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Abstract 

Cold atoms in optical lattices is the application of two formerly distinct aspects of physics: quantum gases from atomic 
physics and laser theory from quantum optics. Its use to simulate quantum phenomena and models in condensed matter 
physics is a growing field. The major goal is to use cold fermonic atoms in these superlattices for the simulations. We 
present here a theoretical proposal for simulating a spin ordering model using fermions. We demonstrate 
superexchange interaction in the double well and resonating valence bond (RVB) states in kagome lattice which is 
important for understanding the CuO2 plane of the superconducting cuprates and other magnetic frustrated materials. 
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1. Introduction 

Ultracold atoms in optical lattices have become a growing field for studying quantum strongly correlated systems 
which exhibit some of the most intriguing phenomena in condensed matter physics such as phase transitions in high 
temperature superconductivity and spin ordering in magnetism (Georges 2004, Bloch et al. 2008). This increasing 
interest in the superlattices emanates from the growing advancement in techniques to prepare, manipulate and detect 
strongly correlated states in them. The emerging artificial quantum crystals are then being used to simulate quantum 
phenomena and models. The standard Hubbard model is universally considered the simplest minimal description of 
the strongly correlated systems with its kinetic part expected to account for the itinerancy of the carriers while its 
Coulombic interaction represents the localization of the carriers. Inspite of this simplicity, the properties of the 
Hubbard model have been well determined only in the one dimension (d = 1) limit where an exact Bethe ansatz 
solution was obtained in 1968 (Lieb and Wu 1968) and in the infinite dimension (d = ∞) limit where an exact 
solution has been obtained by Dynamical Mean Field theory (DMFT) in 1989 (Metznar and Vollhardt 1989). Thus 
there is no general consensus for the properties at finite dimensions which is the realm for the real materials. It is 
pertinent to remark that the model has been investigated with all available theoretical tools that is hoped to be 
capable of extracting relevant information from the model, as can be found in its rich and vast literature (see 
Akpojotor (2008a) and references therein for more details). One of these tools is to simulate the model with classical 
computer but this tool has not been successful because of the general problem of the inability to simulate quantum 
many body problems computationally due to exponential growth of the required space and time resources with the 
number of particles which often makes the simulation intractable (J¨ordan et al.  2008). Therefore, a new tool to 
investigate the Hubbard model was created when Greiner et al. (2002) experimentally demonstrated the superfluid to 
Mott insulator (SF-MI) transition using cold bosonic atoms in optical lattice which was theoretically proposed for the 
Bose-Hubbard model by Jaksch et al. (1998).  

The SF-MI transition is similar to the metal to Mott insulator transition predicted in the standard Hubbard model 
which can only be achieved by using fermions since strongly interacting electrons are the carriers responsible for this 
transition as well as the properties and bebaviour of other strongly correlated systems. Therefore there has been a 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Science, Technology and Education (IISTE): E-Journals

https://core.ac.uk/display/234687871?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Advances in Physics Theories and Applications                                                                    www.iiste.org 

ISSN 2224-719X (Paper)  ISSN 2225-0638 (Online) 

Vol 6, 2012  

 

 

16 

race to use cold fermions in place of the cold bosons used by Greiner et al. (2002) to achieve superfluid to Mott 
insulator transition. The first seminal work in this race is the observation of the Mott insulator with cold fermonic 
atoms by J¨ordan et al. (2008). There have been a number of other proposals of using cold fermions in superlattices 
to simulate quantum phenomena. The purpose of this current study is to give a theoretical proposal on how to 
simulate a spin ordering model using cold fermions in optical lattices. The plan of the study is as follows. In the next 
section, we will describe the physics of trapping atoms in optical lattices. Then we will demonstrate how a spin 
ordering Hamiltonian can be used to achieve superexchange interaction in a double well (DW). We will then go 
beyond the superexchane interactions in a double well to obtain the resonating valence bond (RVB) states in a 
kagome lattice which is important in understanding magnetic frustrated systems such as the CuO2 plane believed to 
be the key feature of the superconducting cuprates (Moessner and Sondhi 2001).  

 

2. Trapping atoms in optical lattices 

An optical lattice is able to trap atoms because the electric fields of the lasers will induced electric dipole moment in the 
atom which then interacts with the same electric field of the lasers to produce an effective potential that traps the atom 
in the optical lattice. The Electric field, E of the standing light wave can be expressed as a product of static spatial and 
oscillating time-dependent part (Grimm et al. 1999)  

)exp()(ˆ),( tirEetrE ω=          (2.1) 
and the induced dipole moment, p oscillating at a driving frequency ω, is  

 )exp()(ˆ),( tirpetrp ω= ,           (2.2) 

where E(r) and p(r) are amplitudes and ê  is a unit polarization vector. 

The amplitude of the dipole moment is simply related to the field amplitude by 

)()()( rErp ωα=             (2.3) 

where )(ωα  is the complex polarizability which depends on the driving frequency. 

The field intensity I is related to the field amplitude as  

      
2

0 EcI ε= .             (2.4) 

Taking into account Eq. (2.1) – (2.4), the interaction potential of the induced dipole moment and the driving electric 

field can be expressed as  
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The interaction between the induced dipole moment and the driving electric field modifies the energy of the atom 
which is depicted by the electronic transition within the atom. The difference between the frequency of this transition, 

0ω   and the frequency of the laser is called detuning ∆t: 

       0ωω −=∆t .                  (2.6) 

If the laser frequency is less than transition frequency (i.e. ∆t < 0), the atoms are attracted to potential minima, that is 
region with maximum electric field intensity and this is known as red detuning while if the laser frequency is greater 
than the transition frequency (i.e. ∆t > 0), the atoms are attracted to potential maxima, that is region with minimum field 
intensity and this is known as blue detuning. Therefore the strength of the optical potential confining the atoms can be 
increased by tuning the laser intensity, though the atoms can be trapped in either the bright or dark regions of the 
optical lattice by both types of detuning. 

The behaviour of atoms in an optical lattice depends whether they are fermions or bosons. The fermions have 
half-integer spins and consequently obey the Pauli exclusion principle which states that no two identical fermions can 
be in the same quantum state at the same time. The physical implication is that fermionic systems will have many 
energetic particles flying around even as the temperatures goes down to zero as only one particle can occupy the lowest 
energy. In general, fermions are governed by the Fermi-Dirac distribution (FDD). The bosons, however, have zero or 
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integer spins and consequently do not obey the Pauli exclusion principle. The rules governing the behaviour of photon 
which is the commonest boson were first given by Satyendra Nath Bose in 1924. Excited by this work, Einstein in the 
same year extended the rules to other bosons and thereby gave birth to the Bose-Einstein distribution (BED). While 
doing this, Einstein found that not only is it possible for two bosons to share the same quantum state at the same time, 
but that they actually prefer doing so. He therefore predicted that when the temperature goes down, almost all the 
particles in a bosonic system would congregate in the ground state even at a finite temperature. It is this physical state 
that is called Bose-Einstein condensation (BEC). The Einstein's prediction, however, was considered a mathematical 
artifact for sometime until Fritz London in 1938 while investigating superfluid liquid helium realized that the phase 
transition could be accounted for in terms of BEC. This analysis however, suffered a major setback because the helium 
atoms in the liquid interacted quite strongly. This was why scientists had to move ahead in search of BEC in less 
complicated systems that would be close to the free boson gas model. Fortunately, the breakthrough came in 1995 
when the first BEC was observed in rubidium atoms and this was followed by similar observations in some other cold 
alkali atoms such as those of lithium and sodium (Anderson et al. 1995; Cornell and Wieman 2002; Hall 2003 and 
Akpojotor and Ojobor 2008). The achievement of the BEC which won the 2001 Nobel Prize in Physics relied heavily 
on the then newly developed ability to trap and cool atoms with lasers which was recognized by the Nobel Foundation 
for the 1997 Nobel Prize in Physics (Metcalf and van der Straten 1999). 

The general belief currently is that almost any kind of atom can be trapped in an optical lattice, but alkali atoms are 
mostly used due to their single valence electron which simplifies description of their behavior in optical lattices. 
Further, the classification of an atomic isotope to be bosonic or fermionic depends on the number of its constituents: 
protons, neutrons and electrons. If its number is even, total spin of atom is integer, and the atom is boson while if it is 
odd, total spin is half integer and the atom is fermion. As bosons the following isotopes are most commonly used:  

37Rb87, 11Na23, 19K
39, 55Cs133; and as fermions the commonly used isotopes are: 19K

40, 3Li6, 38Sr87. 

 

3. Simulations with cold atoms in double wells superlattices 

To simulate a physical phenomena or model involves mapping it into alternative physical systems that may be simpler 
and can easily be manipulated and controlled yet it is described by the same mathematics. The double well is the 
simplest experimental set up of optical lattices to simulate physical phenomena and models because the system can be 
completely controlled and measured in an arbitrary two-spin basis by dynamically changing the lattice parameters 
(Rey et al. 2007). On the theoretical side, the DW can be considered as two localized spatial modes separated by a 
barrier and consequently be investigated as a two-mode approximation (Jaksch et al. 1998; Akpojotor and Li 2008). It 
is therefore pertinent to start the simulation with cold atoms in a DW.  

The DW is a 1D optical lattice in which the transverse directions are in strong confinement and thus the motions of an 
atom in these directions are frozen out (Akpojotor and Li 2008). To create the double well superlattice which is simply 
superimposing one lattice on another, we start with a standing wave of period d and dept V1 (long lattice) and then 
superimpose on it a counter propagating standing wave with period d/2 and dept V2 (short lattice) as shown in Figure 
1a.  The resulting superlattice is a 1D symmetric DW (see Figures 1b and 1c) which can be tilted to obtain asymmetric 
DW as shown in Figure. 1d.  

 

 

The potential seen by the atom in the superlattice  DW is (Akpojotor  and Li 2008) 

x/d)(2cosV + (x)V = (x) V 2
21 π                (3.1) 

Therefore, this potential can be manipulated and controlled by varying the depths of the short and long lattices. For 
example, by increasing the lattice depth of long-lattice V1, we could reach from superfluid to Mott-insulator regime, 
which is convenient for studying the few particles phenomena in a local double-well cell. And the barrier height of the 
double-well is controlled by the lattice depth of short-lattice, V2. The effective double-well is reached if V1 > 4V2.  
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For an atom of mass m trapped in any of the wells corresponding to a filling factor of ½, it will undergo a Josephson 
oscillation with a frequency of  
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which obviously depends on not only the lattice depths V1 and V2, but also on the lattice spacing d. Usually, the small 
lattice spacing d is preferred as it leads to a large frequency though this could also be restricted by changing the ratio 
V1/4V2. This preference also leads to the use of the recoil energy of the short lattice as the unit of the depths of the 
optical lattice: 
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=             (3.3) 

where λ is the wave length of the short lattice. 

The description so far has been for a 1D symmetric DW (Fig 1c). As discussed above, it can be tilted to obtain 
asymmetric DW (Fig 1d). The potential bias or the tilt ∆ of the DW is introduced by changing the relative phase of the 
two potentials (i.e. short and long lattices) and this can be realized by applying a magnetic field gradient. 
Consequently, tuning this field gradient gives the potential difference between the two potential minima of the DW 
(Trotzky et al. 2008). We can realize the adiabatic and diabatic operations on the tilt of the DW by controlling the 
increasing speed of the field gradient (Sebby-Strabley et al. 2006). 

The starting Hamiltonian for the DW is the two-site version of the Hubbard model (Jaksch et al. 1998; Trotzky et al. 
2008 and Akpojotor and Li 2008; 2009): 
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where )( ,, LRRL aa σσ

+  is the creation operator (annihilation operator) for an atom with spin )(),()( ↑↓↓=↑aa , RLan ,,  
is the corresponding number operator, J (both J and t are used in the literature though the cold matter community 
seems to prefer J) describes the tunneling rate between the two wells, ∆  is the potential bias for the double-well 
and U is the two-body interaction when two atoms occupy the same site.  

Eq.(3.4) is known as the Bose-Hubbard model which for ∆ = 0 has a one to one correspondence with the standard 
Hubbard model with the former being applicable to systems with bosons as the carriers and the latter to systems with 
fermions as the carriers 

One general consensus, however, is that for spin ordering phenomena and models, there is need to go beyond the 
Hubbard model either for bosons or fermions (Amadon and Hirsch 1997; Lewenstein and Sanpera 2008; Trotzky et al. 
2008; Akpojotor 2008a; Akpojotor and Li  2008; 2009; Liang et al. 2008). For as already explained, achieving the 
SF-MI transition in the Bose-Hubbard model is simply by varying the potential dept: decreasing the lattice dept will 
increase the hopping rate so that J dominates while increasing the lattice potential dept will enhance the on-site 
interaction so that U dominates (Greiner et al. 2002). Introducing a bias potential in the well helps to manipulate the 
spin ordering of the atoms with very little or no interaction as demonstrated by Trotzky et al. (2008). It follows then 
that to get nearer to the condensed matter scenario wherein the spin ordering is induced by the interacting spins, the 
manipulation via bias potential needs to be replaced by interaction mechanism. In otherwords, we make ∆ = 0 to 
achieve symmetric wells and then introduce appropriate interaction via appropriate laser manipulation to achieve the 
ordering. Such an extended version of Eq.(3.4)  has been suggested in previous studies (Akpojotor and Li, 2008; 
2009) by including both the nearest neighbor (NN) direct exchange, V and superexchange, Jex interactions (Trotzky et 
al. 2008) leading to the J-U-V-Jex model: 
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The DW can be prepared initially either as spin singlet states or spin triplet states so that the common basis states 
(with a basis state 〉RL, denoting the L = left and R = right wells) allowed by the Pauli exclusion principle 
are 〉↓↓〉↑↑〉↑↓〉↓↑〉↓↑〉↓↑ RLRLRLRLRRLL ,,,,,,,,0,0, , where the first two are on-site states, the next 
two are inter-site states and the last two are triplet states (Rey et al. 2007).  

Using our highly simplified correlated variational approach (HSCVA) (Akpojotor 2008a), the exact matrix form of 

Eq. (3.5) is solved for the DW with fermions to obtain the ground state energy for the singlet (Es) and triplet (Es) 

states respectively 
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where U/4J is the on-site interaction strength which determines the response of the kinetic energy of the electrons to the 
varying on-site Coulombic interaction U, V/4J is the NN inter-site interaction strength which determines the response 
to the varying NN Coulombic interaction and Jex/4J is the NN superexchange interaction strength which determines the 
response to the varying superexchange interaction Jex. All these quantities are physically dimensionless as they are 
ratios of the same unit. As expected, the ground state energy for the triplet state is double fold degenerate and this 
emanate from the up-spins and the down-spins. 

It has also been shown in our aforementioned previous studies (Akpojotor and Li 2008; 2009)  that the transition 
point, Tp of the ground state energy from Es (i.e. antiferromagnetic ordering) to Et (i.e. ferromagnetic ordering) is when  
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The TP could be sharp, meaning that there is complete cross over from the antiferromagnetic phase to the ferromagnetic 
phase so that Et is never equal to Es for all values of J/4t. It  has been shown (Akpojotor and Li  2009) how this sharp 
TP can be used to account for the first experimental demonstration of  superexchange interaction with cold atoms in 
optical lattices (Trotzky et al. 2008).  Further, prediction of the theoretical values of the tunneling parameter and the 
interaction parameters from extracted data from the experiment of the possible dynamic evolution frequencies, 
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and      
exJV −=5ωh              (3.11) 

have been obtained as 212
1 ωωh=J , )( 21 ωω −= hU , 521532 )()( ωωωωω +−−−= hV  and 

521532 )()( ωωωωω −−−−= h
exJ  (Akpojotor and Li  2008). 

The other possible case for Eq. (3.8) is for the TP not to be sharp, meaning there is still antiferromagnetic ordering at the 
onset of that ferromagnetism (i.e Et = Es) at certain values of J/4t before completely crossing over to the ferromagnetic 
phase. This scenario of co-existence is called the mixed state and it can be used to investigate two interesting 
phenomena in condensed matter physics, superconductivity and magnetically frustrated systems.  

4. Simulations with cold atoms in superlattices beyond the double wells 
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To investigate the superconductivity, one has to start from the observation by Lewenstein et al. (2007) that the mixed 
states describe the resonating valence bond states. Here the electrons are localized to individual atoms and the 
fluctuations in the charge (density) degree of freedom are strongly suppressed. Therefore the physics is dictated by the 
remaining spin degree of freedom which interact via superexchange and this can result to the superposition of states in 
which random pairs of neighbouring pairs of atoms attains zero total spin (Nascimbene et al. 2012). Interestingly, it is 
this RVB states that was adopted by Anderson (1987) in his proposal that the 2D CuO2 plane which is generally 
believed to be the key feature to understanding the high Tc superconducting cuprates, can be reduced to a single band 
pairing problem. This was confirmed by Zhang  and Rice (1988) who then showed that the ground state will be a 
singlet pairing of the Cu and O and that if liberated as a Cooper pair, will lead to superconductivity. We have been able 
to show the formation of the singlet pairing as the Cooper pair and its propagation within a superexchange interaction 
(Akpojotor 2008b). Therefore the design and implementation of the formation and propagation of the Cooper pair 
using cold atoms in optical lattices can be achieved by improving and extending the study of superexchange interaction 
in DWs (Trotzky et al. 2008) to a CuO2 plaquette (see Figure 2). This has been recently achieved by Nascimbene et al. 
(2012) using cold bosons. The use of cold fermions to achieve it experimentally is still an outstanding problem. So here 
we give the theoretical insight to aid the experimental realization with cold fermions by studying the plaquette as a half 
filled 4 x 4 square lattice which can also be used for studying other magnetically frustrated systems. 

In general, the magnetically frustrated systems such as the kagome lattice can be studied as the mixed state of the 
t-U-V-J model because numerical results of the spin 1/2 system of the Kagome lattice suggest that the energy gap 
between the ground state and the lowest triplet state, if any, is very small (of the order of Jex/20) and that this gap is 
filled with low-lying singlets (Waldtmann et al. 1998). As pointed by Lewenstein et al. (2007), these results suggest 
that the frustrated systems can be described as the RVB states.   

The kagome lattice is a 2D frustrated system composed of corned-shared triangles. Since the triangular geometry is 
believed to have frustrated magnetic ordering (see Figure 3a), the kagome lattices are believed to exhibit the behaviour 
of magnetically frustrated materials (Moessner and Sondhi 2001). Frustration here means all the constraints imposed 
by the Hamiltonian cannot be simultaneously fulfilled (Akpojotor and Akpojotor 2009).   

To design the Kagome lattice with cold atoms in optical lattice, it can be mapped into a 4 x 4 square lattice (sites 22, 23, 
32 and 33) as shown in Figure 3b. Adopting the method of Nascimbene et al. (2012), we can realize the RVB states 
using cold fermions by loading the 4 x 4 cluster at half-filling, that is, four atoms per site.  It is then easy to see that for 
Fermi gas there will be a total of 256 singlet states and 240 triplet states while for bosonic atoms there be a total of 136 
states. Using the highly simplified correlated variational approach (HSCVA) (Akpojotor 2008a), the t-U-V-J 
Hamiltonian in Eq. (3.5) for Fermi gas will yield an 11 x 11 matrix which is then solved numerically to obtain the 
ground state energy at the Tp as the Jex/4J is increased from zero at U/4J = 3 and V/4J = 0. The results which is depicted 
in Figure 4 clearly show a mixed state which is the RVB states that emanates from the spin ordering frustration in the 
Kagome lattice.  

Conclusion 

One challenge in the experimental verification of the superexchange model investigated in this work is to develop a 
method to cool Fermi gas to temperature below the Jex because if the temperature is not cold enough, thermal 
fluctuations would destroy the fragile magnetic order present in the ground state (Bloch 2008). This is why we have 
shown the result for U/4J = 3 to allow the verification of our proposal here with even bosons as a first step. For the U/4J 
= 3 means a strong coupling regime which will map the bosons into non-interacting fermions. In this process known as 
fermionization, the  hardcore repulsion mimics the exclusion principle. Then one can encode the spin 1/2 state as 
presence of (↑) or absence (↓) of boson at the site. Another method that can be used to verify our study is the Eckardt 
and Lewenstein (2010) robust implementation of a quantum simulator for the homogeneous J-Jex model with well 
controlled hole doping, using a sample of ultracold bosonic and fermionic atoms in an optical lattice.  
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Figure 1 (a) Two standing waves in opposite directions and with periods d and d/2 resulting in (b) a chain of double 
wells from which we can study (c) a symmetric double well or (d) an asymmetric double well. 

 

 

 

 

 

 

 

 

 

Figure 2. The CuO2 plaquette which is generally believed to be the key feature to understanding the high Tc 
superconducting cuprates 
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Figure 3 (Colour online): (a) The triangular lattice as a geometrically frustrated spin system (b) The Kagome lattice 

formed by the triangular lattices with the round purple circles indicating the possible trapping of cold atoms in  a 4 x 4 

cluster.  

 

 

Figure 4 (Colour online): The change of the ground state energy from antiferromagnetic ordering to ferromagnetic 
ordering at the transition point, Tp  as the superexchange interaction, Jex/4J is increased from zero at U/4J = 3 and V/4J 
= 0 for a Kagome lattice of 4 x 4 cluster. 
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