition of   ( )( )  :- 

(  )
( )    ( )( )  (  )

( ),     ( )( ) =
   ( )

   ( )
 

150 

 Now, using this result and replacing it in GLOBAL SOLUTIONS we get easily the result stated in the 

theorem. 

 

Particular case : 

If (   
  )( ) = (   

  )( ),      (  )
( ) = (  )

( )  and in this case (  )
( ) = ( ̅ )

( ) if in addition (  )
( ) =

(  )
( ) then   ( )( ) = (  )

( ) and as a consequence    ( ) = (  )
( )   ( ) 

Analogously if  (   
  )( ) = (   

  )( ),      (  )
( ) = (  )

( ) and then 

 (  )
( ) =  ( ̅ )

( ) if in addition (  )
( ) = (  )

( )  then      ( ) = (  )
( )   ( )  This is an important 

consequence of the relation between (  )
( ) and ( ̅ )

( ) 

151 

We can prove the following 

Theorem 3: If (  
  )( )    (  

  )( ) are independent on   , and the conditions  

(   
 )( )(   

 )( )  (   )
( )(   )

( )  0   

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )  0  

(   
 )( )(   

 )( )  (   )
( )(   )

( )  0 ,  

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )  0  

      (   )
( ), (   )

( ) as defined are satisfied , then the system 
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 If (  
  )( )    (  

  )( ) are independent on t , and the conditions   

(   
 )( )(   

 )( )  (   )
( )(   )

( )  0   153 

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )  0   

(   
 )( )(   

 )( )  (   )
( )(   )

( )  0 ,   

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )  0  

      (   )
( ), (   )

( ) as defined are satisfied , then the system 

 

(   )
( )    [(   

 )( )  (   
  )( )(   )]   =  0  154 

(   )
( )    [(   

 )( )  (   
  )( )(   )]   =  0  155 

(   )
( )    [(   

 )( )  (   
  )( )(   )]   =  0  156 

(   )
( )     (   

 )( )  (   
  )( )( )     =  0  157 

(   )
( )     (   

 )( )  (   
  )( )( )     =  0  158 

(   )
( )     (   

 )( )  (   
  )( )( )     =  0  159 

has a unique positive solution , which is an equilibrium solution for the system  

(   )
( )    [(   

 )( )  (   
  )( )(   )]   =  0  160 

(   )
( )    [(   

 )( )  (   
  )( )(   )]   =  0  161 

(   )
( )    [(   

 )( )  (   
  )( )(   )]   =  0  162 

(   )
( )     (   

 )( )  (   
  )( )(   )     =  0  163 

(   )
( )     (   

 )( )  (   
  )( )(   )     =  0  164 

(   )
( )     (   

 )( )  (   
  )( )(   )     =  0  165 

has a unique positive solution , which is an equilibrium solution for the GLOBAL SYSTEM  

Proof:  

(a) Indeed the first two equations have a nontrivial solution    ,      if  

 ( ) = (   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )  

(   
  )( )(   )(   

  )( )(   ) = 0   

166 

(a) Indeed the first two equations have a nontrivial solution    ,      if  

 

F(   ) = (   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )  

(   
  )( )(   )(   

  )( )(   ) = 0   

167 

Definition  and uniqueness of T  
   :-   

After hypothesis   (0)  0,  ( )  0  and the functions (  
  )( )(   ) being increasing, it follows that 

there exists a unique      
    for which    (   

 ) = 0. With this value , we obtain from the three first 

equations  

   = 
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

      ,         = 
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]
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Definition  and uniqueness of T  
   :-   

After hypothesis   (0)  0,  ( )  0  and the functions (  
  )( )(   ) being increasing, it follows that 

there exists a unique   T  
    for which    (T  

 ) = 0 . With this value , we obtain from the three first 

equations  

169 

   = 
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

      ,         = 
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

 
170 

(c) By the same argument, the equations(CONCATENATED SET OF THE GLOBAL SYSTEM) 

admit solutions    ,     if  

 ( ) = (   
 )( )(   

 )( )  (   )
( )(   )

( )    

[(   
 )( )(   

  )( )( )  (   
 )( )(   

  )( )( )] (   
  )( )( )(   

  )( )( ) = 0  

 Where in  (   ,    ,    ),    ,     must be replaced by their values from 96. It is easy to see that   is a 

decreasing function in     taking into account the hypothesis   (0)  0 ,  ( )   0 it follows that there 

exists a unique    
  such that  (  ) = 0 

171 

(d) By the same argument, the equations (SOLUTIONAL EQUATIONS OF THE GLOBAL 

EQUATIONS)  admit solutions    ,     if  

 

 (   ) = (   
 )( )(   

 )( )  (   )
( )(   )

( )    

[(   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )] (   
  )( )(   )(   

  )( )(   ) = 0   

172 

Where in (   )(   ,    ,    ),    ,     must be replaced by their values from 96. It is easy to see that   is 

a decreasing function in     taking into account the hypothesis   (0)  0 ,  ( )   0 it follows that 

there exists a unique G  
  such that  ((   )

 ) = 0 

173 

Finally we obtain the unique solution 

   
  given by  (  ) = 0 ,    

  given by  (   
 ) = 0 and 

   
 =

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

    ,      
 =

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

     

   
 =

(   )( )   
 

[(   
 )( ) (   

  )( )(  )]
      ,      

 =
(   )( )   

 

[(   
 )( ) (   

  )( )(  )]
 

Obviously, these values represent an equilibrium solution THE GLOBAL SYSTEM 

 

174 

G  
  given by  ((   )

 ) = 0 , T  
  given by  (T  

 ) = 0 and 175 

G  
 =

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

    ,   G  
 =

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

     
176 

T  
 =

(   )( )   
 

[(   
 )( ) (   

  )( )((   ) )]
      ,   T  

 =
(   )( )   

 

[(   
 )( ) (   

  )( )((   ) )]
 

177 

Obviously, these values represent an equilibrium solution of THE GLOBAL SYSTEM  

ASYMPTOTIC STABILITY ANALYSIS 

Theorem 4:   If the conditions of the previous theorem are satisfied and if the functions 

(  
  )( )     (  

  )( )  Belong to  ( )(   ) then the above equilibrium point is asymptotically stable. 

Proof:  Denote 

Definition of   ,    :- 
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  =   
             ,   =   

     

  
 (   

  )( )

    
(   

 ) = (   )
( )   ,  

 (  
  )( )

   
(    ) =      

Then taking into account equations GLOBAL EQUATIONS  and neglecting the terms of power 2, we 

obtain 

 

    

  
=  ((   

 )( )  (   )
( ))    (   )

( )    (   )
( )   

      179 

    

  
=  ((   

 )( )  (   )
( ))    (   )

( )    (   )
( )   

      180 

    

  
=  ((   

 )( )  (   )
( ))    (   )

( )    (   )
( )   

      181 

    

  
=  ((   

 )( )  (   )
( ))    (   )

( )    ∑ ( (  )( )   
   )

  
      182 

    

  
=  ((   

 )( )  (   )
( ))    (   )

( )    ∑ ( (  )( )   
   )

  
      183 

    

  
=  ((   

 )( )  (   )
( ))    (   )

( )    ∑ ( (  )( )   
   )

  
      184 

 If the conditions of the previous theorem are satisfied and if the functions (a 
  )( ) and (b 

  )( )  Belong to 

 ( )(   ) then the above equilibrium point is asymptotically stable 

 

Denote 

Definition of   ,    :- 

 

G = G 
             , T = T 

     185 

 (   
  )( )

    
(T  

 ) = (   )
( )   ,  

 (  
  )( )

   
( (   )

  ) =      
186 

taking into account equations (SOLUTIONAL EQUATIONS TO THE GLOBAL EQUATIONS) and 

neglecting the terms of power 2, we obtain 

187 

    

  
=  ((   

 )( )  (   )
( ))    (   )

( )    (   )
( )G  

      188 

    

  
=  ((   

 )( )  (   )
( ))    (   )

( )    (   )
( )G  

      189 

    

  
=  ((   

 )( )  (   )
( ))    (   )

( )    (   )
( )G  

      190 

    

  
=  ((   

 )( )  (   )
( ))    (   )

( )    ∑ ( (  )( )T  
   )

  
      192 

    

  
=  ((   

 )( )  (   )
( ))    (   )

( )    ∑ ( (  )( )T  
   )

  
      193 

    

  
=  ((   

 )( )  (   )
( ))    (   )

( )    ∑ ( (  )( )T  
   )

  
      194 

The characteristic equation of this system is  

(( )( )  (   
 )( )  (   )

( )) (( )( )  (   
 )( )  (   )

( )) 

[((( )( )  (   
 )( )  (   )

( ))(   )
( )   

  (   )
( )(   )

( )   
 )] 

((( )( )  (   
 )( )  (   )

( )) (  ),(  )   
   (   )

( ) (  ),(  )   
 ) 

 ((( )( )  (   
 )( )  (   )

( ))(   )
( )   

  (   )
( )(   )

( )   
 )  

((( )( )  (   
 )( )  (   )

( )) (  ),(  )   
  (   )

( ) (  ),(  )   
 )  

((( )( ))
 
 ( (   

 )( )  (   
 )( )  (   )

( )  (   )
( )) ( )( ))  
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( )) ( )( )) (   )

( )     

  (( )( )  (   
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( )) ((   )
( )(   )

( )   
  (   )

( )(   )
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 )  

((( )( )  (   
 )( )  (   )

( )) (  ),(  )   
   (   )

( ) (  ),(  )   
 ) = 0  

+ 

(( )( )  (   
 )( )  (   )

( )) (( )( )  (   
 )( )  (   )

( ))  

[((( )( )  (   
 )( )  (   )

( ))(   )
( )G  

  (   )
( )(   )
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 )]  
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 )  

 ((( )( )  (   
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( )(   )
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( )G  
 )  

((( )( )  (   
 )( )  (   )

( )) (  ),(  )T  
   (   )

( ) (  ),(  )T  
 ) = 0  

And as one sees, all the coefficients are positive. It follows that all the roots have negative real part, and 

this proves the theorem. 
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