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Abstract:  
In this chapter, we prove two common fixed theorems for weakly compatible mappings via an implicit relation 
using the common (E.A) property in intuitionistic fuzzy metric spaces 
 
1. Introduction 
The concept of Fuzzy sets was initially investigated by Zadeh [14]. Subsequently, it was developed by many 
authors and used in various fields. To use this concept, several researchers have defined Fuzzy metric space in 
various ways. In 1986, Jungck [6] introduced the notion of compatible maps for a pair of self mappings. 
However, the study of common fixed points of non-compatible maps is also very interesting. Aamri and El 
Moutawakil [15] generalized the concept of non-compatibility by defining the notion of property (E.A) and in 
2005, Liu, Wu and Li [23] defined common (E.A) property in metric spaces and proved common fixed point 
theorems under strict contractive conditions. Jungck and Rhoades [7] initiated the study of weakly compatible 
maps in metric space and showed that every pair of compatible maps is weakly compatible but reverse is not 
true. Many results have been proved for contraction maps satisfying property (E.A) in different settings such as 
probabilistic metric spaces [11, 21], fuzzy metric spaces [5, 18, and 19]. Atanassov [12] introduced and studied 
the concept of intuitionistic fuzzy sets as a generalization of fuzzy sets [14] and later there has been much 
progress in the study of intuitionistic fuzzy sets [4, 9]. 
In 2004, Park [10] defined the notion of intuitionistic fuzzy metric space with the help of continuous t-norms and 
continuous t-conorms as a generalization of fuzzy metric space due to George and Veeramani [1]. Fixed point 
theory has important applications in diverse disciplines of mathematics, statistics, engineering, and economics in 
dealing with problems arising in: Approximation theory, potential theory, game theory, mathematical economics, 
etc. Recently, Kumar [22] established some common fixed point theorems in intuitionistic fuzzy metric space 
using property (E.A). In 2010, Huang et al. [24] proved some results for families of compatible mappings. In this 
paper, employing common (E.A) property, we prove two common fixed theorems for weakly compatible 
mappings via an implicit relation in intuitionistic fuzzy metric spaces.  
2. Preliminaries 
The concepts of triangular norms (t-norms) and triangular conorms (t-conorms) are known as the axiomatic 
skelton that we use are characterization fuzzy intersections and union respectively. These concepts were 
originally introduced by Menger [14] in study of statistical metric spaces. 
Definition 2.1 [2] A binary operation ∗ : [0, 1] x [0, 1] → [0, 1] is continuous t-norm if ∗ satisfies the following 
conditions: 
(1) ∗ is commutative and associative, 
(2) ∗ is continuous, 
(3) a ∗ 1 = a for all a ∈ [0, 1], 
(4) a ∗ b ≤ c ∗ d whenever a ≤c and b ≤ d for all a, b, c, d ∈[0, 1]. 
Definition 2.2 [2] A binary operation ◊ : [0, 1] x [0, 1] → [0, 1] is continuous t-conorm if ◊ satisfies the 
following conditions: 
(1) ◊ is commutative and associative, 
(2) ◊ is continuous, 
(3) a ◊ 0 = a for all a ∈ [0, 1], 
(4) a ◊ b ≤ c ◊ d whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1]. 
Using the concept of intuitionistic fuzzy sets Alaca et al. [3] defined the notion of intuitionistic fuzzy metric 
space with the help of continuous t-norm and continuous t-conorms as a generalization of fuzzy metric space due 
to Kramosil and Michalek [8] as: 
Definition 2.3 [3] A 5-tuple (X, M, N, ∗, ◊) is said to be an intuitionistic fuzzy metric space if X is an arbitrary 
set, ∗ is a continuous t-norm, ◊ is a continuous t-conorm and M, N are fuzzy sets on X2 x [0,1) satisfying the 
following conditions: 
(1) M(x, y, t) + N(x, y, t) ≤ 1 for all x, y ∈ X and t > 0, 
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(2) M(x, y, 0) = 0 for all x, y ∈ X, 
(3) M(x, y, t) = 1 for all x, y ∈X and t > 0 if and only if x = y, 
(4) M(x, y, t) = M(y, x, t) for all x, y ∈ X and t > 0, 
(5) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s) for all x, y, z ∈ X and s, t > 0, 
(6) for all x, y ∈ X, M(x, y, .) : [0,∞) → [0, 1] is left continuous, 
(7)  = 1 for all x, y ∈ X and t > 0, 
(8) N(x, y, 0) = 1 for all x; y ∈X, 
(9) N(x, y, t) = 0 for all x, y ∈ X and t > 0 if and only if x = y, 
(10) N(x, y, t) = N(y, x, t) for all x; y ∈ X and t > 0, 
(11) N(x, y, t) ◊ N(y, z, s) = N(x, z, t + s) for all x, y, z ∈ X and s, t > 0, 
(12) for all x, y ∈ X, N(x, y, .) : [0, ∞) → [0, 1] is right continuous, 
(13)  = 0 for all x, y ∈ X. 
Then (M, N) is called an intuitionistic fuzzy metric space on X. The functions M(x, y, t) and N(x, y, t) denote the 
degree of nearness and the degree of non-nearness between x and y with respect to t, respectively. 
Remark 2.4 [3] Every fuzzy metric space (X, M, ∗) is an intuitionistic fuzzy metric space of the form (X, M, 1- 
M, ∗,  ◊) such that t-norm ∗ and t-conorm ◊ are associated as x ◊ y = 1-((1-x) ∗ (1-y)) for all x, y ∈ X. 
Remark 2.5 [3] In intuitionistic fuzzy metric space (X, M, N, ∗, ◊), M(x, y, ∗) is non-decreasing and N(x,  y, ◊) 
is non-increasing for all x, y ∈ X. 
Definition 2.6[3] Let (X, M, N, ∗, ◊) be an intuitionistic fuzzy metric space. Then a sequence {xn} in X is said to 
be Cauchy sequence if, for all t > 0 and p > 0, 

(i)  = 1 and  = 0  

  

 (ii)       a sequence {xn}  in X is said to be convergent to a point x ∈ X if, for all t > 0, 

 = 1 and  = 0  
Definition 2.7 [3] An intuitionistic fuzzy metric space (X, M, N, ∗, ◊) is said to be complete if and only if every 
Cauchy sequence in X is convergent. 
 

Example 2.8 [3] Let X and let * be the continuous t-norm and ◊ be the continuous t-conorm 

defined by a * b = ab and a ◊ b = min{1, a + b}, respectively, for all a, b ∈ [0, 1]. For each t ∈ (0, ∞) and x, y ∈ 
X, define (M, N) by 

M(x, y, t) =  

Clearly, (X, M, N, *, ◊) is complete intuitionistic fuzzy metric space. 
Definition 2.9 [15] A pair of self mappings (T, S) of an intuitionistic fuzzy metric space (X, M, N, ∗, ◊)  is said 
to satisfy the property (E.A) if there exist a sequence {xn} in X such that 

= z in X 
Example 2.10 Let X = [0, ∞). Consider (X, M, N, ∗, ◊)  be an intuitionistic fuzzy metric space as in example 2.8. 
Define T, S: X ∈ X by Tx =   and Sx =   for all x ∈X. Clearly, for sequence {xn} = {1/n}. T and S satisfy 

property (E.A). 
Definition 2.11 [1] Two pairs (A, S) and (B, T) of self mappings of an intuitionistic fuzzy metric space (X, M, 
N, ∗, ◊) are said to satisfy the common (E.A) property if there exist two sequences {xn}    and {yn}  in X such 
that 

= z 
for some z in X. 
Example 2.12 Let X = [-1, 1]. Consider (X, M, N,∗,◊) be an intuitionistic fuzzy metric space as in example 2.8. 
Define self mappings A, B, S and T on X as Ax = x/3, Bx=-x/3, Sx = x, and Tx = -x for all x ∈ X. Then with 
sequences {xn} = {1/n} and {yn} = {-1/n}. in X, one can easily  verify that 
  = 0 
Therefore, pairs (A, S) and (B, T) satisfies the common E.A. property. 
Definition 2.13 [7] A pair of self mappings (T, S) of an intuitionistic fuzzy metric space (X, M, N, ∗, ◊) is said to 
be weakly compatible if they commute at coincidence points, i.e., if Tu = Su for some u ∈ X, then TSu = STu. 
3. Main Results 
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Implicit relations play important role in establishing of common fixed point results. 
Let M6 be the set of all continuous functions ϕ : [0, 1]6 → R and  ψ : [0, 1]6 →R satisfying the following 
conditions: 
(A) ϕ(u, 1, u, 1, 1, u) < 0 for all u ∈ (0, 1), 
(B) ϕ(u, 1, 1, u, u, 1) < 0 for all u ∈ (0, 1), 
(C) ϕ(u, u, 1, 1, u, u) < 0 for all u ∈ (0, 1), 
(D) ψ (v, 0, v, 0, 0, v) > 0 for all v ∈ (0, 1), 
(E) ψ (v, 0, 0, v, v, 0) > 0 for all v ∈ (0, 1), 
(F) ψ (v, v, 0, 0, v, v) > 0 for all v ∈ (0, 1).  
      if for some constant q ∈ (0,1) we have 
              (G)  ϕ(u(qt), 1, 1,u(t),u(t), 1) ≥ 0 for all u ∈ (0, 1), 
       Or   
         ψ (v(qt), 0, 0, v(t),v(t), 0) ≤ 0 for all v ∈ (0, 1), 
            then u(qt) ≥ u(t) and v(qt) ≤ v(t) 
(H)   ϕ(u(qt), 1, u(t),1,1,u(t)) ≥ 0 for all u ∈ (0,1) 
          Or  
           ψ (v(qt), 0, v(t),0,0,v(t)) ≤ 0 for all v ∈ (0, 1), 
            then u(qt) ≥ u(t) and v(qt) ≤ v(t) 
(I)      ϕ(u(qt), u(t),1,1,u(t),u(t)) ≥ 0 for all u ∈ (0,1) 
          Or  
           ψ (v(qt), v(t),0,0,v(t),v(t)) ≤ 0 for all v ∈ (0, 1), 
            then u(qt) ≥ u(t) and v(qt) ≤ v(t) 
Theorem 3.1. Let J, K, P, R, S and T be self mappings of an intuitionistic fuzzy metric space (X, M, N, ∗, ◊)  
satisfying  the following conditions 
(i)       J(X) ⊂ ST(X),    K(X) ⊂ PR(X) ; 
(ii)     (J, PR) and (K, ST) satisfies the E. A. property 
(iii)      for any x, y ∈ X, q∈(0,1), ϕ and ψ in M6 and for all t > 0. 
ϕ(M(Jx, Ky, qt), M(PRx, STy, t), M(PRx, Jx, t), M(STy, Ky, t), M(PRx, Ky, t), M(STy, Jx, t)) ≥ 0  
ψ(N (Jx, Ky, qt), N (PRx, STy, t),N (PRx, Jx, t), N(STy, Ky, t), N(PRx, Ky, t),N(STy, Jx, t)) ≤ 0                                        
 Then the pairs (J, PR) and (K, ST) share the common (E. A.) property. 
Proof: Suppose that the pair (J, PR) satisfies E.A. property, then there exist a sequence {xn} in X such that 

= z for some z in X. Since J(X) ⊂ ST(X), hence for each {xn}, there exist {yn} in X 
such that Jxn = Styn. Therefore, z. Now, we claim that 

z.  Suppose that z, then applying inequality (iii), we obtain 
            ϕ(M(Jxn, Kyn,qt),M(PRxn,Styn, t),M(PRxn, Jxn, t),M(Styn, Kyn, t),M(PRxn, Kyn,t),M(Styn, Jxn, t))≥ 0        
                                                                                                                                                                                                                                                
            ψ(N (Jxn, Kyn, qt),N(PRxn,Styn, t),N(PRxn, Jxn, t),N(Styn, Kyn, t), N(PRxn, Kyn, t), N(Styn, Jxn,t))≤0           
                              
which on making n → ∞ reduces to 
ϕ(M(z, ,qt),M(z, z, t),M(z, z,t),M(z, ,t),M(z, , t),M(z, z,t))≥ 0 
               ψ(N(z, ,qt),N(z, z,t),N(z, z, t),N(z, ,t),N(z, ,t),N(z,z, t))≤ 0                                        
ϕ(M(z, ,qt),1, 1, M(z, , t), M(z, , t),1) ≥ 0 
ψ(N(z, ,qt),0, 0, N(z, , t), N(z, , t),0 ) ≤ 0 
Using  (G) 
ϕ(M(z, ,t),1, 1, M(z, , t), M(z, , t),1) ≥ 0 
ψ(N(z, ,t),0, 0, N(z, , t), N(z, , t),0 ) ≤ 0 
which is a contradiction to (B) and (E), and therefore, z. Hence, the pairs (J, PR) and (K, ST) 
share the common (E.A.) property. 
Theorem 3.2: Let J, K, P, R, S and T be self mappings of an intuitionistic fuzzy metric space (X, M, N, ∗, ◊)  
satisfying  the  conditions (2) and (4) the pair (J, PR) and (K, ST) share the common (E.A.) property, (5) PR(X) 
and ST(X) are closed subsets of X. 
Then the pairs (J, PR) and (K, ST) have a point of coincidence each. Moreover, J, K, P, R, S and T have a unique 
common fixed point provided both the pairs (J, PR) and (K, ST) are weakly compatible. 
Proof: In view of (4), there exist two sequences {xn} and {yn} in X such that 
            =z for some z ∈ X.  
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Since PR(X) is a closed subset of X, therefore, there exists a point u in X such that        z = PRu. We claim that 
Ju = z. If Ju ≠ z, then by (3), take x = u, y = yn, 
    ϕ(M(Ju, Kyn,qt),M(PRu, Styn, t),M(PRu, Ju, t),M(Styn, Kyn, t),M(PRu, Kyn, t),M(Styn, Ju,  t))≥ 0 
    ψ(N(Ju, Kyn, qt), N(PRu, Styn, t), N(PRu, Ju, t), N(Styn, Kyn, t), N(PRu, Kyn, t),N(Styn, Ju, t))≤ 0    
When n→∞ 
ϕ(M (Ju, z, qt), M (z, z, t), M (z, Ju, t), M (z, z, t), M (z, z, t), M (z, Ju, t))≥ 0 
ψ(N (Ju, z, qt), N (z, z, t), N (z, Ju, t), N (z, z, t), N (z, z, t), N (z, Ju, t))≤ 0                                        
ϕ(M (Ju, z, qt), 1, M (Ju, z, t), 1, 1, M (Ju, z, t)) ≥ 0 
ψ(N (Ju, z, qt), 0, N (Ju, z, t), 0, 0, N (Ju, z, t))≤ 0     
Using   (H)   
ϕ(M (Ju, z, t), 1, M (Ju, z, t), 1, 1, M (Ju, z, t)) ≥ 0 
ψ(N (Ju, z, t), 0, N (Ju, z, t), 0, 0, N (Ju, z, t))≤ 0                     
which is a contradiction to (A) and (D). Therefore, Ju = z = PRu which shows that u is a coincidence point of the 
pair (J, PR). 
Since ST(X) is also a closed subset of X, therefore z in ST(X) and hence there exists v ∈ X such 
that STv = z = Ju = PRu. Now, we show that Kv = z. 
If Kv ≠z, then by using inequality (3), take x = u, y = v, we have 
      ϕ(M(Ju, Kv, qt),M(PRu, STv, t),M(PRu, Ju, t), M(STv, Kv, t), M(PRu, Kv, t), M(STv, Ju,  t))≥ 0 
      ϕ(M (z, Kv, qt), 1, 1, M (z, Kv, t), M (z, Kv, t), 1)≥ 0 
and 
      ψ(N (Ju, Kv, qt), N (PRu, STv, t), N(PRu, Ju, t), N(STv, Kv, t),  N(PRu, Kv, t),N(STv, Ju, t))≤ 0 
      ψ(N (z, Kv, qt), 0, 0, N (z, Kv, t), N (z, Kv, t), 0)≤ 0 
Using (G) 
                  ϕ(M (z, Kv, t), 1, 1, M (z, Kv, t), M (z, Kv, t), 1)≥ 0 
                   ψ(N (z, Kv,t), 0, 0, N (z, Kv, t), N (z, Kv, t), 0)≤ 0 
which is a contradiction to (B) and (E). Therefore, Kv = z = STv which shows that v is a coincidence point of the 
pair (K, ST). 
Since the pairs (J, PR) and (K, ST) are weakly compatible and Ju = PRu, Kv = STv, therefore, Jz = JPRu = PRJu 
= PRz, Kz = KSTv = STKv = STz. 
If Az ≠ z, then by using inequality (3), we have 
ϕ(M(Jz, Kv, qt),M(PRz, STv, t),M(PRz, Jz, t),M(STv, Kv, t), M(PRz, Kv, t),M(STv, Jz,  t))≥ 0 
ϕ(M (Jz, z,qt), M (Jz, z, t), M (Jz, Jz, t), M (Kv, Kv, t), M (Jz, z, t), M (z, Jz, t))≥ 0 
ϕ(M (Jz, z, qt), M (Jz, z, t), 1, 1, M (Jz, z, t), M (Jz, z, t))≥ 0 
and 
ψ(N(Jz, Kv,qt),N(PRz, STv, t), N(PRz, Jz, t), N(STv, Kv, t), N(PRz, Kv, t),N(STv, Jz, t))≤ 0 
ψ(N (Jz, z, qt), N (Jz, z, t), N (Jz, Jz, t), N (Kv, Kv, t), N (Jz, z, t), N (z, Jz, t))≤ 0 
ψ(N (Jz, z, qt), N (Jz, z, t), 0, 0, N (Jz, z, t), N (Jz, z, t)) ≤ 0 
Using (I) 
ϕ(M (Jz, z, t), M (Jz, z, t), 1, 1, M (Jz, z, t), M (Jz, z, t)) ≥ 0 
 ψ(N (Jz, z, t), N (Jz, z, t), 0, 0, N (Jz, z, t), N (Jz, z, t)) ≤ 0 
which is a contradiction to (C) and (F). Therefore, Jz = z = PRz. 
Similarly, one can prove that Kz = STz = z. Hence, Jz = Kz = PRz = STz, and z is common fixed point of J, K, 
P, R, S and T. 
Uniqueness: Let z and w be two common fixed points of J, K, P, R, S and T. If z ≠w, then by using inequality 
(3), we have 
ϕ(M(Jz, Kw, qt), M(PRz, STw, t), M(PRz, Jz, t), M(STw, Kw, t), M(PRz, Kw, t), M(STw, Jz, t))≥ 0 
ϕ(M (z, w, qt), M (z, w, t), M (z, z, t), M (w, w, t), M (z, w, t), M (w, z, t))≥ 0 
ϕ(M (z, w, qt), M (z, w, t), 1, 1, M (z, w, t), M (z, w, t))≥ 0 
and 
               ψ(N (Jz, Kw, qt), N(PRz, STw, t), N(PRz, Jz, t), N(STw, Kw, t), N(PRz, Kw, t), N(STw, Jz, t))≤ 0 
ψ(N (z, w, qt), N (z, w, t), N (z, z, t), N (w, w, t), N (z, w, t), N (w, z, t))≤ 0 
ψ(N (z, w, qt), N (z, w, t), 0, 0, N (z, w, t), N (z, w, t))≤ 0 
Using (I) 
ϕ(M (z, w, t), M (z, w, t), 1, 1, M (z, w, t), M (z, w, t))≥ 0 
ψ(N (z, w, t), N (z, w, t), 0, 0, N (z, w, t), N (z, w, t))≤ 0 
which is a contradiction to (C) and (F). Therefore, z = w. 
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