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Mining Interesting Positive and Negative Association Rule Based 

on Improved Genetic Algorithm (MIPNAR_GA) 

 

Abstract 

Association Rule mining is very efficient technique for finding strong relation between correlated data. The correlation of 

data gives meaning full extraction process. For the mining of positive and negative rules, a variety of algorithms are used 

such as Apriori algorithm and tree based algorithm. A number of algorithms are wonder performance but produce large 

number of negative association rule and also suffered from multi-scan problem. The idea of this paper is to eliminate these 

problems and reduce large number of negative rules. Hence we proposed an improved approach to mine interesting positive 

and negative rules based on genetic and MLMS algorithm. In this method we used a multi-level multiple support of data 

table as 0 and 1. The divided process reduces the scanning time of database. The proposed algorithm is a combination of 

MLMS and genetic algorithm. This paper proposed a new algorithm (MIPNAR_GA) for mining interesting positive and 

negative rule from frequent and infrequent pattern sets. The algorithm is accomplished in to three phases: a).Extract frequent 

and infrequent pattern sets by using apriori method b).Efficiently generate positive and negative rule. c).Prune redundant rule 

by applying interesting measures. The process of rule optimization is performed by genetic algorithm and for evaluation of 

algorithm conducted the real world dataset such as heart disease data and some standard data used from UCI machine 

learning repository. 

Keywords— Association rule mining, negative rule and positive rules, frequent and infrequent pattern set, genetic 

algorithm. 

I.  INTRODUCTION 

Association rule mining is a method to identify the hidden facts in large instances database and draw 
interferences on how subsets of items influence the existence of other subsets. Association rule mining aims to 
discover strong or interesting relation between attributes. All generalized frequent pattern sets are not very 
efficient because a segment of the frequent pattern sets are redundant in the association rule mining. This is 
why, traditional mining algorithm produces some uninteresting rules or redundant rules along with the 
interesting rule. This problem can be overcome with the help of genetic algorithm. Most of the data mining 
approaches use the greedy algorithm in place of genetic algorithm. Genetic algorithm is produced by optimized 
result as compare to the greedy algorithm because it performs a comprehensive search and better attributes 
interaction [1]. In genetic algorithm population evolution is simulated. Genetic algorithm is an organic 
technique which uses gene as an element on which solutions (individuals) are manipulated. Generally 
association rule is used to finding positive relationship between the data set. Negative association rule is also 
vital in analysis of intelligent data.  Negative association rule mining is adopted where a domain has too many 
factors and large number of infrequent pattern sets in transaction database. Negative association rule mining 
works in reverse manner and it define decision making capability, whether which one is important instead of 
checking all rules. However problem with the negative association rule is it uses huge space and can take more 
time to produce the rules as compare to the conventional mining association rule. In the generalized association 
rule database is scanned once and transaction is transformed into space reduced structure. The association rule 
mining problem can be decomposed in statistical and unconditional attributes in a database. The application of 
association rule mining is used to analyze various situation like market basket analysis, banks, whether 
prediction, pattern reorganization, multimedia data etc. 

The process of optimization of interesting association rule mining used genetic algorithm. Genetic algorithm 
works in multiple levels of constraints for minimum support value and individual confidence value of frequent 
and infrequent patterns. The proposed method enhances the process of rule optimization for large datasets.  The 
rest of paper is organized as follows. In Section II describes about related work of association rule mining. 
Section III describes about proposed method. Section IV describes about experimental result algorithm followed 
by a conclusion in Section V. 

II. RELATED WORK 

This section describes some related work to negative and positive association rule mining. 
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An Improved  apriori algorithm is used minimum supporting degree and degree of confidence ,for extracting 
association rules .But it has suffered from “frequent pattern sets explodes ”and “rare item dilemma ” [2]. 

Improved multiple minimum support (MSapriori) based on notion of support difference and define how to 
deal with the problem caused by frequent pattern sets explodes ,but still suffer from rare item dilemma[3]. 

Primary stage of association rules, all algorithms based on single minimum support and those algorithms 
suffer from “rule missed” and “rule explosion” problem. An efficient method to extract rare association rules .In 
this method the probability and introduces multiple minsupp value to discover rare association rules. One 
obstacle of this algorithm is that, it produces large number of uninteresting pattern sets [4]. 

PNAR_MDB on PS measures is introduced to discover PNAR in multi-databases. PNAR_MDB on PS  
extract interesting association rules by weighting the database (the weight of database must be determined) and 
used the correlation coefficient to remove the confliction of rules [5]. 

Reveal knowledge hidden in the massive database and proposed an approach for Evaluation of exam paper. 
This paper introduces a new direction, applies interesting rules mining to evolution of completive exam and 
finds out some useful knowledge. But this algorithm need repeatedly database scan and takes more time to 
perform I/O operation [6]. 

Some algorithm uses comparison support and comparison confidence (comsup, comconf) for extracting 
interesting relationship between pattern sets [7]. 

According to correlation and dual confidence measures association rules are classified in to positive and 
negative association rules ,but one drawback of dual confidence, is if less confidence would be a lot of rules 
even produce large number of contradict rules (¬C→¬D), if greater confidence may missed useful positive 
association rules[8]. 

Generalized Negative Association Rules (GNAR) is produced interesting negative rules ,this approach could 
speed up execution time efficiently through the domain taxonomy tree and extract interesting rules easily, 
advantage of taxonomy tree is to eliminate large number of useless transaction [9]. 

Another approach to solve key factors of interesting rules is PNAR algorithm, this algorithm efficiently 
define frequent pattern sets for interesting rules, NAR based on correlation coefficient and modified pruning 
strategy[10]. 

PNAR_IMLMS produces valid association rules based on correlation coefficient but one demerits of this 
algorithm, negative rules extract from uninteresting pattern sets which is useless [11].  Optimized association 
rule mining with genetic algorithm produces more reliable interesting rules compare to previous method. 

Mining association rules using multiple support confidence values and several studies have been addressed 
the issue of mining association rules using Multiple Level Minimum Supports [12]. 

III. PROPOSED ALGORITHM 

 This paper proposed a novel algorithm for optimization of association rule mining, the proposed algorithm 
resolves the problem of negative rule generation and also optimized the process of rule generation. Interesting 
association rule mining is a great challenge for large dataset. In the generation of interesting rules association 
existing algorithm or method generate a series of negative rules, which generate rules which             affect 
performance of association rule mining. In the process of rule generation various multi objective associations 
rule mining algorithm is proposed but all these are not solve. This paper proposed an improved approach to 
mine association rule In this algorithm we used a MLMS for multi level minimum support for constraints 
validation. The scanning of database divided into multiple levels as frequent level and infrequent level of data 
according to MLMS. The frequent data logically assigned 1 and infrequent data logically assigned 0 for MLMS 
process. The divided process reduces the uninteresting item in given database. The proposed algorithm is a 
combination of MLMS and genetic algorithm along this used level weight for the separation of frequent and 
infrequent item. The multiple support value passes for finding a near level between MLMS candidates key. 
After finding a MLMS candidate key the nearest level divide into two levels, one level take a higher odder value 
and another level gain infrequent minimum support value for rule generation process. The process of selection 
of level also reduces the passes of data set. After finding a level of lower and higher of given support value, 
compare the both values of level by   vector function. Here level weight vector function work as a fitness 
function to define the selection process of genetic algorithm  

        Here we implemented the combinatorial method of MLMS and genetic algorithm for the mining of positive 

and negative item sets. The key idea is to generate frequent and infrequent item sets and with these item sets 

positive and negative association rules are generated.  MLMS algorithm is used for the generation of rules [12], 

since the association rule mining seems to be better when the association rules are less, hence the minimization 
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of these positive and negative rules can be done using genetic algorithm. The proposed technique can be 

described as follows: 

 

1. Take an input dataset which contains number of attributes and instance values with single or multiple 

classes (Para a). 

2. Initialize the data with length of the item sets k=2, 3, 4 and pass support and confidence (Para b). 

3. Generate all the frequent and Infrequent item sets from MLMS algorithm for an item set of length k=2, 

3, 4 (Para c). 

4. Generate positive association rules from frequent items sets and negative association rules from 

infrequent item sets (Para d). 

5. Initialize all the general parameters involved in genetic algorithm. 

6. Generate the child chromosomes of the positive and negative association rules and calculate the fitness 

value of each individual child chromosomes. Compare the individual fitness value of each child with 

the average fitness value and regenerate positive and negative association rules (Para e). 

7. Crossover and mutate the remaining child chromosomes and reinitialize the fitness value and 

recalculate and regenerate final positive and negative rules (Para f). 

 

Fig. 1. shows that proposed block model of algorithm. 

Para a 

The association rules generated from the proposed algorithm needs datasets containing a number of 

transaction values. Here we use a number of datasets i.e. small and large dataset, a dataset with single and 

multiple classes. So the performance of the proposed methodology is tested for each datasets.  

 

Para b 

Here the association rules can be generated on the basis of item set length, support and confidence. Suppose 

sup and cf are the support and confidence respectively. Let k be the length of the item set. For an item set A⊆I, 

the support is A.count / |TD|, where A.count is the number of transactions in TD that contain the itemset A. The 

support of a rule A⇒B is denoted as sup (A∪B), where A, B⊆I, and A∩B =Φ while the confidence of the rule 

A⇒B is defined as the proportion of s (A∪B) above s (A), i.e., cf (A⇒B) = s (A∪B) /s (A). 

 

Para c 

Here use MLMS algorithm for the generation of frequent and infrequent item sets. Form these frequent and 

infrequent item sets positive and negative association rules are generated.  
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A frequent itemset I: sup (I) ≥ minsupp  

An infrequent itemset J: sup (J) ≤ minsupp  

 

Para d 

      For the generation of positive and negative association rules from these item sets, first of all correlation 

coefficient between the items sets is computed using: 

 
 

      Where cov(A, B) represents the covariance of two                    variables and σ represents the standard 

deviation. Then compare the correlation coefficient with the correlation strength. Generate all the rules of the 

form 

Positive association rules:  

AB =  

Supp (AU B)  minsupp 

Supp (A U B) / supp (A)  minconf 

 

Negative association rules: 

                                        A  B =  

                             Sup (A) >= minsupp, Sup (B) > minsupp,    and sup (A U ~B) >= minsupp 

                Sup (A U ~B)/sup (A) >= minconf 

      If the correlation coefficient is greater than or equal to α    and if they meet the conditions  

VARCC(A,B,α,mc)=1 and VARCC(¬A,¬B,α,mc)=1. if the correlation coefficient is lower than or equal to  -α 

and if they meet the  conditions  VARCC(A,¬B,α,mc)=1 and VARCC(¬A,B,α,mc)=1. 

 

Para e 
      The population selection for Genetic Algorithm is based    on Fitness Function: 

 

           Ai   = {frequent item support} 

           Wi= {level of Wight value of MLMS} 

           Bi = {those value or Data infrequent} 

The selection policy based on the foundation of individual   fitness and concentration p(i) is the selection of 

individual whose fitness value is greater than one and m(s) is a value whose fitness is less than one but close to 

the value of 1.  The genetic operators find out the search capability and convergence of the algorithm. 

 

Para f 
      The child chromosomes that are not used in the sets will now be crossover and mutate so that the new fitness 
value is generated and again from parent, child chromosomes are generated. The process repeats until the rules 
generation finishes: 

      Example: 

1 0 1 0 0 1 0 

    
↓ 

  
1 0 1 0 1 1 0 

Mutation operator has been chosen to insure high levels of diversity in the population. We adopted PCA-

mutation in (Munteanu 1999b), and shown that it has very good capabilities in maintaining higher levels of 

diversity in the population. We briefly summarize the PCA-mutation operator, as follows: The population X of 

the GA can be viewed as a set of N points in a l-dimensional space, where N is the size of the population and l is 

the length of the chromosome. It can be shown (Munteanu 1999b) that a GA converging has the effect of 

decreasing the number of Principal Components (PCs) as calculated with the Principal Components Analysis 

(PCA) method on data  X.  

a. Select a random point on the two parents. 

b. Split parents at this crossover point. 
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c. Produce children’s by exchanging trails. 

d. Mutation typically in range (0.6, 0.9). 

 
 

 

Fig. 2. Represent  crossover and mutation of chromosomes . 

IV. SIMULATION RESULT 

This section shows the performance of MIPNAR_GA algorithm for mining both interesting positive and 
negative rules. Experiments are performed on a computer Intel Pentium dual core processor with 2.10 GHZ of 
CPU, running on a Windows 7 ,64-bit operating system and 4 GB of memory .All codes are implemented under 
the Java Compiler (JDK 1.6 and Weka 3.6.9) and Net Beans IDE version 6.9. Test the performance of proposed 
algorithm on 4 datasets from UCI machine learning website, which involve, Heart diseases, Breast Cancer, 
Wine and Iris. All information related to datasets are shown in Table 1. 

TABLE I.  CHARACTERISTICS OF DATASETS 

Dataset 
No of 

Attributes 
No of 

Instances 
Classes 

Heart 
Disease 

14 303 2 

Breast 
Cancer 

10 286 2 

Iris 14 178 3 

Wine 5 150 3 

 

Because MIPNAR_GA is designed to mine positive and negative rules from positive (frequent) and negative 
(infrequent) patterns with different input parameter (support, confidence, itemset length), it will be compared 
with the base algorithm PNAR_IMLMS for mining interesting positive and negative rules. The results are 
representing in table 2 to 7 where the number of interesting positive (A→B) and negative rules are represent as 
(A→¬B, ¬A→B, ¬A→¬B). 
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TABLE II     SHOW THAT GIVEN VALUE OF SUPPORT (65%) CONFIDENCE (55%) AND ITEM LENGTH 2 ALGORITHM PNAR_IMLMS 

GENERATED TOTAL NUMBER OF INTERESTING POSITIVE AND NEGATIVE RULES FOR UCI DATA SET 

Datasets 
PNAR_IMLMS 

A→B A→¬B                             ¬A→ B  ¬  A→¬B  

Heart 
Disease 

FIS 8 3 1 8 

inFIS 0 16 20 14 

Breast 
Cancer 

FIS 33 0 0 42 

inFIS 0 17 17 23 

Iris 
FIS 7 0 0 8 

inFIS 0 12 12 16 

Wine 
FIS 19 5 4 16 

inFIS 0 12 14 43 

Total   67 65 68 170 

TABLE III   SHOW VALUE OF SUPPORT (75%) CONFIDENCE (65%) AND ITEM LENGTH 3 ALGORITHM PNAR_IMLMS GENERATED NUMBER 

OF INTERESTING POSITIVE AND NEGATIVE RULES  FOR UCI DATA SET 

Datasets 
PNAR_IMLMS 

A→B A→¬B                             ¬A→ B  ¬  A→¬B  

Heart 
Disease 

FIS 47 1 1 52 

inFIS 0 20 22 45 

Breast 
Cancer 

FIS 104 0 0 117 

inFIS 0 6 8 37 

Iris 
FIS 18 0 0 16 

inFIS 0 11 12 6 

Wine 
FIS 148 6 4 143 

inFIS 0 24 27 146 

Total   317 68 74 562 

TABLE IV     SHOW THAT GIVEN VALUE OF SUPPORT (55%) CONFIDENCE (45%) AND ITEM LENGTH 4 ALGORITHM MIPNAR_GA 

GENERATED NUMBER OF INTERESTING POSITIVE AND NEGATIVE RULES FOR UCI DATA SET 

Datasets 
PNAR_IMLMS 

A→B A→¬B                            ¬A→ B  ¬  A→¬B 

Heart 
Disease 

FIS 141 3 3 144 

inFIS 0 0 0 0 

Breast 
Cancer 

FIS 265 0 0 294 

inFIS 0 0 0 10 

Iris 
FIS 10 0 0 11 

inFIS 0 5 5 0 

Wine 
FIS 656 18 14 667 

inFIS 0 0 0 0 

Total   1072 26 22 1126 
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TABLE V   SHOW THAT GIVEN VALUE OF SUPPORT (65%) CONFIDENCE (55%) AND ITEM LENGTH 2 ALGORITHM MIPNAR_GA GENERATED 

NUMBER OF INTERESTING POSITIVE AND NEGATIVE RULES FOR UCI DATA SET 

Datasets 
MIPNAR_GA 

A→B A→¬B                             ¬A→ B  ¬  A→¬B  

Heart 
Disease 

FIS 3 0 0 2 

inFIS 0 7 9 10 

Breast 
Cancer 

FIS 12 0 0 16 

inFIS 0 6 6 8 

Iris 
FIS 2 0 0 3 

inFIS 0 5 5 8 

Wine 
FIS 10 1 0 9 

inFIS 0 8 8 16 

Total   27 26 28 72 

TABLE VI   SHOW THAT GIVEN VALUE OF SUPPORT (75%) CONFIDENCE (65%) AND ITEM LENGTH 3 ALGORITHM MIPNAR_GA GENERATED 

NUMBER OF INTERESTING POSITIVE AND NEGATIVE RULES FOR UCI DATA SET 

Datasets 
MIPNAR_GA 

A→B A→¬B                            ¬A→ B  ¬  A→¬B 

Heart 
Disease 

FIS 31 0 0 35 

inFIS 0 10 12 18 

Breast 
Cancer 

FIS 75 0 0 80 

inFIS 0 1 2 9 

Iris 
FIS 5 0 0 8 

inFIS 0 4 5 1 

Wine 
FIS 130 2 2 112 

inFIS 0 16 16 97 

Total   241 33 37 360 

TABLE VII SHOW THAT GIVEN VALUE OF SUPPORT (55%) CONFIDENCE (45%) AND ITEM LENGTH 4 ALGORITHM MIPNAR_GA 

GENERATED NUMBER OF INTERESTING POSITIVE AND NEGATIVE RULES FOR UCI DATA SET 

 

Datasets 
MIPNAR_GA 

A→B A→¬B                            ¬A→ B  ¬  A→¬B 

Heart 
Disease 

FIS 97 1 0 98 

inFIS 0 0 0 0 

Breast 
Cancer 

FIS 203 0 0 215 

inFIS 0 0 0 2 

Iris 
FIS 3 0 0 4 

inFIS 0 1 1 0 

Wine 
FIS 598 7 5 602 

inFIS 0 0 0 0 

Total   898 9 6 921 
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  Table 2-7 shows the number of interesting positive and negative rules generated from useful positive and 
negative patterns with different input parameter. These rules are mined with two algorithms, the PNAR_IMLMS 
algorithm [12] and the MIPNAR_GA. For example, in Table 2 to 4 the number of interesting positive and 
negative rules mined by PNAR_IMLMS are 67 to 303 and 317 to 704 and 1072 to 1174, whereas in table 5 to 7 
represent the total number of interesting positive and negative rules mined by MIPNAR_GA are 27 to 126 and 
241 to 430 and 898 to 936 respectively .We can say that the algorithm MIPNAR_GA can successfully produce 
fewer rules than PNAR_IMLMS. In figure 3 to 5, P represent positive rule X→Y, N1 represent A→¬B, N2 

represent ¬A→B, and N3 represent ¬A→¬B. 

 

Fig. 3. shows the comparative value of no of rules and reduces rules of two algorithms by optimization process from Tabel 3 to table 6. 

 

Fig. 4. shows the comparative value of no of rules and reduces rules of two algorithms by optimization process from Tabel 2 to table 5. 
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Fig. 5. shows the comparative value of no of rules and reduces rules of two algorithms by optimization process from Tabel 4 to table 7 

V. CONCLUSION AND FUTURE WORK 

This paper proposed a novel method for optimization of interesting positive and negative association rule. 

The defined algorithm is combination of MLMS and genetic algorithm. The observation is that when modify the 

scan process of transaction, generation of rule is fast. With more rules emerging it implies there should be a 

mechanism for managing their large numbers. The large generated rule is optimized with genetic algorithm. We 

theoretically proofed a relation between locally large and globally large patterns that is used for pruning at each 

level to reduce the searched candidates. We derived a locally large threshold using a globally set minimum 

recall threshold. Pruning achieves a reduction in the number of searched candidates and this reduction has a 

proportional impact on the reduction of large number of negative rules. In future, some revision might take place 

to achieve two goals. 

a. Various measures are added to this method for working with grid computing environment. 

b. To improve the efficiency of the algorithm 
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