
Network and Complex Systems www.iiste.org

ISSN 2224-610X (Paper) ISSN 2225-0603 (Online)

Vol.4, No.2, 2014

5

A Mathematical Appraisal: Evolution of Distributed File System
and Hadoop

Atul Saurabh

Assistant Professor

Babaria Institute of Technology， BITs edu Campus Varnama, Vadodara, Gujrat

Mob: +91-9574465442 E-mail: atul.saurabh@gmail.com

Swapnil M Parikh

Assistant Professor

Babaria Institute of Technology， BITs edu Campus Varnama, Vadodara, Gujrat

Mob: +91-8238046537 E-mail: swapnil.parikh@gmail.com

The research is financed by Asian Development Bank. No. 2006-A171(Sponsoring information)

Abstract

The fast growing technology has left a great impact on the human life. Many tradi t ional systems
are either replaced or running i n parallel wi th their electronic counterpart. As for example: - the
traditional postal system is now nearly replaced by mobile phones and emails. The electronic system is
providing more functionalities than their traditional counterparts. Due to social media, peoples may
communicate with each other, share their thoughts and moments of life in form of texts, images or videos. On
the other hand, to enhance technologies and knowledge many research activities are propelled and data
from different sources are gathered in large volume for further analysis. In short t o d a y ’s wor ld is
surrounded with large volume of data in different form. This put a requirement for effective management
of these billions of terabytes of electronic data generally called BIG DATA. The effective management
must be based on proven mathematical concepts so that chance of casualties may be reduced.
This paper presents a mathematical appraisal for evolution of distribution of file data and explains
some basic solution of primitive problems based on probability theory.
Keywords: BIG DATA, Distributed S y s t e m , DFS, Commodity Hardware, Hadoop, Hadoop F i le System,
HDF.

1. INTR ODUCTION

We are living in the electronic world. The electronic world lives with one single motto: every task, if
possible, will be achieved using some automated tool. Due this course many useful tools like facebook,
stock exchange software, scientific research software etc. are developed. These tools in turns generate a large
volume of data. As for example The New York Stock Exchange generates about one terabyte of new trade
data per day. The generated data e i ther may be structured (easy to process) or unstructured. Some
systems also produce a large amount of binary data l ike facebook hosts around one petabyte of images.
This large volume of data i s addressed by a concept called Big Data.

1.1 Problems with Big Data

In computer world it is said that problems either move around time or space. Big Data is no
exception. As the technologies evolve, the storage capacity of hard disk and transfer rate increases a lot.
But the rate, at which the data is growing, creates two small problems:

• How to store this Big growing data (space problem)?
• How to process and analyze Big Data in significantly low amount of time (time problem)?

1.2 Studied Solutions

1.2.1 Adding hard disk in serial
The obvious solution to the storage is to introduce more hard disk with bigger capacity. This will solve the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Science, Technology and Education (IISTE): E-Journals

https://core.ac.uk/display/234686551?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Network and Complex Systems www.iiste.org

ISSN 2224-610X (Paper) ISSN 2225-0603 (Online)

Vol.4, No.2, 2014

6

storage problem but introduces t w o more problems.
I. The more hard d isk we introduce, the more we increase the rate of failure or data lost.

Mathematical Analysis

Let us suppose a system of n hard disks with probability of failure p1 , p2 , p3 · · · pn . The event of a
failure of a hard disk is independent of others. So, the chance of failure of hard disks, Pf , is as mentioned
below:

Since,

So,

Here the probabi l i ty of failing hard d i s k is decreased. But the system (of hard d isk) will fail if any one
of the hard disk fails. So, the probability that the system gets fail is

Where P f s s indicates the probability of failure of the system when disks are arranged in series. Hence
the probability of a system failure is

If we increase the number of hard disks in a system, overall probability of the system failure also increases.

II. The bigger is the capacity of the hard disk, the bigger it takes time to retrieve the data from the
disk.

Mathematical Analysis

 Suppose maximum se e k time of ith hard disk is Si and probability that data wi l l be available in

ith disk is pai .
So, total t ime Ts to seek data in n-system serial hard disk is

Thus overall seek time increases a lot. So, it seems that adding more hard d isk is impractical.
Even though mathematical analysis says that adding more hard d isk degrades the overall performance
o f the system, it indicates one ray of hope.
The total probability of hard disk failure from equation (1) is less than the individual one [see
equation- (3)]. So, adding more hard disk gives good news. The total fa i lure rate of hard disk gets
decreases.

1.2.1 Adding hard disk in parallel

Somehow we can take advantage of above result [eqn-3]. If the hard d i s k is added i n parallel w a y
then failure of one hard disk will not affect the overall system. In that case probability of system
fa i lure will not depend on individual failure of the hard disk. The system wi l l fail if and only if all
the hard d isks fail and then probability of failure of the system become:

Where Pfsp is the probability of system failure when the hard disks are added in parallel. If

Network and Complex Systems www.iiste.org

ISSN 2224-610X (Paper) ISSN 2225-0603 (Online)

Vol.4, No.2, 2014

7

comparing equat ion (4) and equation (7) we can conclude that the overall chance of system failure get
decreases when the disks are added in parallel.

Adding ha rd d i s k s in parallel c e r t a i n l y increases the performance in terms of disk failure but help us
at time factor. To address this problem we need to analyze how a file is searched in one hard disk.

The file is stored as follows:
The actual content of the file is stored i n data block and some basic information called metadata is stored
in inode and directory. So, whenever a search is made instead o f searching o n data b lock, metadata is
searched first.

We can remove metadata part from each hard disk and store in one hard disk which is dedicated for
metadata storage only. In this situation we need to search only one hard d i s k for obtaining the data.
So the seek time becomes as mentioned below

Hence effectively the seek time gets reduced [compare equation (6) to equation (8)].

2. General Architecture

From the above discussion a tree based architecture can be proposed [see figure:1]. The root of the tree
keeps the metadata and other nodes keep the actual data. This archi tec ture reduces the seek time and
a lso have a major impact on system failure. Now the system is failed only if all the children get failed.

2.2 Pros and Cons

• The root keeps all the metadata.
• Since the size of metadata is small enough, big storage is not required at root level.
• Data se a r c h ing should be faster. A faster algorithm is required to store data at root

node.
• The processing power of root must be high as data can be required by many users

simultaneously
• If the root node gets fail, all the data is lost.
• Since the child node only require to store data the storage capacity must be high.
• The child is not only involved in storing and transferring the data.
• The block size of child hard disk must be large enough so that storing and retrieving

of data do not require higher amount of block to traverse. This makes the traversal
time smaller.

Figure 1: Hierarchical Structure of Hard disk

3. Concept of Distributed File System

 The mathematica l analysis s u g g e s t s us to adapt a very clear architecture where data is not
stored onto the s ingle hard d i s k . The data i s stored o r spread over a range of hard disk possibly
connected through the n e t w o r k . This architecture solves most of the problems related to the data
s to rage and also put a requirement of a system which will manage the storage.

Network and Complex Systems www.iiste.org

ISSN 2224-610X (Paper) ISSN 2225-0603 (Online)

Vol.4, No.2, 2014

8

The DFS performs the following tasks:

• Deciding on which node data wi l l be stored.
• What to do when the data storage gets failed?
• How t o recover data if the concerned node crashes?
• How to store m e t a data for fast retrieval?

4. Concept of Hadoop

This section covers architectural components of Hadoop. Hadoop makes use of master/slave architecture
for both distributed storage and distributed computation. The distributed storage system is called as Hadoop
Distributed File System (HDFS) and distributed computation is done with MapReduce. So, Hadoop has
two major components.

• Hadoop Distributed File System (HDFS) (Storage).
• MapReduce (Processing)

Figure 2: Hadoop File System Architecture

4.1 Hadoop File S y s t e m s

Hadoop is a file system designed for storing very large amount files with streaming data access pattern,
running on clusters of commodity hardware. HDFS has two components

1. NameNode
 It is master o f the system which maintains and manages blocks which are present on the
DataNodes in the system. It keeps track of how your files are broken down into file blocks, which
nodes store those blocks, and the overall health of the distributed file system.
It is a single point of failure for a Hadoop cluster.

2. DataNodes
They are salve nodes which are deployed on each machine and provide the actual storage.

Definition 1: The file system which manages t he storage of files across a network of
machine is called Distributed File System (DFS).

Network and Complex Systems www.iiste.org

ISSN 2224-610X (Paper) ISSN 2225-0603 (Online)

Vol.4, No.2, 2014

9

3. Secondary NameNode
It is an assistant process which monitors the state of Hadoop cluster. As we discussed earlier
NameNode is a single point of failure for a Hadoop cluster, the secondary NameNode helps to minimize
the downtime and loss of data.

4.2 MapReduce

The beauty o f Hadoop system lies in MapReduce. It is a programming model for processing large data
sets with a parallel, distributed algorithm on a cluster.
The MapReduce t e r m actually r e fe r s to the two distinct t e r ms : Map and Reduce. The first is the map
job, which takes a set of data and converts it into an- other set of data, where individual elements are
bro- ken down into tuples (key/value pairs). The reduce job takes the output from a map as input and
com- bines those data tuples into a smaller set of tuples. As the sequence of the name MapReduce
implies, the reduce job is always performed after the map job.
The master node has a Job Tracker and each slave has Task Tracker which is mainly responsible for MapRe-
duce. The Job Tracker daemon keeps tracks of a job that may be assigned to multiple nodes. If the task at
any node fails, the Job Tracker reschedu les that task at another node. Task Tracker in turn, is responsible
for keeping trace o f the task that is assigned to individual node.

Figure 3: The Hadoop System

4.3 Features

• Hadoop is designed to operate on very large sized file typically of the r a n g e o f
megabytes, gigabytes, terabytes or petabytes.

• Data is accessed in the form of byte stream.
• Hadoop d o e s not r e q u i r e e x p e n s i v e h a r d w a r e. Commonly available hardware is

sufficient.

4.4 Drawback

• Hadoop provides high throughput of data w i t h the cost of latency a nd hence low
latency d a ta access will not work with Hadoop.

• Hadoop is not designed to work with small sized files. In Hadoop architecture metadata is
separated and stored on another hard disk. So number of files that can be stored in Hadoop
file system does not depend upon the total capacity of available hard disks. It only
depends upon the size of hard disk that holds the metadata.

5. Conclusion

The classical centralized system was a great solution to the problem of uniform accessibility of the
information which was otherwise scattered on different network node. The information is stored on a set of
hard disks connected to a single large mainframe machine. But it failed to solve many complex problems like

Network and Complex Systems www.iiste.org

ISSN 2224-610X (Paper) ISSN 2225-0603 (Online)

Vol.4, No.2, 2014

10

Big Data, and frequent failure of the central system. Now a day’s paradigm is shifting from centralized
system to distributed system. The distributed system provides a better solution in that area normally
where the centralized system got failed. But this shifting is not sudden. There is a complete mathematical
result which provides a way for this shifting. The probability theory helps us to formalize the basic tree
like architecture of distributed file system i f we try t o solve the problem like Big Data. The Hadoop
system which is currently the most acceptable s y s t e m used in distributed area is also following the
same basic architecture with slight modification. The modification is made for the solution of failure of
root of the file system. The Hadoop system not only solves the Big Data problem but also provides an
API for solving problem in parallel and monitoring the progress.

References

Lam Chuck. Hadoop in Action (1st ed) (2013). Dreamtech Publication, (Chapter 1 and 2). ISBN- 978-81-7722-
813-7.

White Tom. Hadoop-The Definitive Guide (3rd ed) (2012). O’reilly Publication, (Chapter 1, 2 and 3). ISBN- 978-
93-5023-756-4

Hadoop Documentation, [Online] Available: http://hadoop.apache.org/docs/r0.18.3/hdfs_design.html (January 7,
2014).

Gantz F John, Chute Christopher et al. The Diverse and Exploding Digital Universe, [Online] Available:
http://www.emc.com/collateral/analyst-reports/diverse-exploding-digital-universe.pdf,
(December 21, 2013).

Schroeder Stan. Facebook Statistics. [Online] Available: http://mashable.com/2008/10/15/facebook-
10-billion-photos/, (December 20, 2013).

Haddad Diana. Genealogy Insider (2009). The family tree magazine. [Online] Available:
http://blog.familytreemagazine.com/insider/Inside+Ancestrycoms+TopSecret+Data+
Center.aspx. (January 1, 2014).

Papoulis Athanasios and Pillai Unnikrishna S. Probability, Random Variables and Stochastic Processes
(4th ed.) (2010) Tata McGraw-Hill Publication (Chapter 1 to 3). ISBN- 978-0-07-048658-4.

Bach J. M. The Design of the UNIX Operating System (1986). PHI Publication (Chapter 4) ISBN-978-81-
203-0516-8.

