ORIENTED MANIFOLDS WITH COMPACT SUPPORT AND COHOMOLOGY ALGEBRA

Md. Shafiul Alam
Department of Mathematics, University of Barishal
Barishal-8200, Bangladesh
Tel: +8801819357123 E-mail: shafiulmt@ gmail.com

Abstract

The cohomology of M with compact supports is the graded algebra $\Omega\left(G_{c}(M), \delta\right)$ and is given by $\Omega_{c}(M)=\sum_{k=0}^{n} \Omega_{c}^{k}(M)$. The bilinear map $\Omega(M) \times \Omega_{c}(M) \rightarrow \Omega_{c}(M)$ is induced by $G(M) \times G_{c}(M) \rightarrow \Omega_{c}(M)$ and makes $\Omega_{c}(M)$ into a left graded $\Omega(M)$-module. $\Omega\left(S^{n}\right)$, which is the cohomology of S^{n}, is determined by $\Omega^{0}\left(S^{n}\right) \cong \Omega^{n}\left(S^{n}\right) \cong \mathbb{R}$ and $\Omega^{k}\left(S^{n}\right)=0$ for $n \geq 1$. Also, we determine the cohomology of \mathbb{R}^{n} with compact supports. Finally, it is shown that the map $i_{M}: \Omega(M) \rightarrow \Omega_{c}(M)^{*}$ is a linear isomorphism.

Keywords: Compact manifold, cohomology, graded algebra, isomorphism, bilinear map.

1. Introduction

Let M be an n-manifold, then the graded algebra of differential forms on M is defined as $G(M)=$ $\sum_{k=0}^{n} G^{k}(M)$ and $G(M)$ is converted into a graded differential algebra by the exterior derivative (Greub et al., 1972). The differential forms Φ satisfying the condition $\delta \Phi=0$ construct cocycles in this differential algebra and this differential form is closed. The closed forms are graded subalgebra $Z(M)$ of $G(M)$ as δ is an antiderivation (Bott and Tu, 1982). The subset $H(M)=\delta G(M)$ is a graded ideal in $Z(M)$. The differential forms in $G(M)$ are called coboundaries and the corresponding cohomology algebra is defined by $\Omega(M)=Z(M) / H(M)$ and this cohomology algebra is called the de Rham cohomology algebra of M (Iversen, 1986).

The cohomology of M with compact supports is the graded algebra $\Omega\left(G_{c}(M), \delta\right)$ (Grivaux, 2010). It is denoted by $\Omega_{c}(M)$ and is defined by

$$
\Omega_{c}(M)=\sum_{k=0}^{n} \Omega_{c}^{k}(M), \quad n=\operatorname{dim} M
$$

Multiplication in $G(M)$ is restricted to a real bilinear map as $G_{c}(M)$ is an ideal (Kobayashi and Nomizu, 1963). $G_{c}(M)$ is confined into a left graded $G(M)$-module by this multiplication which is given by

$$
G(M) \times G_{c}(M) \rightarrow \Omega_{c}(M) .
$$

The bilinear map $\Omega(M) \times \Omega_{c}(M) \rightarrow \Omega_{c}(M)$ is induced by the above map and makes $\Omega_{c}(M)$ into a left graded $\Omega(M)$-module (Sternberg, 1964). This map can be written as

$$
(\lambda, \mu) \mapsto \alpha * \beta, \lambda \in \Omega(M), \mu \in \Omega_{c}(M) .
$$

In the same way, $\Omega_{c}(M)$ can be converted into a right graded $\Omega(M)$-module and we can write $\mu * \lambda, \mu \in$
$\Omega_{c}(M), \lambda \in \Omega(M)$. Also, the algebra homomorphism

$$
\left(\tau_{M}\right)_{\#}: \Omega_{c}(M) \rightarrow \Omega(M)
$$

is induced by the inclusion map $\tau_{M}: G_{c}(M) \rightarrow G(M)$. The above module structures can be converted to ordinary multiplication by this homomorphism (Haller and Rybicki, 1999).

2. Preliminaries and Auxiliary Results

Let $\Omega: \mathbb{R} \times M \rightarrow N$ be a smooth map. Two smooth maps $f, g: M \rightarrow N$ are said to be homotopic (Eilenberg and Maclane, 1950) if $\Omega(0, x)=f(x)$ and $\Omega(1, x)=g(x)$. We can define a linear map $h: G(N) \rightarrow$ $G(M)$ homogeneous of degree -1 for such a homotopy Ω by

$$
h=I_{0}^{1} \circ i(T) \circ \Omega^{*} .
$$

Consider the spaces $\Omega^{k}(M)$ having finite dimension, then the k th Betti number of M is defined by $b_{k}=\operatorname{dim} \Omega^{k}(M)$ and the Poincaré polynomial of M is defined by

$$
p_{M}(t)=\sum_{k=0}^{n} b_{k} t^{k} .
$$

If M consists of a single point, then $\Omega^{k}(M)=0(k \geq 1)$ and $\Omega^{0}(M)=\mathbb{R}$.
The Euler-Poincaré characteristic of M is defined by the alternating sum $\zeta_{M}=\sum_{k=0}^{n}(-1)^{k} b_{k}=p_{M}(-1)$.
Now, we discuss the axioms for de Rham cohomology. The axioms for de Rham cohomology are given below:
(a) $\Omega($ point $)=\mathbb{R}$
(b) If M is the disjoint union of open submanifolds M_{α}, then

$$
\Omega(M) \cong \prod_{\alpha} \Omega\left(M_{\alpha}\right)(\text { disjoint union })
$$

(c) If $f \sim g: M \rightarrow N$, then $f^{\#}=g^{\#}$ (homotopy axiom)
(d) If $M=U \cup V$ (U, V are open), there is an exact triangle (Mayer-Vietoris)

Consider a manifold M which is the disjoint union $M=U_{v} M_{v}$ of open submanifolds M_{v}. A
homomorphism $h_{v}^{*}: G(M) \rightarrow G\left(M_{v}\right)$ is induced by the inclusion map $h_{v}^{*}: M_{v} \rightarrow M$. We obtain a homomorphism $h^{*}: G(M) \rightarrow \prod_{v} G\left(M_{v}\right)$ given by $\left(h^{*} \Phi\right)_{v}=h_{v}^{*}$, where $\Phi \in G(M)$ and $\prod_{v} G\left(M_{v}\right)$ is the direct product of the algebras $G\left(M_{v}\right)$.

If δ_{v} denotes the exterior derivative in $\Omega\left(M_{v}\right)$, then $\prod_{v} \Omega\left(M_{v}\right)$ is given by the differential operator $\Pi_{v} \Omega\left(M_{v}\right)$. As a result, h^{*} is an isomorphism of graded differential algebras $\Omega\left(M_{v}\right)$ and h^{*} induces the following isomorphism

$$
h^{*}: \Omega(M) \stackrel{\cong}{\cong} \prod_{v} \Omega\left(M_{v}\right)
$$

given by

$$
\left(h^{*} \gamma\right)_{v}=h_{v}^{*}(\gamma), \gamma \in \Omega(M)
$$

Consider a manifold M and two open subsets X_{1}, X_{2} such that $X_{1} \cup X_{2}=M$. Let us consider the following inclusion maps

$$
\begin{gathered}
u_{1}: X_{1} \cap X_{2} \rightarrow X_{1}, u_{2}: X_{1} \cap X_{2} \rightarrow X_{2} \\
v_{1}: X_{1} \rightarrow M, v_{2}: X_{2} \rightarrow M .
\end{gathered}
$$

which induce a sequence of linear mappings

$$
0 \longrightarrow \Omega(M) \xrightarrow{\lambda} \Omega\left(X_{1}\right) \oplus \Omega\left(X_{2}\right) \xrightarrow{\mu} \Omega\left(X_{1} \cap X_{2}\right) \longrightarrow 0
$$

given by

$$
\lambda \Phi=\left(v_{1}^{*} \Phi, v_{\lambda}^{*} \Phi\right), \quad \Phi \in \Omega(M)
$$

and

$$
\mu\left(\Phi_{1}, \Phi_{2}\right)=u_{1}^{*} \Phi_{1}-u_{2}^{*} \Phi_{2}, \quad \Phi_{i} \in \Omega\left(U_{i}\right), \quad i=1,2
$$

Let $\delta_{1}, \delta_{2}, \delta_{12}$ and δ be the exterior derivatives in $\Omega\left(X_{1}\right), \Omega\left(X_{2}\right), \Omega\left(X_{1} \cap X_{2}\right)$ and $\Omega(M)$ respectively, then we have

$$
\lambda \circ \delta=\left(\delta_{1} \oplus \delta_{2}\right) \circ \alpha \text { and } \mu \circ\left(\delta_{1} \oplus \delta_{2}\right)=\delta_{12} \circ \mu
$$

Consequently, the following linear maps are induced by λ and μ :

$$
\lambda_{\#}: \Omega(M) \rightarrow \Omega\left(X_{1}\right) \oplus \Omega\left(X_{2}\right), \quad \mu_{\#}: \Omega\left(X_{1}\right) \oplus \Omega\left(X_{2}\right) \rightarrow \Omega\left(X_{1} \cap X_{2}\right) .
$$

Lemma 1. The following sequence of linear mappings is exact

$$
0 \longrightarrow \Omega(M) \xrightarrow{\lambda} \Omega\left(X_{1}\right) \oplus \Omega\left(X_{2}\right) \xrightarrow{\mu} \Omega\left(X_{1} \cap X_{2}\right) \longrightarrow 0
$$

Proof. We have to consider the following three cases:
(a) $\operatorname{ker} \mu=\operatorname{Im} \lambda$
(b) λ is injective
(c) μ is surjective
(a) Since it is obvious $\mu \circ \lambda=0$, so $\operatorname{Im} \lambda \subset \operatorname{ker} \mu$. We need only to show that $\operatorname{ker} \mu \subset \operatorname{Im} \lambda$.

Let $\left(\Phi_{1}, \Phi_{2}\right) \in \operatorname{ker} \mu$. If $x \in X_{1} \cap X_{2}$, then $\Phi_{1}(x)=\Phi_{2}(x)$. Consequently, we can find a differential form $\Phi \in$ $\Omega(M)$ which is given by

$$
\Phi(\mathrm{x})= \begin{cases}\Phi_{1}(x), & x \in X_{1} \\ \Phi_{2}(x), & x \in X_{2}\end{cases}
$$

Since $\lambda \Phi=\left(\Phi_{1}, \Phi_{2}\right)$, so $\operatorname{ker} \mu \subset \operatorname{Im} \lambda$. Therefore, $\operatorname{ker} \mu=\operatorname{Im} \lambda$.
(b) Let $x \in X_{1} \cup X_{2}=M$. If $\lambda \Phi=0$, then $\Phi(x)=0$ for $x \in X_{1} \cup X_{2}=M$.
(c) Consider the covering X_{1}, X_{2} of M. Let x_{1}, x_{2} be subordinate to the covering X_{1}, X_{2}. Thus, $\left\{x_{1}, x_{2}\right\}$ is a partition of unity for M. Then, $\operatorname{carr} v_{1}^{*} x_{2}, \operatorname{carr} v_{2}^{*} x_{1} \subset X_{1} \cup X_{2}$.

For $\Phi \in \Omega\left(X_{1} \cap X_{2}\right)$, we define

$$
\Phi_{1}=v_{1}^{*} x_{2} \cdot \Phi \in \Omega\left(X_{1}\right), \Phi_{2}=v_{2}^{*} x_{1} \cdot \Phi \in \Omega\left(X_{2}\right)
$$

Consequently, we have $\Phi=\mu\left(\Phi_{1},-\Phi_{2}\right)$.

Consider a compact oriented n-manifold M. Then, we have

$$
\Omega_{c}(M)=\Omega(M) \text { and } i_{M}: \Omega(M) \xrightarrow{\cong} \Omega(M)^{*} .
$$

Therefore, the bilinear map $\mathcal{P}_{M}^{k}: \Omega^{k}(M) \times \Omega^{n-k}(M) \rightarrow \mathbb{R}$ represents the Poincaré scalar product.

Theorem 1. If M is any compact manifold, then the dimension of $\Omega(M)$ is finite.
Proof. First we assume that the compact manifold M is orientable. Then the Poincare scalar product is given by the bilinear map $\mathcal{P}_{M}^{k}: \Omega^{k}(M) \times \Omega^{n-k}(M) \rightarrow \mathbb{R}$ and \mathcal{P}_{M}^{k} induces the following two linear isomorphisms

$$
\Omega^{k}(M) \xrightarrow{\cong} \Omega^{n-k}(M)^{*}
$$

and

$$
\Omega^{n-k}(M) \xrightarrow{\cong} \Omega^{k}(M)^{*} .
$$

Now, from the related results of elementary linear algebra we can observe that each $\Omega^{k}(M)$ has finite dimension; hence the theorem is proved in this case.
Again, we assume that the compact manifold M is nonorientable. In this case, the double cover \widetilde{M} is orientable and compact. Consequently, we have

$$
\operatorname{dim} \Omega(M)=\operatorname{dim} \Omega_{+}(\widetilde{M}) \leq \operatorname{dim} \Omega(\widetilde{M})<\infty .
$$

Thus the dimension of $\Omega(M)$ is finite.

Lemma 2. $\int_{M}^{\#}: \Omega_{c}^{n}(M) \rightarrow \mathbb{R}$ is a linear isomorphism if M is a connected oriented n-manifold.
Proof. Let $\Omega(M)$ be the cohomology of an oriented manifold M and $\Omega_{c}(M)$ be the cohomology of M with compact support. Then the map

$$
i_{M}: \Omega(M) \rightarrow \Omega_{c}(M)^{*}
$$

is a linear isomorphism. Also, we have

$$
\operatorname{dim} \Omega_{c}^{n}(M)=\operatorname{dim} \Omega^{0}(M)=1
$$

Moreover, $\int_{M}^{\#}$ is surjective. Therefore, $\int_{M}^{\#}: \Omega_{c}^{n}(M) \rightarrow \mathbb{R}$ is a linear isomorphism if M is a connected oriented n-manifold.

Consider an oriented n-manifold M. The linear map $\int_{M}: G_{C}^{n}(M) \rightarrow \mathbb{R}$ satisfies $\int_{M} \circ \delta=0$ and it is surjective map. The linear map $\int_{M}^{\#}: \Omega_{c}^{n}(M) \rightarrow \mathbb{R}$ is induced by $\int_{M}: G_{c}^{n}(M) \rightarrow \mathbb{R}$ and this map is also surjective. Let $\lambda \in \Omega^{k}(M)$ and $\mu \in \Omega_{c}^{n-k}(M)$. The Pioncaré scalar product

$$
\mathcal{P}_{M}^{k}: \Omega^{k}(M) \times \Omega_{c}^{n-k}(M) \rightarrow \mathbb{R}
$$

can be expressed as the following bilinear map $\mathcal{P}_{M}^{k}(\lambda, \mu)=\int_{M}^{\#} \lambda * \mu$.
Lemma 3. Let M, N be two manifolds, then the following diagram commutes.

Proof. If $\lambda \in \Omega^{k}(N), \mu \in \Omega_{c}^{n-k}, \zeta \in G^{k}(N), \xi \in G_{c}^{n-k}(M)$, then λ and μ are represented by ζ and ξ respectively. Consequently, $\left(\psi_{c}\right)_{\#} \mu \in \Omega_{c}^{n-k}(N)$ is represented by

$$
\left(\psi_{c}\right)_{*} \xi \text { and } \psi^{*}\left(\zeta \wedge\left(\left(\psi_{c}\right)_{*} \xi\right)=\psi^{*} \zeta \wedge \xi\right.
$$

Since the Pioncaré scalar product $\mathcal{P}_{M}^{k}: \Omega^{k}(M) \times \Omega_{c}^{n-k}(M) \rightarrow \mathbb{R}$ is the bilinear map given by

$$
\mathcal{P}_{M}^{k}(\lambda, \mu)=\int_{M}^{\#} \lambda * \mu,
$$

thus, $\mathcal{P}_{M}^{k}\left(\psi^{\#} \lambda, \mu\right)=\int_{M}^{\#}\left(\psi^{\#} \lambda\right) * \mu$ and $\mathcal{P}_{N}^{k}\left(\lambda,\left(\psi_{c}\right)_{\#} \mu\right)=\int_{M}^{\#} \lambda *\left(\psi_{c}\right)_{\#} \mu$. Hence we have

$$
\mathcal{P}_{M}^{k}\left(\psi^{\#} \lambda, \mu\right)=\int_{M}^{\#}\left(\psi^{\#} \lambda\right) * \mu=\int_{M} \psi^{*} \zeta \wedge \xi=\int_{N} \zeta \wedge\left(\psi_{c}\right)_{*} \xi=\int_{M}^{\#} \lambda *\left(\psi_{c}\right)_{\#} \mu=\mathcal{P}_{N}^{k}\left(\lambda,\left(\psi_{c}\right)_{\#} \mu\right)
$$

Since $\mathcal{P}_{M}^{k}\left(\psi^{\#} \lambda, \mu\right)=\mathcal{P}_{N}^{k}\left(\lambda,\left(\psi_{c}\right)_{\#} \mu\right)$, we can conclude that the diagram commutes. Hence the proposition is proved.

3. Main Results

Theorem 2. For $n \geq 1, \Omega\left(S^{n}\right)$ is determined by $\Omega^{0}\left(S^{n}\right) \cong \Omega^{n}\left(S^{n}\right) \cong \mathbb{R}$ and $\Omega^{k}\left(S^{n}\right)=0(1 \leq k \leq n-1)$.
Proof. First we consider an $(n+1)$-dimensional Euclidean space E^{n+1}. Suppose S^{n} is embedded in E^{n+1}. We know that S^{n} is connected, thus $\Omega^{0}\left(S^{n}\right)=\mathbb{R}$. Now let $s \in S^{n}$ and $\xi \in(0,1)$ where ξ is fixed. Again, we consider open sets $X_{1}, X_{2} \subset S^{n}$ defined by

$$
X_{1}=\left\{x \in S^{n}:\langle x, s\rangle>-\xi\right\}, \quad X_{2}=\left\{x \in S^{n}:\langle x, s\rangle<\xi\right\} .
$$

As a result, $S^{n}=X_{1} \cup X_{2}$ and we have the following exact Mayer-Vietoris sequence

$$
\cdots \rightarrow \Omega^{k}\left(S^{n}\right) \rightarrow \Omega^{k}\left(X_{1}\right) \oplus \Omega^{k}\left(X_{2}\right) \rightarrow \Omega^{k}\left(X_{1} \cap X_{2}\right) \rightarrow \Omega^{k+1}\left(S^{n}\right) \rightarrow \cdots .
$$

It is clear that S^{n-1} is contained in $X_{1} \cap X_{2}$. We observe that X_{1} and X_{2} are contractible. Consequently, the following exact sequence can be considered as the Mayer-Vietoris sequence

$$
\cdots \rightarrow \Omega^{k}\left(S^{n}\right) \rightarrow \Omega^{k}(\text { point }) \oplus \Omega^{k}(\text { point }) \rightarrow \Omega^{k}\left(S^{n-1}\right) \rightarrow \Omega^{k+1}\left(S^{n}\right) \rightarrow \cdots
$$

The above sequence can be split into the following two sequences

$$
0 \rightarrow \Omega^{0}\left(S^{n}\right) \rightarrow \Omega^{0}(\text { point }) \oplus \Omega^{0}(\text { point }) \rightarrow \Omega^{0}\left(S^{n-1}\right) \rightarrow \Omega^{1}\left(S^{n}\right) \rightarrow 0
$$

and

$$
0 \longrightarrow \Omega^{k}\left(S^{n-1}\right) \xrightarrow{\cong} \Omega^{k+1}\left(S^{n}\right) \longrightarrow 0, \quad k \geq 1 .
$$

These sequences are exact and from the first sequence we have

$$
0=\operatorname{dim} \Omega^{1}\left(S^{n}\right)-\operatorname{dim} \Omega^{0}\left(S^{n-1}\right)+2 \operatorname{dim} \Omega^{0}(\text { point })-\operatorname{dim} \Omega^{0}\left(S^{n}\right)
$$

For $n \geq 2$, we observe that S^{n-1} is connected and S^{0} consists of two points. Thus we can conclude from the above equation

$$
\Omega^{1}\left(S^{n}\right) \cong\left\{\begin{array}{c}
\mathbb{R}, n=1 \\
0, n>1
\end{array}\right.
$$

Since $0 \longrightarrow \Omega^{k}\left(S^{n-1}\right) \xrightarrow{\cong} \Omega^{k+1}\left(S^{n}\right) \longrightarrow 0$ for $k \geq 1$, we have

$$
\Omega^{k}\left(S^{n}\right) \cong \Omega^{1}\left(S^{n-k+1}\right)(1 \leq k \leq n)
$$

Therefore, $\Omega^{0}\left(S^{n}\right) \cong \Omega^{n}\left(S^{n}\right) \cong$ and $\Omega^{k}\left(S^{n}\right)=0$. Hence, the proposition is proved.

Corollary 1. Consider a connected n-manifold M. Then $\Omega^{n}(M) \cong \mathbb{R}$ when M is compact and orientable. Otherwise, $\Omega^{n}(M)=0$.

Proof. First we assume that M is compact. Then, there are two cases:
(i) $\quad M$ is orientable
(ii) $\quad M$ is nonorientable.

If we consider M to be orientable, then from the consequence of Lemma 2 we can deduce that $\Omega^{n}(M) \cong \mathbb{R}$. If M is nonorientable, then $\Omega^{n}(M)=0$.

Next we assume that M is not compact. Then, there are again two cases:
(i) $\quad M$ is orientable
(ii) $\quad M$ is nonorientable.

If the manifold M is orientable, then we have $\Omega^{n}(M) \cong \Omega_{c}^{0}(M)^{*}=0$.
If the manifold M is nonorientable, then the double cover \widetilde{M} must be orientable, connected and noncompact. Consequently, we have

$$
\Omega^{n}(M) \cong \Omega_{+}^{n}(\widetilde{M}) \subset \Omega^{n}(\widetilde{M})=0
$$

Thus, $\Omega^{n}(M) \cong \mathbb{R}$ when M is compact and orientable, otherwise, $\Omega^{n}(M)=0$.

Corollary 2. $\Omega_{c}^{k}\left(\mathbb{R}^{n}\right)=\left\{\begin{array}{l}0 \text { when } k<n \\ \mathbb{R} \text { when } k=n\end{array}\right.$ gives the cohomology of \mathbb{R}^{n} with compact supports.
Proof. The case $n=0$ is trivial. Assume that S^{n} is the one-point compactification of \mathbb{R}^{n} for $n>0$. Let $s \in S^{n}$ be the compactifying point, thus we can write $\mathbb{R}^{n}=S^{n}-\{s\}$.

The differential forms on S^{n} are zero in a neighbourhood of s and the ideal of differential forms on S^{n} is denoted by τ_{s}.It is clear that $\tau_{s}=G_{c}\left(\mathbb{R}^{n}\right)$. Consequently, the following sequence is exact

$$
0 \rightarrow \tau_{s} \rightarrow G\left(S^{n}\right) \rightarrow G_{s}\left(S^{n}\right) \rightarrow 0
$$

In cohomology, we can derive a long exact sequence from the above short exact sequence. As $\Omega\left(G_{b}\left(S^{n}\right)\right)=\Omega$ (point), we can split this long sequence into the following two exact sequences

$$
0 \rightarrow \Omega_{c}^{0}\left(\mathbb{R}^{n}\right) \rightarrow \Omega^{0}\left(S^{n}\right) \rightarrow \mathbb{R} \rightarrow \Omega_{c}^{1}\left(\mathbb{R}^{n}\right) \rightarrow \Omega^{1}\left(S^{n}\right) \rightarrow 0
$$

and

$$
0 \longrightarrow \Omega_{c}^{k}\left(\mathbb{R}^{n}\right) \xrightarrow{\cong} \Omega^{k}\left(S^{n}\right) \longrightarrow 0, k \geq 2 .
$$

As $\Omega^{0}\left(S^{n}\right)=\mathbb{R}$ and $\Omega_{c}^{0}\left(\mathbb{R}^{n}\right)=0$, thus the following exact sequence can be derived from the first sequence

$$
0 \longrightarrow \Omega_{c}^{1}\left(\mathbb{R}^{n}\right) \xrightarrow{\cong} \Omega^{1}\left(S^{n}\right) \longrightarrow 0
$$

Hence $\Omega_{c}^{k}\left(\mathbb{R}^{n}\right)=\left\{\begin{array}{l}0 \text { when } k<n \\ \mathbb{R} \text { when } k=n\end{array}\right.$ gives the cohomology of \mathbb{R}^{n} with compact supports.

Theorem 3. Let $\Omega(M)$ be the cohomology of an oriented manifold M and $\Omega_{c}(M)$ be the cohomology of M with compact support. Then the map $i_{M}: \Omega(M) \rightarrow \Omega_{c}(M)^{*}$ is a linear isomorphism.

Proof. To prove the theorem, we have to consider the following three cases:
(i) $\quad M=\mathbb{R}^{n}$
(ii) $\quad M$ is an open subset of \mathbb{R}^{n}
(iii) $\quad M$ is arbitrary
(i) We have to show that the map $i: \Omega^{0}\left(\mathbb{R}^{n}\right) \rightarrow \Omega_{c}^{k}\left(\mathbb{R}^{n}\right)^{*}$ is a linear isomorphism to prove $M=$ \mathbb{R}^{n} since $\Omega^{k}\left(\mathbb{R}^{n}\right)$ and $\Omega_{c}^{k}\left(\mathbb{R}^{n}\right)$ are given by

$$
\Omega^{k}\left(\mathbb{R}^{n}\right)=\left\{\begin{array}{ll}
\mathbb{R}, & k=0 \\
0, & k \neq 0
\end{array} \quad \text { and } \quad \Omega_{c}^{k}\left(\mathbb{R}^{n}\right)= \begin{cases}\mathbb{R}, & k=n \\
0, & k \neq n\end{cases}\right.
$$

Also, in this case it is sufficient to show that $i \neq 0$ as we have

$$
\operatorname{dim} \Omega^{0}\left(\mathbb{R}^{n}\right) \rightarrow \operatorname{dim} \Omega_{c}^{k}\left(\mathbb{R}^{n}\right)^{*}
$$

Assume that $\varphi \in S\left(\mathbb{R}^{n}\right)$ is a nonnegative function and φ is not identically zero. Consider a positive determinant function Δ in \mathbb{R}^{n}.
Now, $\int_{\mathbb{R}^{n}} \varphi \cdot \Delta=\int_{\mathbb{R}^{n}} \varphi(x) d x^{1} \cdots d x^{n}>0$ for a suitable basis of \mathbb{R}^{n}.
Consequently, if μ is a non-zero element in $\Omega_{c}^{p}\left(\mathbb{R}^{n}\right), \mu$ is represented by $f \cdot \Delta$.
From the definitions we have $\langle i(1), \mu\rangle=\int_{\mathbb{R}^{n}} 1 \wedge(\varphi \cdot \Delta)==\int_{\mathbb{R}^{n}} \varphi \cdot \Delta \neq 0$.
Therefore, $\langle i(1), \mu\rangle \neq 0$ implies that $i(1) \neq 0$ and so $i \neq 0$.
(ii) Assume that $\left\{b_{1}, \cdots, b_{n}\right\}$ is a basis of \mathbb{R}^{n}. Then, for $v \in \mathbb{R}^{n}$, we have $v=\sum_{k=1}^{n} v^{k} b_{k}$.

Then an i-basis for the topology of \mathbb{R}^{n} can be represented by the open subsets of the form

$$
B=\left\{x \in \mathbb{R}^{n}: a^{k}<x^{k}<b^{k}, \quad k=1, \cdots, n\right\} .
$$

By the definition of diffeomorphism, B is diffeomorphic to \mathbb{R}^{n}. Therefore, with the help of Case (i) and the result of Lemma 3 we conclude that i_{B} is an isomorphism for each such B. As a result, for every open subset M of \mathbb{R}^{n} we have $i_{M}: \Omega(M) \rightarrow \Omega_{c}(M)^{*}$ which is an isomorphism.
(iii) Let us assume that every open subset of M is diffeomorphic to open subset of \mathbb{R}^{n} and \mathcal{B} is the collection of such open subsets of M. Consequently, it is obvious that for the topology of M this collection of open subsets \mathcal{B} is an i-basis. With the help of the results derived in Case (ii) and Lemma 3, we can conclude that i_{B} is an isomorphism for every $B \in \mathcal{B}$. Therefore, for
every open subset $X \subset M$ we can find an i_{X} which is an isomorphism. Thus, the map $i_{M}: \Omega(M)$ $\xrightarrow{\cong} \Omega_{c}(M)^{*}$ is a linear isomorphism.

References

Bishop, R. L. and R. J. Crittenden. 1964. Geometry of Manifolds, Academic Press, New York.
Bott, R. and L. Tu. 1982. Differential forms in algebraic topology. Graduate Texts in Math. 82, Springer-Verlag, New York-Berlin.

Dragomir, S. and L. Ornea. 1998. Locally conformal Kähler geometry. Progress in Math. 155, Birkhäuser, Boston, Basel.
Eilenberg, S. and S. Maclane. 1950. Relations between homology and homotopy groups of spaces II. Ann. of Math., 51, 514-533.
Grauert, H. and R. Remmert. 1955. Zur Theorie der Modifikationen. I. Stetige und eigentliche Modifikationen komplexer Räume. Math. Ann. 129, 274-296.
Grauert, H. and R. Remmert. 1984. Coherent analytic sheaves. Grundlehren der Math. Wiss. 265, SpringerVerlag, Berlin.
Greub, W., S. Halperin and R. Vanstone. 1972. Connections, curvature, and cohomology, vol. I. Academic Press, New York.
Grivaux, J. 2010. Chern classes in Deligne cohomology for coherent analytic sheaves. Math. Ann. 347, 249-284.
Haller, S. and T. Rybicki. 1999. On the group of diffeomorphisms preserving a locally conformal symplectic structure. Ann. Glob. Anal. Geom. 17, 475-502.
Iversen, B. 1986. Cohomology of Sheaves. Universitext, Springer-Verlag, Berlin.
Kobayashi, S. and K. Nomizu. 1963. Foundations of Differential Geometry, Wiley, New York, 203-229.
Milnor J. 1956. On manifolds homeomorphic to the 7-sphere. Ann. of Math. 64, 399-405.
Olum, P. 1953. Mappings of Manifolds and the Notion of Degree. The Annals of Mathematics, 58(3), 458-480.
Short, D. R. and J. W. Smith. 1970. A Vietoris-Begle theorem for submersions. Indiana Univ. Math. J. 20, 327336.

Sternberg S. 1964. Lectures on Differential Geometry. Prentice-Hall Mathematics Series.
Vaisman, I. 1980. Remarkable operators and commutation formulas on locally conformal Kähler manifolds. Compos. Math. 40(3), 287-299.
Whitney H. 1936. Differentiable manifolds. Ann. of Math. 37, 645-680.

