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Abstract 

The cohomology of 𝑀  with compact supports is the graded algebra Ω(𝐺𝑐(𝑀), 𝛿)  and is given by 

Ω𝑐(𝑀) = ∑ Ω𝑐
𝑘(𝑀).𝑛

𝑘=0  The bilinear map Ω(𝑀) × Ω𝑐(𝑀) → Ω𝑐(𝑀)  is induced by 𝐺(𝑀) × 𝐺𝑐(𝑀) → Ω𝑐(𝑀) 

and makes Ω𝑐(𝑀)  into a left graded Ω(𝑀) -module. Ω(𝑆𝑛) ,  which is the cohomology of 𝑆𝑛 , is 

determined by Ω0(𝑆𝑛) ≅ Ω𝑛(𝑆𝑛) ≅ ℝ and Ω𝑘(𝑆𝑛) = 0 for 𝑛 ≥ 1. Also, we determine the cohomology of 

ℝ𝑛 with compact supports. Finally, it is shown that the map 𝑖𝑀: Ω(𝑀) → Ω𝑐(𝑀)
∗ is a linear isomorphism. 

Keywords: Compact manifold, cohomology, graded algebra, isomorphism, bilinear map. 

 

1. Introduction 

Let 𝑀 be an n-manifold, then the graded algebra of differential forms on 𝑀 i s  d e f in ed  a s  𝐺(𝑀) =

∑ 𝐺𝑘𝑛
𝑘=0 (𝑀) an d  𝐺(𝑀) is converted into a graded differential algebra by the exterior derivative  

(Greub et al., 1972). The differential forms Φ satisfying the condition 𝛿Φ = 0 construct cocycles in this 

differential algebra and this differential form is closed. The closed forms are graded subalgebra 𝑍(𝑀) 

of 𝐺(𝑀) as 𝛿 is an antiderivation (Bott and Tu, 1982). The subset 𝐻(𝑀) = 𝛿𝐺(𝑀) is a graded ideal in 

𝑍(𝑀).  The differential forms in 𝐺(𝑀)  are called coboundaries and the corresponding cohomology 

algebra is defined by Ω(𝑀) = 𝑍(𝑀)/𝐻(𝑀) and this cohomology algebra is called the  de  Rham 

cohomology algebra of  𝑀 ( Iversen, 1986) .  

The cohomology of 𝑀  with compact supports is the graded algebra Ω(𝐺𝑐(𝑀), 𝛿) (Grivaux, 2010). It is 

denoted by Ω𝑐(𝑀) and is defined by 

 

Ω𝑐(𝑀) =∑Ω𝑐
𝑘(𝑀)

𝑛

𝑘=0

,   𝑛 = dim𝑀. 

 

Multiplication in 𝐺(𝑀)  is restricted to a real bilinear map as 𝐺𝑐(𝑀)  is an ideal (Kobayashi and 

Nomizu, 1963). 𝐺𝑐(𝑀)  is confined  into a left graded 𝐺(𝑀)-module by this multiplication which is 

given by  

𝐺(𝑀) × 𝐺𝑐(𝑀) → Ω𝑐(𝑀). 

The bilinear map Ω(𝑀) × Ω𝑐(𝑀) → Ω𝑐(𝑀)  is induced by the above map and makes Ω𝑐(𝑀)  into a left 

graded Ω(𝑀)-module (Sternberg, 1964). This map can be written as 

(𝜆, 𝜇) ↦ 𝛼 ∗ 𝛽, 𝜆 ∈ Ω(𝑀), 𝜇 ∈ Ω𝑐(𝑀). 

In the same way, Ω𝑐(𝑀) can be converted into a right graded Ω(𝑀)-module and we can write 𝜇 ∗ 𝜆, 𝜇 ∈
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Ω𝑐(𝑀), 𝜆 ∈ Ω(𝑀). Also, the algebra homomorphism  

(𝜏𝑀)#: Ω𝑐(𝑀) → Ω(𝑀) 

is induced by the inclusion map 𝜏𝑀: 𝐺𝑐(𝑀) → 𝐺(𝑀) . The above module structures can be converted to 

ordinary multiplication by this homomorphism (Haller and Rybicki, 1999).  

 

2. Preliminaries and Auxiliary Results 

 

Let  Ω: ℝ × 𝑀 → 𝑁  be a  smooth map. Two smooth maps 𝑓, 𝑔:𝑀 → 𝑁  are said to be homotopic 

(Eilenberg and Maclane, 1950) if Ω(0, 𝑥) = 𝑓(𝑥) and Ω(1, 𝑥) = 𝑔(𝑥). We can define a linear map ℎ: 𝐺(𝑁) →

𝐺(𝑀) homogeneous of degree −1 for such a homotopy Ω by 

 

ℎ = 𝐼0
1 ∘ 𝑖(𝑇) ∘ Ω∗. 

 

Consider the  spaces Ω𝑘(𝑀) having finite dimension , then the kth Betti number of 𝑀 is defined by 

𝑏𝑘 = dimΩ
𝑘(𝑀) and the Poincaré polynomial of 𝑀 is defined by   

𝑝𝑀(𝑡) = ∑ 𝑏𝑘
𝑛
𝑘=0 𝑡𝑘.  

 

If 𝑀 consists of a single point, then Ω𝑘(𝑀) = 0 (𝑘 ≥ 1) and Ω0(𝑀) = ℝ. 

The Euler-Poincaré characteristic of 𝑀 is defined by the alternating sum  ζ𝑀 = ∑ (−1)𝑘𝑏𝑘
𝑛
𝑘=0 = 𝑝𝑀(−1). 

Now, we discuss the axioms for de Rham cohomology. The axioms for de Rham cohomology are given 

below: 

 

(a)   Ω(point)= ℝ  

(b)  If 𝑀 is the disjoint union of open submanifolds 𝑀𝛼, then  

 

Ω(𝑀) ≅ ∏ Ω(𝛼 𝑀𝛼) (disjoint union) 

 

(c)  If 𝑓~𝑔:𝑀 → 𝑁, then 𝑓# = 𝑔# (homotopy axiom) 

(d)  If 𝑀 = 𝑈 ∪ 𝑉 (𝑈, 𝑉 are open), there is an exact triangle (Mayer-Vietoris) 

 

 

 

      

 

 

                                               

Consider a manifold 𝑀 which is the disjoint union 𝑀 = ⋃ 𝑀𝜈𝜈 of open submanifolds 𝑀𝜈 . A 
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homomorphism ℎ𝜈
∗ : 𝐺(𝑀) → 𝐺(𝑀𝜈)  is induced by the inclusion map ℎ𝜈

∗ : 𝑀𝜈 → 𝑀 . We obtain a 

homomorphism ℎ∗: 𝐺(𝑀) → ∏ 𝐺(𝑀𝜈)𝜈  given by (ℎ∗Φ)𝜈 = ℎ𝜈
∗ , where Φ ∈ 𝐺(𝑀) and ∏ 𝐺(𝑀𝜈)𝜈  is the direct 

product of the algebras 𝐺(𝑀𝜈). 

If 𝛿𝜈 denotes the exterior derivative in Ω(𝑀𝜈), then ∏ Ω(𝑀𝜈)𝜈  is  given by the differential  operator 

∏ Ω(𝑀𝜈)𝜈 . As a result, ℎ∗ is an isomorphism of graded differential algebras  Ω(𝑀𝜈) and ℎ∗ induces 

the following isomorphism    

ℎ∗: Ω(𝑀)
      ≅      
→     ∏Ω(𝑀𝜈)

𝜈

 

given by  

(ℎ∗𝛾)𝜈 = ℎ𝜈
∗(𝛾), 𝛾 ∈ Ω(𝑀). 

 

Consider a manifold 𝑀 and two open subsets 𝑋1, 𝑋2 such that 𝑋1 ∪ 𝑋2 = 𝑀. Let us consider the following 

inclusion maps 

 

𝑢1: 𝑋1 ∩ 𝑋2 → 𝑋1,   𝑢2: 𝑋1 ∩ 𝑋2 → 𝑋2 

𝑣1: 𝑋1 → 𝑀,   𝑣2: 𝑋2  →  𝑀.   

which induce a sequence of linear mappings 

0 
              
→      Ω(𝑀)

      𝜆      
→     Ω(𝑋1)  ⊕  Ω(𝑋2)  

     𝜇       
→     Ω(𝑋1 ∩ 𝑋2)

              
→     0 

given by 

𝜆Φ = (𝑣1
∗Φ, 𝑣𝜆

∗Φ),   Φ ∈ Ω(𝑀) 

and 

𝜇(Φ1, Φ2) = 𝑢1
∗Φ1 − 𝑢2

∗Φ2,   Φ𝑖 ∈ Ω(𝑈𝑖),   𝑖 = 1, 2. 

 

Let 𝛿1, 𝛿2, 𝛿12 and 𝛿 be the exterior derivatives in Ω(𝑋1), Ω(𝑋2), Ω(𝑋1 ∩ 𝑋2) and Ω(𝑀) respectively, then 

we have 

 

𝜆 ∘ 𝛿 = (𝛿1⊕𝛿2) ∘ 𝛼  and  𝜇 ∘ (𝛿1⊕ 𝛿2) = 𝛿12 ∘ 𝜇. 

 

Consequently, the following linear maps are induced by 𝜆 and 𝜇: 

 

𝜆#: Ω(𝑀) → Ω(𝑋1) ⊕ Ω(𝑋2),   𝜇#: Ω(𝑋1) ⊕ Ω(𝑋2) → Ω(𝑋1 ∩ 𝑋2). 

 

Lemma 1. The following sequence of linear mappings is exact 

0
              
→    Ω(𝑀)

      𝜆      
→    Ω(𝑋1) ⊕ Ω(𝑋2)

     𝜇       
→    Ω(𝑋1 ∩ 𝑋2)

              
→    0. 

 

Proof. We have to consider the following three cases: 

(a) ker 𝜇 = Im 𝜆 

(b) 𝜆 is injective 

(c) 𝜇 is surjective 
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(a) Since it is obvious 𝜇 ∘ 𝜆 = 0,  so Im 𝜆 ⊂ ker 𝜇. We need only to show that ker 𝜇 ⊂ Im 𝜆. 

 

Let (Φ1, Φ2) ∈ ker 𝜇. If 𝑥 ∈ 𝑋1 ∩ 𝑋2, then Φ1(𝑥) = Φ2(𝑥). Consequently, we can find a differential form Φ ∈

Ω(𝑀) which is given by 

 

Φ(x) = {
Φ1(𝑥), 𝑥 ∈ 𝑋1
Φ2(𝑥), 𝑥 ∈ 𝑋2

. 

 

Since 𝜆Φ = (Φ1, Φ2), so ker 𝜇 ⊂ Im 𝜆. Therefore, ker 𝜇 = Im 𝜆. 

 

(b) Let 𝑥 ∈ 𝑋1 ∪ 𝑋2 = 𝑀. If 𝜆Φ = 0, then Φ(𝑥) = 0 for 𝑥 ∈ 𝑋1 ∪ 𝑋2 = 𝑀. 

 

(c) Consider the covering 𝑋1, 𝑋2of 𝑀. Let 𝑥1, 𝑥2 be subordinate to the covering 𝑋1, 𝑋2. Thus, {𝑥1, 𝑥2} is a 

partition of unity for 𝑀. Then, 𝑐𝑎𝑟𝑟 𝑣1
∗𝑥2, 𝑐𝑎𝑟𝑟 𝑣2

∗𝑥1 ⊂ 𝑋1 ∪ 𝑋2. 

 

For Φ ∈ Ω(𝑋1 ∩ 𝑋2), we define 

 

Φ1 = 𝑣1
∗𝑥2 ⋅ Φ ∈ Ω(𝑋1), Φ2 = 𝑣2

∗𝑥1 ⋅ Φ ∈ Ω(𝑋2). 

 

Consequently, we have Φ = 𝜇(Φ1, −Φ2). 

 

 

Consider a compact oriented n-manifold 𝑀. Then, we have  

Ω𝑐(𝑀) = Ω(𝑀) and 𝑖𝑀 ∶ Ω(𝑀) 
      ≅      
→     Ω(𝑀)∗. 

 

Therefore, the bilinear map 𝒫𝑀
𝑘 ∶  Ω𝑘(𝑀) × Ω𝑛−𝑘(𝑀) → ℝ represents the Poincaré scalar product. 

  

Theorem 1. If 𝑀 is any compact manifold, then the dimension of Ω(𝑀) is finite. 

Proof.  First we assume that the compact manifold 𝑀  is orientable. Then the Poincaré scalar 

product is given by the bilinear map 𝒫𝑀
𝑘 : Ω𝑘(𝑀) × Ω𝑛−𝑘(𝑀) → ℝ  and 𝒫𝑀

𝑘  induces the fol lowing 

two l inear isomorphisms 

Ω𝑘(𝑀)
      ≅      
→     Ω𝑛−𝑘(𝑀)∗ 

and 

Ω𝑛− 𝑘(𝑀)
      ≅      
→     Ω𝑘(𝑀)∗. 

 

Now, from the related results of elementary linear algebra we can observe  that each Ω𝑘(𝑀) has 

finite dimension; hence the theorem is proved in this case. 

Again, we assume that the compact manifold 𝑀  is nonorientable. In this case, the double cover �̃�  is 

orientable and compact. Consequently, we have 

 

dimΩ(𝑀) = dimΩ+(�̃�) ≤ dimΩ(�̃�) < ∞. 
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Thus the dimension of Ω(𝑀) is finite. 

 

Lemma 2 .  ∫ ∶ 
#

𝑀
Ω𝑐
𝑛(𝑀) → ℝ is a linear isomorphism i f  𝑀 i s  a  connected  oriented n-manifold.  

P r o o f .  L e t  Ω(𝑀) be t h e  co h o m o l o g y  of an  o r i en t ed  manifold 𝑀 and Ω𝑐(𝑀) b e  th e  

c o h o m o l o g y  o f  M w i t h  co m p a c t  s u p p o r t .  Then the map  

𝑖𝑀: Ω(𝑀) → Ω𝑐(𝑀)
∗ 

is a linear isomorphism. Also, we have  

dimΩ𝑐
𝑛(𝑀) = dimΩ0(𝑀) = 1. 

Moreover, ∫
𝑀

#
 is surjective. Therefore, ∫ ∶ 

#

𝑀
Ω𝑐
𝑛(𝑀) → ℝ  is a linear isomorphism i f  𝑀  i s  a  connec ted  

oriented n-manifold. 

 

Consider an oriented n-manifold 𝑀 . The linear map ∫ : 𝐺𝑐
𝑛(𝑀) → ℝ

𝑀
 satisfies ∫

𝑀
∘ 𝛿 = 0  and it is 

surjective map. The linear map  ∫ : Ω𝑐
𝑛(𝑀) → ℝ

#

𝑀
 is induced by ∫

𝑀
: 𝐺𝑐

𝑛(𝑀) → ℝ and this map is also surjective. 

Let 𝜆 ∈ Ω𝑘(𝑀) and 𝜇 ∈ Ω𝑐
𝑛−𝑘(𝑀). The Pioncaré scalar product 

𝒫𝑀
𝑘 : Ω𝑘(𝑀) × Ω𝑐

𝑛−𝑘(𝑀) → ℝ 

can be expressed as the following bilinear map 𝒫𝑀
𝑘(𝜆, 𝜇) = ∫ 𝜆 ∗ 𝜇

#

𝑀
. 

 

Lemma 3. Let 𝑀, 𝑁 be two manifolds, then the following diagram commutes. 

 

 

 

                                      

 

 

 

 

 

 

 

 

Proof. If λ ∈ Ω𝑘(𝑁), 𝜇 ∈ Ω𝑐
𝑛−𝑘, ζ ∈ 𝐺𝑘(𝑁), 𝜉 ∈ 𝐺𝑐

𝑛−𝑘(𝑀), then λ and 𝜇 are represented by ζ and 𝜉 respectively. 

Consequently, (𝜓𝑐)#𝜇 ∈ Ω𝑐
𝑛−𝑘(𝑁) is represented by  

 

(𝜓𝑐)∗𝜉  and  𝜓∗(ζ ∧ ((𝜓𝑐)∗𝜉) =  𝜓
∗ζ ∧  𝜉. 

Since the Pioncaré scalar product 𝒫𝑀
𝑘 : Ω𝑘(𝑀) × Ω𝑐

𝑛−𝑘(𝑀) → ℝ is the bilinear map given by  

𝒫𝑀
𝑘(𝜆, 𝜇) = ∫ 𝜆 ∗ 𝜇

#

𝑀
, 
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thus,  𝒫𝑀
𝑘 (𝜓#λ, 𝜇) = ∫ (𝜓#λ) ∗ 𝜇

#

𝑀
 and 𝒫𝑁

𝑘(λ, (𝜓𝑐)#𝜇) = ∫ λ ∗ (𝜓𝑐)#𝜇
#

𝑀
. Hence we have 

𝒫𝑀
𝑘 (𝜓#λ, 𝜇) = ∫ (𝜓#λ) ∗  𝜇

#

𝑀

= ∫
𝑀
𝜓∗ζ ∧  𝜉 =  ∫

𝑁
 ζ ∧  (𝜓𝑐)∗𝜉 = ∫ λ ∗ (𝜓𝑐)#𝜇

#

𝑀

= 𝒫𝑁
𝑘(λ, (𝜓𝑐)#𝜇) 

Since 𝒫𝑀
𝑘(𝜓#λ, 𝜇) = 𝒫𝑁

𝑘(λ, (𝜓𝑐)#𝜇), we can conclude that the diagram commutes. Hence the proposition is 

proved. 

  

3. Main Results 

 

Theorem 2. For 𝑛 ≥1, Ω(𝑆𝑛) is determined by Ω0(𝑆𝑛) ≅ Ω𝑛(𝑆𝑛) ≅ ℝ and Ω𝑘(𝑆𝑛) = 0 (1 ≤ 𝑘 ≤ 𝑛 − 1). 

 

Proof. First we consider an (𝑛 + 1)-dimensional Euclidean space 𝐸𝑛+1. Suppose 𝑆𝑛 is embedded in 

𝐸𝑛+1. We know that 𝑆𝑛 is connected, thus Ω0(𝑆𝑛) = ℝ. Now let 𝑠 ∈ 𝑆𝑛 and ξ ∈ (0, 1) where ξ is fixed. 

Again, we consider open sets 𝑋1, 𝑋2 ⊂ 𝑆
𝑛 defined by 

 

𝑋1 = {𝑥 ∈ 𝑆
𝑛: 〈𝑥, 𝑠〉 > −ξ},   𝑋2 = {𝑥 ∈ 𝑆

𝑛: 〈𝑥, 𝑠〉 < ξ}. 

 

As a result, 𝑆𝑛 = 𝑋1 ∪ 𝑋2 and we have the following exact Mayer-Vietoris sequence 

 

⋯ →  Ω𝑘(𝑆𝑛) → Ω𝑘(𝑋1) ⊕ Ω𝑘(𝑋2) → Ω
𝑘(𝑋1 ∩ 𝑋2) → Ω

𝑘+1(𝑆𝑛) →  ⋯ . 

 

It is clear that 𝑆𝑛−1  is contained in 𝑋1 ∩ 𝑋2 . We observe that 𝑋1  and 𝑋2  are contractible. 

Consequently, the following exact sequence can be considered as the Mayer -Vietoris sequence 

 

      ⋯ →  Ω𝑘(𝑆𝑛)  →  Ω𝑘(point) ⊕ Ω𝑘(point) →  Ω𝑘(𝑆𝑛−1)  →  Ω𝑘+1(𝑆𝑛)  →  ⋯ . 

 

The above sequence can be split into the following two sequences  

 

           0 →  Ω0(𝑆𝑛)  →  Ω0(point) ⊕ Ω0(point)  →  Ω0(𝑆𝑛−1)  →  Ω1(𝑆𝑛)  →  0 

and 

                    0
             
→   Ω𝑘(𝑆𝑛−1)

      ≅      
→    Ω𝑘+1(𝑆𝑛)

             
→   0,          𝑘 ≥ 1.                 

 

These sequences are exact and from the first sequence we have  

 

0 = dimΩ1(𝑆𝑛) − dimΩ0(𝑆𝑛−1) +  2 dimΩ0(point) − dimΩ0(𝑆𝑛). 

 

For 𝑛 ≥ 2, we observe that 𝑆𝑛−1 is connected and 𝑆0 consists of two points. Thus we can conclude 

from the above equation 

 

                                       Ω1(𝑆𝑛) ≅ {
ℝ, 𝑛 = 1 
0, 𝑛 > 1

. 

 

Since 0
             
→   Ω𝑘(𝑆𝑛−1)

      ≅      
→    Ω𝑘+1(𝑆𝑛)

             
→   0 for 𝑘 ≥ 1, we have  

 

Ω𝑘(𝑆𝑛) ≅ Ω1(𝑆𝑛−𝑘+1) (1 ≤ 𝑘 ≤ 𝑛). 

 

Therefore, Ω0(𝑆𝑛) ≅ Ω𝑛(𝑆𝑛) ≅ and Ω𝑘(𝑆𝑛) = 0. Hence, the proposition is proved.  
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Corollary 1. Consider a connected n-manifold 𝑀 . Then Ω𝑛(𝑀) ≅ ℝ  when 𝑀  is compact and 

orientable. Otherwise, Ω𝑛(𝑀) = 0. 

Proof.  Fir s t  we assume that  𝑀 is  compact .  Then,  there are two cases :   

( i )  𝑀 is  or ientab le  

( i i )  𝑀 is nonorientable.   

I f  we consider  𝑀 to  be or ientab le,  then from the consequence of  Lemma 2 we can deduce that 

Ω𝑛(𝑀) ≅ ℝ. If 𝑀 is nonorientable, then Ω𝑛(𝑀) = 0. 

Next we assume that 𝑀 is not compact. Then,  there are again two cases:   

( i )  𝑀 is  or ientab le  

( i i )  𝑀 is nonorientable.   

 

If the manifold 𝑀 is orientable, then we have Ω𝑛(𝑀) ≅ Ω𝑐
0(𝑀)∗ = 0. 

If the manifold 𝑀  is nonorientable, then the double cover �̃�  must be orientable, connected and 

noncompact. Consequently, we have 

Ω𝑛(𝑀) ≅ Ω+
𝑛(�̃�) ⊂ Ω𝑛(�̃�) = 0. 

Thus, Ω𝑛(𝑀) ≅ ℝ when 𝑀 is compact and orientable, otherwise, Ω𝑛(𝑀) = 0. 

 

Corollary 2.Ω𝑐
𝑘(ℝ𝑛) = {

0 when 𝑘 < 𝑛
ℝ when 𝑘 = 𝑛

 gives the cohomology of ℝ𝑛with compact supports.  

 

Proof.  The case 𝑛 = 0 is trivial. Assume that 𝑆𝑛 is the one-point compactification of ℝ𝑛 for 𝑛 > 0. Let 

𝑠 ∈ 𝑆𝑛 be the compactifying point, thus we can write ℝ𝑛 = 𝑆𝑛 − {𝑠}.  

 

The differential forms on 𝑆𝑛 are zero in a neighbourhood of 𝑠 and the ideal of differential forms on 𝑆𝑛 

is denoted by 𝜏𝑠.It is clear that 𝜏𝑠 = 𝐺𝑐(ℝ
𝑛). Consequently, the following sequence is exact  

 

0 → 𝜏𝑠 → 𝐺(𝑆
𝑛) → 𝐺𝑠(𝑆

𝑛) → 0. 

 

In cohomology, we can derive a long exact sequence from the above short exact sequence. As 

Ω(𝐺𝑏(𝑆
𝑛)) = Ω(point), we can split this long sequence into the following two exact sequences 

 

0 → Ω𝑐
0(ℝ𝑛) → Ω0(𝑆𝑛) → ℝ → Ω𝑐

1(ℝ𝑛) → Ω1(𝑆𝑛) → 0 

and 

0
             
→   Ω𝑐

𝑘(ℝ𝑛)
      ≅      
→    Ω𝑘(𝑆𝑛)

             
→   0, 𝑘 ≥ 2. 

 

As Ω0(𝑆𝑛) = ℝ and Ω𝑐
0(ℝ𝑛) = 0, thus the following exact sequence can be derived from the first 

sequence 

0
              
→    Ω𝑐

1(ℝ𝑛)
      ≅      
→    Ω1(𝑆𝑛)

             
→   0. 
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Hence Ω𝑐
𝑘(ℝ𝑛) = {

0 when 𝑘 < 𝑛
ℝ when 𝑘 = 𝑛

 gives the cohomology of ℝ𝑛with compact supports.  

 

T h e o r e m  3 .  Le t  Ω(𝑀)  be t h e  co h o m o lo g y  of a n  o r i e n t ed  manifold 𝑀  and Ω𝑐(𝑀)  b e  t h e  

c o h o m o l o g y  o f  M  w i t h  c o mp a c t  s u p p o r t .  Then the map 𝑖𝑀: Ω(𝑀) → Ω𝑐(𝑀)
∗  is a linear 

isomorphism. 

Proof. To prove the theorem, we have to consider the following three cases:  

(i) 𝑀 = ℝ𝑛 

(ii) 𝑀 is an open subset of ℝ𝑛 

(iii) 𝑀 is arbitrary  

( i )  We have to  show tha t  the map 𝑖: Ω0(ℝ𝑛) → Ω𝑐
𝑘(ℝ𝑛)∗i s  a  l inear  i somorphism to prove 𝑀 =

ℝ𝑛 s ince Ω𝑘(ℝ𝑛) and  Ω𝑐
𝑘(ℝ𝑛) a re  g iven  by  

Ω𝑘(ℝ𝑛) = {
ℝ,   𝑘 = 0
0,   𝑘 ≠ 0

      and      Ω𝑐
𝑘(ℝ𝑛) = {

ℝ,   𝑘 = 𝑛
0,   𝑘 ≠ 𝑛

 

Also, in this case it is sufficient to show that 𝑖 ≠ 0 as we have  

dimΩ0(ℝ𝑛) → dimΩ𝑐
𝑘(ℝ𝑛)∗. 

 

Assume that 𝜑 ∈ 𝑆(ℝ𝑛) is a nonnegative function and 𝜑 is not identically zero. Consider a positive 

determinant function Δ in ℝ𝑛.  

Now, ∫
ℝ𝑛
𝜑 ∙ Δ = ∫

ℝ𝑛
 𝜑(𝑥) 𝑑𝑥1  ⋯  𝑑𝑥𝑛 > 0 for a suitable basis of ℝ𝑛.  

Consequently, if 𝜇 is a non-zero element in Ω𝑐
𝑝(ℝ𝑛),  𝜇 is represented by 𝑓 ∙ Δ. 

From the definitions we have〈𝑖(1), 𝜇〉 = ∫
ℝ𝑛
1 ∧ (𝜑 ∙ Δ) ==  ∫

ℝ𝑛
 𝜑 ∙ Δ ≠ 0.  

Therefore, 〈𝑖(1), 𝜇〉 ≠ 0 implies that 𝑖(1) ≠ 0 and so 𝑖 ≠ 0. 

 

(ii) Assume that {𝑏1, ⋯ , 𝑏𝑛} is a basis of ℝ𝑛. Then, for 𝑣 ∈ ℝ𝑛,  we have 𝑣 = ∑ 𝑣𝑘𝑏𝑘
𝑛
𝑘=1 . 

 

Then an i-basis for the topology of ℝ𝑛 can  be  represen ted  by the open subsets of the form  

 

𝐵 = {𝑥 ∈ ℝ𝑛: 𝑎𝑘 < 𝑥𝑘 < 𝑏𝑘,   𝑘 = 1,⋯ , 𝑛}. 

 

By the definition of diffeomorphism, 𝐵 is diffeomorphic to ℝ𝑛.  Therefore, with the help of Case (i) and 

the result of Lemma 3 we conclude that 𝑖𝐵 is an isomorphism for each such 𝐵. As a result, for every 

open subset 𝑀 of ℝ𝑛 we have 𝑖𝑀: Ω(𝑀) → Ω𝑐(𝑀)
∗ which is an isomorphism. 

 

( i ii)  Let us assume that   every open subset of 𝑀 is diffeomorphic to open subset of ℝ𝑛 and  ℬ is 

the collect ion of such open subsets of 𝑀. Consequently, it is obvious that for the topology of 𝑀 

this collection of open subsets ℬ is an i-basis. With the help of the results derived in C a s e  ( i i )  and 

Lemma 3, w e  c a n  c o n c l u d e  t h a t  𝑖𝐵
 i s  a n  i s o m o r p h i s m  f o r  e v e r y  𝐵 ∈ ℬ . T h e r e f o r e ,  for 
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every open subset 𝑋 ⊂ 𝑀  we can find an 𝑖𝑋  which is an isomorphism. Thus, the map  𝑖𝑀: Ω(𝑀)
      ≅      
→    Ω𝑐(𝑀)

∗ is a linear isomorphism. 
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