Mathematical Theory and Modeling ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) DOI: 10.7176/MTM Vol.9, No.9, 2019

ORIENTED MANIFOLDS WITH COMPACT SUPPORT AND COHOMOLOGY ALGEBRA

Md. Shafiul Alam Department of Mathematics, University of Barishal Barishal-8200, Bangladesh Tel: +8801819357123 E-mail: shafiulmt@gmail.com

Abstract

The cohomology of M with compact supports is the graded algebra $\Omega(G_c(M), \delta)$ and is given by $\Omega_c(M) = \sum_{k=0}^n \Omega_c^k(M)$. The bilinear map $\Omega(M) \times \Omega_c(M) \to \Omega_c(M)$ is induced by $G(M) \times G_c(M) \to \Omega_c(M)$ and makes $\Omega_c(M)$ into a left graded $\Omega(M)$ -module. $\Omega(S^n)$, which is the cohomology of S^n , is determined by $\Omega^0(S^n) \cong \Omega^n(S^n) \cong \mathbb{R}$ and $\Omega^k(S^n) = 0$ for $n \ge 1$. Also, we determine the cohomology of \mathbb{R}^n with compact supports. Finally, it is shown that the map $i_M: \Omega(M) \to \Omega_c(M)^*$ is a linear isomorphism.

Keywords: Compact manifold, cohomology, graded algebra, isomorphism, bilinear map.

1. Introduction

Let *M* be an *n*-manifold, then the graded algebra of differential forms on *M* is defined as $G(M) = \sum_{k=0}^{n} G^{k}(M)$ and G(M) is converted into a graded differential algebra by the exterior derivative (Greub et al., 1972). The differential forms Φ satisfying the condition $\delta \Phi = 0$ construct cocycles in this differential algebra and this differential form is closed. The closed forms are graded subalgebra Z(M) of G(M) as δ is an antiderivation (Bott and Tu, 1982). The subset $H(M) = \delta G(M)$ is a graded ideal in Z(M). The differential forms in G(M) are called coboundaries and the corresponding cohomology algebra is defined by $\Omega(M) = Z(M)/H(M)$ and this cohomology algebra is called the de Rham cohomology algebra of M (Iversen, 1986).

The cohomology of M with compact supports is the graded algebra $\Omega(G_c(M), \delta)$ (Grivaux, 2010). It is denoted by $\Omega_c(M)$ and is defined by

$$\Omega_c(M) = \sum_{k=0}^n \Omega_c^k(M), \ n = \dim M.$$

Multiplication in G(M) is restricted to a real bilinear map as $G_c(M)$ is an ideal (Kobayashi and Nomizu, 1963). $G_c(M)$ is confined into a left graded G(M)-module by this multiplication which is given by

$$G(M) \times G_c(M) \to \Omega_c(M).$$

The bilinear map $\Omega(M) \times \Omega_c(M) \to \Omega_c(M)$ is induced by the above map and makes $\Omega_c(M)$ into a left graded $\Omega(M)$ -module (Sternberg, 1964). This map can be written as

$$(\lambda,\mu)\mapsto \alpha\ast\beta,\lambda\in\Omega(M),\mu\in\Omega_c(M).$$

In the same way, $\Omega_c(M)$ can be converted into a right graded $\Omega(M)$ -module and we can write $\mu * \lambda, \mu \in$

 $\Omega_c(M), \lambda \in \Omega(M)$. Also, the algebra homomorphism

 $(\tau_M)_{\#}: \Omega_c(M) \to \Omega(M)$

is induced by the inclusion map $\tau_M: G_c(M) \to G(M)$. The above module structures can be converted to ordinary multiplication by this homomorphism (Haller and Rybicki, 1999).

2. Preliminaries and Auxiliary Results

Let $\Omega: \mathbb{R} \times M \to N$ be a smooth map. Two smooth maps $f, g: M \to N$ are said to be homotopic (Eilenberg and Maclane, 1950) if $\Omega(0, x) = f(x)$ and $\Omega(1, x) = g(x)$. We can define a linear map $h: G(N) \to G(M)$ homogeneous of degree -1 for such a homotopy Ω by

$$h = I_0^1 \circ i(T) \circ \Omega^*.$$

Consider the spaces $\Omega^k(M)$ having finite dimension, then the *k*th Betti number of *M* is defined by $b_k = \dim \Omega^k(M)$ and the Poincaré polynomial of *M* is defined by

$$p_M(t) = \sum_{k=0}^n b_k t^k.$$

If *M* consists of a single point, then $\Omega^k(M) = 0$ ($k \ge 1$) and $\Omega^0(M) = \mathbb{R}$.

The Euler-Poincaré characteristic of *M* is defined by the alternating sum $\zeta_M = \sum_{k=0}^n (-1)^k b_k = p_M(-1)$.

Now, we discuss the axioms for de Rham cohomology. The axioms for de Rham cohomology are given below:

- (a) $\Omega(\text{point}) = \mathbb{R}$
- (b) If M is the disjoint union of open submanifolds M_{α} , then

$$\Omega(M) \cong \prod_{\alpha} \Omega(M_{\alpha})$$
 (disjoint union)

- (c) If $f \sim g: M \to N$, then $f^{\#} = g^{\#}$ (homotopy axiom)
- (d) If $M = U \cup V$ (U, V are open), there is an exact triangle (Mayer-Vietoris)

Consider a manifold M which is the disjoint union $M = \bigcup_{\nu} M_{\nu}$ of open submanifolds M_{ν} . A

homomorphism $h_{\nu}^*: G(M) \to G(M_{\nu})$ is induced by the inclusion map $h_{\nu}^*: M_{\nu} \to M$. We obtain a homomorphism $h^*: G(M) \to \prod_{\nu} G(M_{\nu})$ given by $(h^*\Phi)_{\nu} = h_{\nu}^*$, where $\Phi \in G(M)$ and $\prod_{\nu} G(M_{\nu})$ is the direct product of the algebras $G(M_{\nu})$.

If δ_{ν} denotes the exterior derivative in $\Omega(M_{\nu})$, then $\prod_{\nu} \Omega(M_{\nu})$ is given by the differential operator $\prod_{\nu} \Omega(M_{\nu})$. As a result, h^* is an isomorphism of graded differential algebras $\Omega(M_{\nu})$ and h^* induces the following isomorphism

$$h^*: \Omega(M) \xrightarrow{\cong} \prod_{\nu} \Omega(M_{\nu})$$

given by

$$(h^*\gamma)_{\nu} = h^*_{\nu}(\gamma), \ \gamma \in \Omega(M).$$

Consider a manifold *M* and two open subsets X_1 , X_2 such that $X_1 \cup X_2 = M$. Let us consider the following inclusion maps

$$u_1: X_1 \cap X_2 \to X_1, \quad u_2: X_1 \cap X_2 \to X_2$$
$$v_1: X_1 \to M, \quad v_2: X_2 \to M.$$

which induce a sequence of linear mappings

0

given by

$$\longrightarrow \ \Omega(M) \longrightarrow \Omega(X_1) \ \oplus \ \Omega(X_2) \ \longrightarrow \ \Omega(X_1 \cap X_2) \longrightarrow$$
$$\lambda \Phi = (v_1^* \Phi, v_\lambda^* \Phi), \ \Phi \in \Omega(M)$$

μ

0

λ

and

$$\mu(\Phi_1, \Phi_2) = u_1^* \Phi_1 - u_2^* \Phi_2, \ \Phi_i \in \Omega(U_i), \ i = 1, 2.$$

Let $\delta_1, \delta_2, \delta_{12}$ and δ be the exterior derivatives in $\Omega(X_1), \Omega(X_2), \Omega(X_1 \cap X_2)$ and $\Omega(M)$ respectively, then we have

$$\lambda \circ \delta = (\delta_1 \oplus \delta_2) \circ \alpha$$
 and $\mu \circ (\delta_1 \oplus \delta_2) = \delta_{12} \circ \mu$.

Consequently, the following linear maps are induced by λ and μ :

$$\lambda_{\#}: \Omega(M) \to \Omega(X_{1}) \bigoplus \Omega(X_{2}), \ \mu_{\#}: \Omega(X_{1}) \bigoplus \Omega(X_{2}) \to \Omega(X_{1} \cap X_{2}).$$

Lemma 1. The following sequence of linear mappings is exact

$$0 \longrightarrow \Omega(M) \xrightarrow{\lambda} \Omega(X_1) \bigoplus \Omega(X_2) \xrightarrow{\mu} \Omega(X_1 \cap X_2) \longrightarrow 0.$$

Proof. We have to consider the following three cases:

(a) ker $\mu = \text{Im } \lambda$

(b) λ is injective

(c) μ is surjective

(a) Since it is obvious $\mu \circ \lambda = 0$, so Im $\lambda \subset \ker \mu$. We need only to show that $\ker \mu \subset \operatorname{Im} \lambda$.

Let $(\Phi_1, \Phi_2) \in \ker \mu$. If $x \in X_1 \cap X_2$, then $\Phi_1(x) = \Phi_2(x)$. Consequently, we can find a differential form $\Phi \in \Omega(M)$ which is given by

$$\Phi(\mathbf{x}) = \begin{cases} \Phi_1(x), \ x \in X_1 \\ \Phi_2(x), \ x \in X_2 \end{cases}$$

Since $\lambda \Phi = (\Phi_1, \Phi_2)$, so ker $\mu \subset \text{Im } \lambda$. Therefore, ker $\mu = \text{Im } \lambda$.

(b) Let $x \in X_1 \cup X_2 = M$. If $\lambda \Phi = 0$, then $\Phi(x) = 0$ for $x \in X_1 \cup X_2 = M$.

(c) Consider the covering X_1, X_2 of M. Let x_1, x_2 be subordinate to the covering X_1, X_2 . Thus, $\{x_1, x_2\}$ is a partition of unity for M. Then, carr $v_1^*x_2$, carr $v_2^*x_1 \subset X_1 \cup X_2$.

For $\Phi \in \Omega(X_1 \cap X_2)$, we define

$$\Phi_1 = v_1^* x_2 \cdot \Phi \in \Omega(X_1), \ \Phi_2 = v_2^* x_1 \cdot \Phi \in \Omega(X_2).$$

Consequently, we have $\Phi = \mu(\Phi_1, -\Phi_2)$.

Consider a compact oriented *n*-manifold *M*. Then, we have

 $\Omega_c(M) = \Omega(M) \text{ and } i_M : \Omega(M) \xrightarrow{\cong} \Omega(M)^*.$

Therefore, the bilinear map $\mathcal{P}_M^k : \Omega^k(M) \times \Omega^{n-k}(M) \to \mathbb{R}$ represents the Poincaré scalar product.

Theorem 1. If *M* is any compact manifold, then the dimension of $\Omega(M)$ is finite.

Proof. First we assume that the compact manifold M is orientable. Then the Poincaré scalar product is given by the bilinear map $\mathcal{P}_M^k: \Omega^k(M) \times \Omega^{n-k}(M) \to \mathbb{R}$ and \mathcal{P}_M^k induces the following two linear isomorphisms

$$\Omega^k(M) \xrightarrow{\cong} \Omega^{n-k}(M)^*$$

and

$$\Omega^{n-k}(M) \xrightarrow{\cong} \Omega^k(M)^*.$$

Now, from the related results of elementary linear algebra we can observe that each $\Omega^k(M)$ has finite dimension; hence the theorem is proved in this case.

Again, we assume that the compact manifold M is nonorientable. In this case, the double cover \tilde{M} is orientable and compact. Consequently, we have

$$\dim \Omega(M) = \dim \Omega_+(\widetilde{M}) \le \dim \Omega(\widetilde{M}) < \infty.$$

Thus the dimension of $\Omega(M)$ is finite.

Lemma 2. $\int_M^{\#} : \Omega_c^n(M) \to \mathbb{R}$ is a linear isomorphism if M is a connected oriented n-manifold.

Proof. Let $\Omega(M)$ be the cohomology of an oriented manifold M and $\Omega_c(M)$ be the cohomology of M with compact support. Then the map

$$i_M: \Omega(M) \to \Omega_c(M)^*$$

is a linear isomorphism. Also, we have

$$\dim \Omega^n_c(M) = \dim \Omega^0(M) = 1.$$

Moreover, $\int_M^{\#}$ is surjective. Therefore, $\int_M^{\#} : \Omega_c^n(M) \to \mathbb{R}$ is a linear isomorphism if M is a connected oriented *n*-manifold.

Consider an oriented *n*-manifold *M*. The linear map $\int_M : G_c^n(M) \to \mathbb{R}$ satisfies $\int_M \circ \delta = 0$ and it is surjective map. The linear map $\int_M^{\#}: \Omega_c^n(M) \to \mathbb{R}$ is induced by $\int_M: G_c^n(M) \to \mathbb{R}$ and this map is also surjective. Let $\lambda \in \Omega^k(M)$ and $\mu \in \Omega^{n-k}_c(M)$. The Pioncaré scalar product

$$\mathcal{P}^k_M: \Omega^k(M) \times \Omega^{n-k}_c(M) \to \mathbb{R}$$

can be expressed as the following bilinear map $\mathcal{P}_{M}^{k}(\lambda,\mu) = \int_{M}^{\#} \lambda * \mu$.

Lemma 3. Let *M*, *N* be two manifolds, then the following diagram commutes.

 $\Omega_c(N)^*$

$$(\psi_c)_*\xi$$
 and $\psi^*(\zeta \wedge ((\psi_c)_*\xi) = \psi^*\zeta \wedge \xi.$

Since the Pioncaré scalar product $\mathcal{P}_M^k: \Omega^k(M) \times \Omega_c^{n-k}(M) \to \mathbb{R}$ is the bilinear map given by

 $\Omega(M) \stackrel{\psi^{\#}}{\longleftarrow} \qquad \Omega(N)$ $i_{M} \downarrow \qquad \qquad \downarrow i_{J}$ $\Omega(M)^{*} \stackrel{\bullet}{\longleftarrow} \qquad \Omega(N)$

$$\mathcal{P}_M^k(\lambda,\mu) = \int_M^{\#} \lambda * \mu,$$

thus, $\mathcal{P}_{M}^{k}(\psi^{\#}\lambda,\mu) = \int_{M}^{\#}(\psi^{\#}\lambda) * \mu$ and $\mathcal{P}_{N}^{k}(\lambda,(\psi_{c})_{\#}\mu) = \int_{M}^{\#}\lambda * (\psi_{c})_{\#}\mu$. Hence we have

$$\mathcal{P}_{M}^{k}(\psi^{\sharp}\lambda,\mu) = \int_{M}^{\sharp}(\psi^{\sharp}\lambda) * \mu = \int_{M}\psi^{*}\zeta \wedge \xi = \int_{N}\zeta \wedge (\psi_{c})_{*}\xi = \int_{M}^{\sharp}\lambda * (\psi_{c})_{\#}\mu = \mathcal{P}_{N}^{k}(\lambda,(\psi_{c})_{\#}\mu)$$

Since $\mathcal{P}_{M}^{k}(\psi^{\#}\lambda,\mu) = \mathcal{P}_{N}^{k}(\lambda,(\psi_{c})_{\#}\mu)$, we can conclude that the diagram commutes. Hence the proposition is proved.

3. Main Results

Theorem 2. For $n \ge 1$, $\Omega(S^n)$ is determined by $\Omega^0(S^n) \cong \Omega^n(S^n) \cong \mathbb{R}$ and $\Omega^k(S^n) = 0$ $(1 \le k \le n-1)$.

Proof. First we consider an (n + 1)-dimensional Euclidean space E^{n+1} . Suppose S^n is embedded in E^{n+1} . We know that S^n is connected, thus $\Omega^0(S^n) = \mathbb{R}$. Now let $s \in S^n$ and $\xi \in (0, 1)$ where ξ is fixed. Again, we consider open sets $X_1, X_2 \subset S^n$ defined by

$$X_1 = \{ x \in S^n : \langle x, s \rangle > -\xi \}, \ X_2 = \{ x \in S^n : \langle x, s \rangle < \xi \}.$$

As a result, $S^n = X_1 \cup X_2$ and we have the following exact Mayer-Vietoris sequence

$$\cdots \to \Omega^k(S^n) \to \Omega^k(X_1) \bigoplus \Omega^k(X_2) \to \Omega^k(X_1 \cap X_2) \to \Omega^{k+1}(S^n) \to \cdots$$

It is clear that S^{n-1} is contained in $X_1 \cap X_2$. We observe that X_1 and X_2 are contractible. Consequently, the following exact sequence can be considered as the Mayer-Vietoris sequence

$$\cdots \to \Omega^{k}(S^{n}) \to \Omega^{k}(\text{point}) \oplus \Omega^{k}(\text{point}) \to \Omega^{k}(S^{n-1}) \to \Omega^{k+1}(S^{n}) \to \cdots$$

The above sequence can be split into the following two sequences

$$0 \to \Omega^0(S^n) \to \Omega^0(\text{point}) \oplus \Omega^0(\text{point}) \to \Omega^0(S^{n-1}) \to \Omega^1(S^n) \to 0$$

and

$$0 \longrightarrow \Omega^k(S^{n-1}) \xrightarrow{\cong} \Omega^{k+1}(S^n) \longrightarrow 0, \qquad k \ge 1.$$

These sequences are exact and from the first sequence we have

$$0 = \dim \Omega^1(S^n) - \dim \Omega^0(S^{n-1}) + 2 \dim \Omega^0(\text{point}) - \dim \Omega^0(S^n).$$

For $n \ge 2$, we observe that S^{n-1} is connected and S^0 consists of two points. Thus we can conclude from the above equation

$$\Omega^1(S^n) \cong \begin{cases} \mathbb{R}, & n = 1 \\ 0, & n > 1 \end{cases}.$$

Since $0 \longrightarrow \Omega^k(S^{n-1}) \xrightarrow{\cong} \Omega^{k+1}(S^n) \longrightarrow 0$ for $k \ge 1$, we have

$$\Omega^k(S^n) \cong \Omega^1(S^{n-k+1}) \ (1 \le k \le n).$$

Therefore, $\Omega^0(S^n) \cong \Omega^n(S^n) \cong$ and $\Omega^k(S^n) = 0$. Hence, the proposition is proved.

www.iiste.org

Corollary 1. Consider a connected *n*-manifold *M*. Then $\Omega^n(M) \cong \mathbb{R}$ when *M* is compact and orientable. Otherwise, $\Omega^n(M) = 0$.

Proof. First we assume that M is compact. Then, there are two cases:

- (i) *M* is orientable
- (ii) *M* is nonorientable.

If we consider M to be orientable, then from the consequence of Lemma 2 we can deduce that $\Omega^n(M) \cong \mathbb{R}$. If M is nonorientable, then $\Omega^n(M) = 0$.

Next we assume that M is not compact. Then, there are again two cases:

- (i) *M* is orientable
- (ii) *M* is nonorientable.

If the manifold *M* is orientable, then we have $\Omega^n(M) \cong \Omega^0_c(M)^* = 0$.

If the manifold M is nonorientable, then the double cover \widetilde{M} must be orientable, connected and noncompact. Consequently, we have

$$\Omega^n(M) \cong \Omega^n_+(\widetilde{M}) \subset \Omega^n(\widetilde{M}) = 0.$$

Thus, $\Omega^n(M) \cong \mathbb{R}$ when M is compact and orientable, otherwise, $\Omega^n(M) = 0$.

Corollary 2. $\Omega_c^k(\mathbb{R}^n) = \begin{cases} 0 \text{ when } k < n \\ \mathbb{R} \text{ when } k = n \end{cases}$ gives the cohomology of \mathbb{R}^n with compact supports.

Proof. The case n = 0 is trivial. Assume that S^n is the one-point compactification of \mathbb{R}^n for n > 0. Let $s \in S^n$ be the compactifying point, thus we can write $\mathbb{R}^n = S^n - \{s\}$.

The differential forms on S^n are zero in a neighbourhood of s and the ideal of differential forms on S^n is denoted by τ_s . It is clear that $\tau_s = G_c(\mathbb{R}^n)$. Consequently, the following sequence is exact

$$0 \to \tau_s \to G(S^n) \to G_s(S^n) \to 0.$$

In cohomology, we can derive a long exact sequence from the above short exact sequence. As $\Omega(G_b(S^n)) = \Omega(\text{point})$, we can split this long sequence into the following two exact sequences

$$0 \to \Omega^0_c(\mathbb{R}^n) \to \Omega^0(S^n) \to \mathbb{R} \to \Omega^1_c(\mathbb{R}^n) \to \Omega^1(S^n) \to 0$$

and

$$0 \longrightarrow \Omega_c^k(\mathbb{R}^n) \xrightarrow{\cong} \Omega^k(S^n) \longrightarrow 0, \ k \ge 2.$$

As $\Omega^0(S^n) = \mathbb{R}$ and $\Omega^0_c(\mathbb{R}^n) = 0$, thus the following exact sequence can be derived from the first sequence

$$0 \longrightarrow \Omega^1_c(\mathbb{R}^n) \xrightarrow{\cong} \Omega^1(S^n) \longrightarrow 0$$

Hence $\Omega_c^k(\mathbb{R}^n) = \begin{cases} 0 \text{ when } k < n \\ \mathbb{R} \text{ when } k = n \end{cases}$ gives the cohomology of \mathbb{R}^n with compact supports.

Theorem 3. Let $\Omega(M)$ be the cohomology of an oriented manifold M and $\Omega_c(M)$ be the cohomology of M with compact support. Then the map $i_M: \Omega(M) \to \Omega_c(M)^*$ is a linear isomorphism.

Proof. To prove the theorem, we have to consider the following three cases:

(i)
$$M = \mathbb{R}^n$$

- (ii) M is an open subset of \mathbb{R}^n
- (iii) *M* is arbitrary

(i) We have to show that the map $i: \Omega^0(\mathbb{R}^n) \to \Omega_c^k(\mathbb{R}^n)^*$ is a linear isomorphism to prove $M = \mathbb{R}^n$ since $\Omega^k(\mathbb{R}^n)$ and $\Omega_c^k(\mathbb{R}^n)$ are given by

$$\Omega^{k}(\mathbb{R}^{n}) = \begin{cases} \mathbb{R}, & k = 0\\ 0, & k \neq 0 \end{cases} \text{ and } \Omega^{k}_{c}(\mathbb{R}^{n}) = \begin{cases} \mathbb{R}, & k = n\\ 0, & k \neq n \end{cases}$$

Also, in this case it is sufficient to show that $i \neq 0$ as we have

 $\dim \Omega^0(\mathbb{R}^n) \to \dim \Omega^k_c(\mathbb{R}^n)^*.$

Assume that $\varphi \in S(\mathbb{R}^n)$ is a nonnegative function and φ is not identically zero. Consider a positive determinant function Δ in \mathbb{R}^n .

Now, $\int_{\mathbb{R}^n} \varphi \cdot \Delta = \int_{\mathbb{R}^n} \varphi(x) \, dx^1 \cdots dx^n > 0$ for a suitable basis of \mathbb{R}^n .

Consequently, if μ is a non-zero element in $\Omega_c^p(\mathbb{R}^n)$, μ is represented by $f \cdot \Delta$.

From the definitions we have $\langle i(1), \mu \rangle = \int_{\mathbb{R}^n} 1 \wedge (\varphi \cdot \Delta) = \int_{\mathbb{R}^n} \varphi \cdot \Delta \neq 0.$

Therefore, $\langle i(1), \mu \rangle \neq 0$ implies that $i(1) \neq 0$ and so $i \neq 0$.

(ii) Assume that $\{b_1, \dots, b_n\}$ is a basis of \mathbb{R}^n . Then, for $v \in \mathbb{R}^n$, we have $v = \sum_{k=1}^n v^k b_k$.

Then an *i*-basis for the topology of \mathbb{R}^n can be represented by the open subsets of the form

$$B = \{ x \in \mathbb{R}^n : a^k < x^k < b^k, \ k = 1, \cdots, n \}.$$

By the definition of diffeomorphism, B is diffeomorphic to \mathbb{R}^n . Therefore, with the help of Case (i) and the result of Lemma 3 we conclude that i_B is an isomorphism for each such B. As a result, for every open subset M of \mathbb{R}^n we have $i_M: \Omega(M) \to \Omega_c(M)^*$ which is an isomorphism.

(iii) Let us assume that every open subset of M is diffeomorphic to open subset of \mathbb{R}^n and \mathcal{B} is the collection of such open subsets of M. Consequently, it is obvious that for the topology of M this collection of open subsets \mathcal{B} is an *i*-basis. With the help of the results derived in Case (ii) and Lemma 3, we can conclude that i_B is an isomorphism for every $B \in \mathcal{B}$. Therefore, for

every open subset $X \subset M$ we can find an i_X which is an isomorphism. Thus, the map $i_M: \Omega(M)$ $\xrightarrow{\cong} \Omega_c(M)^*$ is a linear isomorphism.

References

Bishop, R. L. and R. J. Crittenden. 1964. Geometry of Manifolds, Academic Press, New York.

- Bott, R. and L. Tu. 1982. Differential forms in algebraic topology. Graduate Texts in Math. 82, Springer-Verlag, New York-Berlin.
- Dragomir, S. and L. Ornea. 1998. Locally conformal Kähler geometry. Progress in Math. 155, Birkhäuser, Boston, Basel.
- Eilenberg, S. and S. Maclane. 1950. Relations between homology and homotopy groups of spaces II. Ann. of Math., 51, 514-533.
- Grauert, H. and R. Remmert. 1955. Zur Theorie der Modifikationen. I. Stetige und eigentliche Modifikationen komplexer Räume. Math. Ann. 129, 274-296.
- Grauert, H. and R. Remmert. 1984. Coherent analytic sheaves. Grundlehren der Math. Wiss. 265, SpringerVerlag, Berlin.
- Greub, W., S. Halperin and R. Vanstone. 1972. Connections, curvature, and cohomology, vol. I. Academic Press, New York.
- Grivaux, J. 2010. Chern classes in Deligne cohomology for coherent analytic sheaves. Math. Ann. 347, 249-284.
- Haller, S. and T. Rybicki. 1999. On the group of diffeomorphisms preserving a locally conformal symplectic structure. Ann. Glob. Anal. Geom. 17, 475-502.
- Iversen, B. 1986. Cohomology of Sheaves. Universitext, Springer-Verlag, Berlin.
- Kobayashi, S. and K. Nomizu. 1963. Foundations of Differential Geometry, Wiley, New York, 203-229.
- Milnor J. 1956. On manifolds homeomorphic to the 7-sphere. Ann. of Math. 64, 399–405.
- Olum, P. 1953. Mappings of Manifolds and the Notion of Degree. The Annals of Mathematics, 58(3), 458-480.
- Short, D. R. and J. W. Smith. 1970. A Vietoris-Begle theorem for submersions. Indiana Univ. Math. J. 20, 327-336.
- Sternberg S. 1964. Lectures on Differential Geometry. Prentice-Hall Mathematics Series.
- Vaisman, I. 1980. Remarkable operators and commutation formulas on locally conformal Kähler manifolds. Compos. Math. 40(3), 287-299.
- Whitney H. 1936. Differentiable manifolds. Ann. of Math. 37, 645-680.