Common Fixed Point Theorem in 2-Menger Space via (S-B) Property

Geetanjali Sharma ${ }^{1}$ Richa Gupta ${ }^{2}$ Pankaj Tiwari ${ }^{3}$ Akshay Sharma ${ }^{2}$
1.Research Scholar, Sarvepalli Radhakrishnan University, Bhopal (M.P.), India
2.Faculty of Science, Sarvepalli Radhakrishnan University, Bhopal (M.P.), India
3.Dept. of Mathematics, Govt. Naveen College, Lidhoura, Tikamgarh (M.P.), India

Abstract

In this paper, first we prove a common fixed point theorem using weakly compatible mapping in 2-Menger space which generalize the well known results. Secondly, we prove a common fixed point theorem using (S-B) property along with weakly compatible maps. (S-B) property defined by Sharma and Bamoria [16] via implicit relation.

Keywords: Common fixed points, Metric space, S-B property, 2-Menger space, weakly compatible mapping and implicit relation.
AMS subject classification- $47 \mathrm{H} 10,54 \mathrm{H} 25$.
DOI: 10.7176/MTM/9-5-01
Publication date:May $31^{\text {st }} 2019$

1. INTRODUCTION AND PRELIMINARIES

In 1922, Banach proved the principal contraction result [4]. As we know, there have been published many works about fixed point theory for different kinds of contractions on some spaces such as quasi-metric spaces, cone metric spaces, convex metric spaces, partially ordered metric spaces, G-metric spaces, partial metric spaces, quasi-partial metric spaces, fuzzy metric spaces and Menger spaces.

The study of 2-metric spaces was initiated by Gahler[7] and some fixed point theorems in 2-metric spaces were proved in [8],[9], [10] and [15]. In 1987, Zeng [23] gave the generalization of 2-metric to Probabilistic 2metric as follows;

A probabilistic metric space shortly PM-Space, is an ordered pair (X,F) consisting of a non empty set X and a mapping F from $\mathrm{X} \times \mathrm{X}$ to L , where L is the collection of all distribution functions (a distribution function F is non decreasing and left continuous mapping of reals in to $[0,1]$ with properties, $\inf F(x)=0$ and $\sup F(x)=1)$.

1. The value of F at $(x, y) \in X \times X$ is represented by $F_{x, y}$. The function $F_{x, y}$ are assumed satisfy the following conditions;
2. $(\mathrm{FM}-0) \mathrm{F}_{\mathrm{x}, \mathrm{y}}(\mathrm{t})=1$, for all $\mathrm{t}>0$, iff $\mathrm{x}=\mathrm{y}$;
3. $(\mathrm{FM}-1) \mathrm{F}_{\mathrm{x}, \mathrm{y}}(0)=0$, if $\mathrm{t}=0$;
4. $(F M-2) \mathrm{F}_{\mathrm{x}, \mathrm{y}}(\mathrm{t})=\mathrm{F}_{\mathrm{y}, \mathrm{x}}(\mathrm{t})$;
5. $(\mathrm{FM}-3) \mathrm{F}_{\mathrm{x}, \mathrm{y}}(\mathrm{t})=1$ and $\mathrm{F}_{\mathrm{y}, \mathrm{z}}(\mathrm{s})=1$ then $\mathrm{F}_{\mathrm{x}, \mathrm{z}}(\mathrm{t}+\mathrm{s})=1$.
6. A mapping $\mathrm{T}:[0,1] \times[0,1] \rightarrow[0,1]$ is a t -norm, if it satisfies the following conditions;
7. $(\mathrm{FM}-4) \mathrm{T}(\mathrm{a}, 1)=\mathrm{a}$ for every $\mathrm{a} \in[0,1]$;
8. $(\mathrm{FM}-5) \mathrm{T}(0,0)=0$,
9. $(\mathrm{FM}-6) \mathrm{T}(\mathrm{a}, \mathrm{b})=\mathrm{T}(\mathrm{b}, \mathrm{a})$ for every $\mathrm{a}, \mathrm{b} \in[0,1]$;
10. (FM-7) $T(c, d) \geq T(a, b)$ for $c \geq a$ and $d \geq b$
11. $(\mathrm{FM}-8) \mathrm{T}(\mathrm{T}(\mathrm{a}, \mathrm{b}), \mathrm{c})=\mathrm{T}(\mathrm{a}, \mathrm{T}(\mathrm{b}, \mathrm{c}))$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in[0,1]$.
12. A Menger space is a triplet (X, F, T), where (X, F) is a PM-Space, X is a non-empty set and a t - norm satisfying instead of (FM-8) a stronger requirement.
13. (FM-9) $\mathrm{F}_{\mathrm{x}, \mathrm{z}}(\mathrm{t}+\mathrm{s}) \geq \mathrm{T}\left(\mathrm{F}_{\mathrm{x}, \mathrm{y}}(\mathrm{t}), \mathrm{F}_{\mathrm{y}, \mathrm{z}}(\mathrm{s})\right)$ for all $\mathrm{x} \geq 0, \mathrm{y} \geq 0$.
14. For a given metric space (X, d) with usual metric d, one can put $F_{x, y}(t)=H(t-d(x, y))$ for all $x, y \in$ X and $t>0$. where H is defined as:

$$
\mathrm{H}(\mathrm{t})=\left\{\begin{array}{l}
1 \text { if } \mathrm{s}>0, \\
0 \text { if } \mathrm{s} \leq 0
\end{array}\right.
$$

and t-norm T is defined as $T(a, b)=\min \{a, b\}$.
For the proof of our result we required the following definitions.
Definition 1.1 :-A triangular norm $*$ (shortly t-norm) is a binary operation on the unit interval $[0,1]$ such that for all $a, b, c, d \in[0,1]$ the following conditions are satisfied:
(1) $a * 1=a$,
(2) $\mathrm{a} * \mathrm{~b}=\mathrm{b} * \mathrm{a}$,
(3) $\mathrm{a} * \mathrm{~b} \leq \mathrm{c} *$ d whenever $\mathrm{a} \leq \mathrm{c}$ and $\mathrm{b} \leq \mathrm{d}$,
(4) $\mathrm{a} *(\mathrm{~b} * \mathrm{c})=(\mathrm{a} * \mathrm{~b}) * \mathrm{c}$.

Examples of t-norms are $\mathrm{a} * \mathrm{~b}=\min \{\mathrm{a}, \mathrm{b}\}, \mathrm{a} * \mathrm{~b}=\mathrm{ab}$ and $\mathrm{a} * \mathrm{~b}=\max \{\mathrm{a}+\mathrm{b}-1,0\}$.
Definition 1.2 :- Let ($\mathrm{X}, \mathrm{F}, *$) be a Menger space and $*$ be a continuous t-norm.
(a) A sequence $\left\{x_{n}\right\}$ in X is said to be converge to a point x in $X\left(\right.$ written $\left.x_{n} \rightarrow x\right)$ iff for every $\varepsilon>0$ and $\lambda \in$ $(0,1)$, there exists an integer $\mathrm{n}_{0}=\mathrm{n}_{0}(\varepsilon, \lambda)$ such that $\mathrm{F}_{\mathrm{x}_{\mathrm{n}}, \mathrm{x}}(\varepsilon)>1-\lambda$ for all $\mathrm{n} \geq \mathrm{n}_{0}$.
(b) A sequence $\left\{x_{n}\right\}$ in X is said to be Cauchy if for every $\varepsilon>0$ and $\lambda \in(0,1)$, there exists an integer $n_{0}=$ $\mathrm{n}_{0}(\varepsilon, \lambda)$ such that $\mathrm{F}_{\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+\mathrm{p}}}(\varepsilon)>1-\lambda$ for all $\mathrm{n} \geq \mathrm{n}_{0}$ and $\mathrm{p}>0$.
(c) A Menger space in which every Cauchy sequence is convergent is said to be complete.

Remark 1.3:- If s is a continuous t-norm, it follows from $(F M-4)$ that the limit of sequence in Menger space is uniquely determined.
Definition 1.4:- Self maps A and B of a Menger space ($X, F, *$) are said to be weakly compatible (or coincidentally commuting) if they commute at their coincidence points, i.e. if $A x=B x$ for some $x \in X$ then $A B x=B A x$.

Weakly Compatible Maps

In 1982, Sessa [17], weakened the concept of commutativity to weakly commuting mappings. Afterwards, Jungck [4] enlarged the concept of weakly commuting mappings by adding the notion of compatible mappings. In 1991, Mishra [16] introduced the notion of compatible mappings in the setting of probabilistic metric space.
Definition 1.5 :- Self maps A and B of a Menger space ($X, F, *$) are said to be compatible if $F_{A B x_{m}, B A x_{n}}(t) \rightarrow 1$ for all $t>0$, whenever $\left\{x_{n}\right\}$ is a sequence in X such that $A x_{n} \rightarrow x, B x_{n} \rightarrow x$ for some x in X as $n \rightarrow \infty$.
Definition 1.6:- Let S and T be weakly compatible of a Menger space $(X, M, *)$ and $S u=T u$ for some u in X then

$$
\mathrm{STu}=\mathrm{TSu}=\mathrm{SSu}=\mathrm{TTu}
$$

Definition 1.7:- (Implicit Relation) Let ϕ_{4} be the set of real and continuous function from $\left(R^{+}\right)^{4} \rightarrow R$ so that
(i) ϕ is non-increasing in $2^{\text {nd }}, 3^{r d}$ argument and
(ii) For $u, v \geq 0 \phi(u, v, v, v) \geq 0 \Rightarrow u \geq v$

Example 1.8:- Let $X=[0,3]$ be equipped with the usual metric $d(x, y)=|x-y|$ Define $f, g:[0,3] \rightarrow[0,3]$ by

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{l}
x \text { if } x \in[0,1), \\
3 \text { if } x \in[1,3] .
\end{array}\right. \\
& g(x)=\left\{\begin{array}{cc}
3-x \text { if } x \in[0,1) \\
3 & \text { if } x \in[1,3]
\end{array}\right.
\end{aligned}
$$

Then for any $x \in[1,3], x$ is a coincidence point and $f g x=g f x$, showing that f, g are weakly compatible maps on [0, 3].
Lemma 1.9:- Let $(X, M, *)$ be a Menger space. Then for all $x, y \in X, M(x, y,$.$) is a non-decreasing function.$
Lemma 1.10:- Let $(X, M, *)$ be a Menger space. If there exists $k \in(0,1)$ such that for all $x, y \in X$

$$
\mathrm{M}_{\mathrm{x}, \mathrm{y}}(\mathrm{t}) \geq \mathrm{M}_{\mathrm{x}, \mathrm{y}}(\mathrm{t}) \quad \forall \mathrm{t}>0
$$

then $x=y$.
Lemma 1.11:- Let $\left\{x_{n}\right\}$ be a sequence in a Menger space $(X, M, *)$. If there exists a number $k \in(0,1)$ such that $\mathrm{M}_{\mathrm{x}_{\mathrm{n}+2,}, \mathrm{x}_{\mathrm{n}+1}}(\mathrm{kt}) \geq \mathrm{M}_{\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}}}(\mathrm{t}) \forall \mathrm{t}>0$ and $\mathrm{n} \in \mathrm{N}$.
Then $\left\{x_{n}\right\}$ is a Cauchy sequence in X.
Lemma 1.12:- The only t-norm $*$ satisfying $r * r \geq r$ for all $r \in[0,1]$ is the minimum t-norm, that is $a * b=\min \{a, b\}$ for all $a, b \in[0,1]$.
Lemma 1.13:- Let $(X, M, *)$ be a Menger space and $\forall x, y \in X, t>0$ and if for a number $k \in(0,1)$, $M(x, y, k t) \geq M(x, y, t)$ then $x=y$
Example 1.14:- Let (X, d) be a metric space. Define $a * b=\min \{a, b\}$ and
$M_{x, y}(t)=\frac{t}{t+d(x, y)}$, for all $x, y \in X$.and all $t>0$. Then $(X, M, *)$ is a Menger space. It is called the Menger space induced by d.
Remark 1.15:- If self maps A and B of a Menger space ($X, F, *$) are compatible then they are weakly compatible.

2. MAIN RESULT

Now we prove the following results:
Theorem 2.1: Let $(X, M, *)$ be a common fixed point theorem in 2-Menger space with compatible maps. Let
A, B, S and T be mappings of X into itself satisfying following conditions:
(2.1) $A X \subset T X$ and $B X \subset S X$
(2.2) $\{A, S\}$ or $\{B, T\}$ satisfy the (S-B) property
(2.3) there exists a constant $q \in(0,1)$ such that $\mathrm{x}, \mathrm{y}, \mathrm{a} \in \mathrm{X}$ and $\mathrm{t}>0$,

$$
\begin{equation*}
\alpha\left(M_{A x, B y, a}(q t) * \frac{M_{S x, T y, a}(t)+M_{A x, S x, a}(t)}{2} * \frac{M_{B y, T y, a}(t)+M_{A x, T y, a}(t)}{2}\right) \geq 0 \tag{2.1.1}
\end{equation*}
$$

(2.4) If the pairs $\{A, S\}$ or $\{B, T\}$ are weakly compatible
(2.5) One of $\mathrm{A}(\mathrm{X}), \mathrm{B}(\mathrm{X}), \mathrm{S}(\mathrm{X})$ or $\mathrm{T}(\mathrm{X})$ is closed subset of X.

Indeed, A, B, S and T have a unique common fixed point in X.
Proof. Suppose that $\{B, T\}$ satisfies the (S-B) property. Then there exists a sequence $\left\{x_{n}\right\}$ in X such that $\lim _{n \rightarrow \infty} B x_{n}=\lim _{n \rightarrow \infty} T x_{n}=z$ for some $z \in X$.
Since $B X \subset S X$, there exists in X a sequence $\left\{y_{n}\right\}$ such that $B x_{n}=S y_{n}$.
Hence $\lim _{n \rightarrow \infty} S x_{n}=z$.
Let us show that $\lim _{n \rightarrow \infty} A y_{n}=z$.
Now by equation (2.1.1), we have

$$
\begin{aligned}
& \alpha\left(M_{A y_{n}, B x_{n}, a}(q t) * \frac{M_{{S y_{n}, T x_{n}, a}}(t)+M_{A y_{n}, S Y_{n}, a}(t)}{2} * \frac{M_{B x_{n}, T x_{n}, a}(t)+M_{A y_{n}, T x_{n}, a}(t)}{2}\right) \geq 0 \\
& \alpha\left(M_{A y_{n}, B x_{n}, a}(q t) * \frac{M_{B x_{n}, T x_{n}, a}(t)+M_{A y_{n}, B x_{n}, a}(t)}{2} * \frac{M_{B x_{n}, T x_{n}, a}(t)+M_{A y_{n}, T x_{n}, a}(t)}{2}\right) \geq 0
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} B x_{n}=\lim _{n \rightarrow \infty} T x_{n}$
$\therefore M\left(B x_{n}, T x_{n}, t\right)=1$
So taking $\lim n \rightarrow \infty$

$$
\alpha\left(\mathrm{M}_{\mathrm{Ay}_{\mathrm{n}}, \mathrm{Bx}_{\mathrm{n}}, \mathrm{a}}(\mathrm{qt}) * \frac{1+\mathrm{M}_{\mathrm{Ay}_{\mathrm{n}}, \mathrm{Bx}, \mathrm{a}}(\mathrm{t})}{2} * \frac{1+\mathrm{M}_{\mathrm{Ay}_{n}, \mathrm{Bx}, \mathrm{a}}(\mathrm{t})}{2}\right) \geq 0
$$

ϕ is non-increasing in $2^{\text {nd }}, 3^{\text {rd }}$ argument

$$
\alpha\left(\mathrm{M}_{\mathrm{Ayn}_{\mathrm{n}}, \mathrm{~B} \mathrm{~B}_{\mathrm{n}}, \mathrm{a}}(\mathrm{qt}) * \mathrm{M}_{\mathrm{Ay}_{\mathrm{n}}, \mathrm{Bx}, \mathrm{a}, \mathrm{a}}(\mathrm{t}) * \mathrm{M}_{\mathrm{Ay}_{\mathrm{n}}, \mathrm{Bx}, \mathrm{a}}(\mathrm{t})\right) \geq 0
$$

By the definition (1.7)

$$
M_{{A y_{n}}^{\prime}, B x_{n}, \mathrm{a}}(\mathrm{qt}) \geq \mathrm{M}_{\mathrm{Ay}_{\mathrm{n}}, \mathrm{Bx}, \mathrm{~B}, \mathrm{a}}(\mathrm{t})
$$

Since M is continuous function

$$
\lim _{n \rightarrow \infty} M_{A y_{n}, B x_{n}, \mathrm{a}}(q t) \geq \lim _{n \rightarrow \infty} M_{A y_{n}, B x_{n}, \mathrm{a}}(t)
$$

By lemma (1.13)
$\lim _{n \rightarrow \infty} A y_{n}=\lim _{n \rightarrow \infty} B x_{n}$ and we deduce that
$\lim _{n \rightarrow \infty} A y_{n}=z$
Suppose $S X$ is a closed subset of X.
Then $z=S u$ for some $u \in X$.
Subsequently we have,
$\lim _{n \rightarrow \infty} A y_{n}=\lim _{n \rightarrow \infty} B x_{n}=\lim _{n \rightarrow \infty} T x_{n}=\lim _{n \rightarrow \infty} S y_{n}=S u$.
By (2.3), we have

$$
\alpha\left(M_{A u, B x_{n}, a}(\mathrm{q}) * \frac{M_{S u, T \mathrm{x}_{\mathrm{n}}, \mathrm{a}}(\mathrm{t})+\mathrm{M}_{\mathrm{Au}, \mathrm{Su}, \mathrm{a}}(\mathrm{t})}{2} * \frac{\mathrm{M}_{\mathrm{Bx}_{\mathrm{n}}, T \mathrm{x}_{\mathrm{n}}, \mathrm{a}}(\mathrm{t})+\mathrm{M}_{\mathrm{Au}, T \mathrm{~T}_{\mathrm{n}}, \mathrm{a}}(\mathrm{t})}{2}\right) \geq 0
$$

$$
\alpha\left(M_{A u, B x_{n}, a}(q t) * \frac{M_{S u, T x_{n}, a}(t)+M_{A u, S u, a}(t)}{2} * \frac{M_{B_{x_{n}}, T x_{n}, a}(t)+M_{A u, T x_{n}, a}(t)}{2}\right) \geq 0
$$

Taking $\lim n \rightarrow \infty$, we have

$$
\begin{gathered}
\alpha\left(M_{A u, S u, a}(q t) * \frac{M_{S u, S u, a}(t)+M_{A u, S u, a}(t)}{2} * \frac{M_{S u, S u, a}(t)+M_{A u, S u, a}(t)}{2}\right) \geq 0 \\
\alpha\left(M_{A u, S u, a}(q t) * \frac{1+M_{A u, S u, a}(t)}{2} * \frac{1+M_{A u, S u, a}(t)}{2}\right) \geq 0
\end{gathered}
$$

ϕ is non-increasing in $2^{\text {nd }}, 3^{\text {rd }}$ argument

$$
\alpha\left(\mathrm{M}_{\mathrm{Au}, \mathrm{Su}, \mathrm{a}}(\mathrm{qt}) * \mathrm{M}_{\mathrm{Au}, \mathrm{Su}, \mathrm{a}}(\mathrm{t}) * \mathrm{M}_{\mathrm{Au}, \mathrm{Su}, \mathrm{a}}(\mathrm{t})\right) \geq 0
$$

By the definition (1.7)
Thus by lemma (1.13)
We have $A u=S u$.
The weak compatibility of A and S implies that $A S u=S A u$ and then $A A u=A S u=S A u=S S u$.
On the other hand,
Since $A X \subseteq T X$, there exists a point $v \in X$ such that $A u=T v$. We claim that $A u=B v$ using (2.3); we have

$$
\begin{gathered}
\alpha\left(\mathrm{M}_{\mathrm{Au}, \mathrm{Bv}, \mathrm{a}}(\mathrm{qt}) * \frac{\mathrm{M}_{\mathrm{Su}, \mathrm{Tv}, \mathrm{a}}(\mathrm{t})+\mathrm{M}_{\mathrm{Au}, \mathrm{Su}, \mathrm{a}}(\mathrm{t})}{2} * \frac{\mathrm{M}_{\mathrm{Bv}, \mathrm{Tv}, \mathrm{a}}(\mathrm{t})+\mathrm{M}_{\mathrm{Au}, \mathrm{Tv}, \mathrm{a}}(\mathrm{t})}{2}\right) \geq 0 \\
\alpha\left(\mathrm{M}_{\mathrm{Au}, \mathrm{Bv}, \mathrm{a}}(\mathrm{qt}) * \frac{\mathrm{M}_{\mathrm{Su}, \mathrm{Au}, \mathrm{a}}(\mathrm{t})+\mathrm{M}_{\mathrm{Au}, \mathrm{Su}, \mathrm{a}}(\mathrm{t})}{2} * \frac{\mathrm{M}_{\mathrm{Bv}, \mathrm{Au}, \mathrm{a}}(\mathrm{t})+\mathrm{M}_{\mathrm{Au}, \mathrm{Au}, \mathrm{a}}(\mathrm{t})}{2}\right) \geq 0 \\
\alpha\left(\mathrm{M}_{\mathrm{Au}, \mathrm{Bv}, \mathrm{a}}(\mathrm{qt}) * 1 * \frac{1+\mathrm{M}_{\mathrm{Au}, \mathrm{Bv}, \mathrm{a}}(\mathrm{t})}{2}\right) \geq 0
\end{gathered}
$$

ϕ is non-increasing in $2^{\text {nd }}, 3^{r d}$ argument

$$
\alpha\left(\mathrm{M}_{\mathrm{Au}, \mathrm{Bv}, \mathrm{a}}(\mathrm{qt}) * \mathrm{M}_{\mathrm{Au}, \mathrm{Bv}, \mathrm{a}}(\mathrm{t}) * \mathrm{M}_{\mathrm{Au}, \mathrm{Bv}, \mathrm{a}}(\mathrm{t})\right) \geq 0
$$

By the definition (1.7)

$$
\mathrm{M}_{\mathrm{Au}, \mathrm{Bv}, \mathrm{a}}(\mathrm{t}) \geq \mathrm{M}_{\mathrm{Au}, \mathrm{Bv}, \mathrm{a}}(\mathrm{t})
$$

Therefore by lemma, we have
$A u=B v$
Thus $A u=S u=T v=B v$.
The weak compatibility of B and Timplies that $B T v=T B v$ and $T T v=T B v=B T v=B B v$.
Let us show that $A u$ is a common fixed point of A, B, S and T.
In view of (2.3) we have

$$
\begin{gathered}
\alpha\left(\mathrm{M}_{\mathrm{AAu}, \mathrm{Bv}, \mathrm{a}}(\mathrm{qt}) * \frac{\mathrm{M}_{\mathrm{SAu}, \mathrm{Tv}, \mathrm{a}}(\mathrm{t})+\mathrm{M}_{\mathrm{AAu}, \mathrm{SAu}, \mathrm{a}}(\mathrm{t})}{2} * \frac{\mathrm{M}_{\mathrm{Bv}, \mathrm{Tv}, \mathrm{a}}(\mathrm{t})+\mathrm{M}_{\mathrm{AAu}, \mathrm{Tv}, \mathrm{a}}(\mathrm{t})}{2}\right) \geq 0 \\
\alpha\left(\mathrm{M}_{\mathrm{AAu}, \mathrm{Au}, \mathrm{a}}(\mathrm{qt}) * \frac{\mathrm{M}_{\mathrm{AAu}, \mathrm{Au}, \mathrm{a}}(\mathrm{t})+\mathrm{M}_{\mathrm{AAu}, \mathrm{AAu}, \mathrm{a}}(\mathrm{t})}{2} * \frac{\mathrm{M}_{\mathrm{Au}, \mathrm{Au}, \mathrm{a}}(\mathrm{t})+\mathrm{M}_{\mathrm{AAu}, \mathrm{Au}, \mathrm{a}}(\mathrm{t})}{2}\right) \geq 0 \\
\alpha\left(\mathrm{M}_{\mathrm{AAu}, \mathrm{Au}, \mathrm{a}}(\mathrm{qt}) * \frac{1+\mathrm{M}_{\mathrm{AAu}, \mathrm{Au}, \mathrm{a}}(\mathrm{t})}{2} * \frac{1+\mathrm{M}_{\mathrm{AAu}, \mathrm{Au}, \mathrm{a}}(\mathrm{t})}{2}\right) \geq 0
\end{gathered}
$$

ϕ is non-increasing in $2^{\text {nd }}, 3^{r d}$ argument

By the definition (1.7)

$$
\alpha\left(\mathrm{M}_{\mathrm{AAu}, \mathrm{Au}, \mathrm{a}}(\mathrm{qt}) * \mathrm{M}_{\mathrm{AAu}, \mathrm{Au}, \mathrm{a}}(\mathrm{t}) * \mathrm{M}_{\mathrm{AAu}, \mathrm{Au}, \mathrm{a}}(\mathrm{t})\right) \geq 0
$$

$$
\mathrm{M}_{\mathrm{AAu}, \mathrm{Au}, \mathrm{a}}(\mathrm{qt}) \geq \mathrm{M}_{\mathrm{AAu}, \mathrm{Au}, \mathrm{a}}(\mathrm{t})
$$

Therefore by lemma, we have
$A u=A A u=S A u$ and $A u$ is a common fixed point of A and S.
Similarly, we can validate that $B v$ is a common fixed point of B and T.
Since $A u=B v$, we achieve that $A u$ is point of A, B, S and T,
which is called common fixed point..
If $A u=B u=S u=T u=u$ and $A v=B v=S v=T v=v$.
Then by (2.3), we have

$$
\begin{gathered}
\alpha\left(M_{A u, B v, a}(q t) * \frac{M_{S u, T v, a}(t)+M_{A u, S u, a}(t)}{2} * \frac{M_{B v, T v, a}(t)+M_{A u, T v, a}(t)}{2}\right) \geq 0 \\
\alpha\left(M_{u, v, a}(q t) * \frac{M_{u, v, a}(t)+M_{u, u, a}(t)}{2} * \frac{M_{v, v, a}(t)+M_{u, v, a}(t)}{2}\right) \geq 0 \\
\alpha\left(M_{u, v, a}(q t) * \frac{1+M_{u, v, a}(t)}{2} * \frac{1+M_{u, v, a}(t)}{2}\right) \geq 0
\end{gathered}
$$

ϕ is non-increasing in $2^{\text {nd }}, 3^{\text {rd }}$ argument

$$
\alpha\left(\mathrm{M}_{\mathrm{u}, \mathrm{v}, \mathrm{a}}(\mathrm{qt}) * \mathrm{M}_{\mathrm{u}, \mathrm{v}, \mathrm{a}}(\mathrm{t}) * \mathrm{M}_{\mathrm{u}, \mathrm{v}, \mathrm{a}}(\mathrm{t})\right) \geq 0
$$

By the definition (1.7)

$$
\mathrm{M}_{\mathrm{u}, \mathrm{v}, \mathrm{a}}(\mathrm{t}) \geq \mathrm{M}_{\mathrm{u}, \mathrm{v}, \mathrm{a}}(\mathrm{t})
$$

Therefore by lemma, we have $u=v$ and the common fixed point is a unique.
This explanation is verified the theorem. Hence A, B, S and T have a unique common fixed point in X.

References

1. Aydi H., Karapınar, E., Postolache, M: Tripled coincidence point theorems for weak ϕ-contractions in partially ordered metric spaces. Fixed Point Theory Appl. 2012, 44 (2012).
2. Aydi, H, Postolache, M, Shatanawi, W: Coupled fixed point results for (ψ, φ)-weakly contractive mappings in ordered G-metric spaces. Comput. Math. Appl. 63(1), 298-309 (2012).
3. Aydi, H: Fixed point results for weakly contractive mappings in ordered partial metric spaces. J. Adv. Math. Stud. 4(2), 1-12 (2011).
4. Banach, S.," Sur les operations dans les ensembles abstraits et leur application aux equations" integrales. Fundam. Math. 3, 133-181, (1922).
5. Chandok, S, Mustafa, Z, Postolache, M: Coupled common fixed point theorems for mixed g-monotone mappings in partially ordered G-metric spaces. U. Politeh. Buch. Ser. A 75(4), 11-24 (2013).
6. Choudhury B. S. Metiya N.," Coincidence point and fixed point theorems in ordered cone metric spaces". J. Adv. Math. Stud. 5(2), 20-31, (2012).
7. Gahler S., "2-metrische Raume und ihre topologische Struktur" Math., Nachr., 26, 115-148, (1963).
8. Hadzic, O.," On common fixed point theorems in 2-metric Spaces" Univ. Novom Sadu Zb. Rad. Prirod. Mat. Fak. Mat. 12, 7-18, (1982).
9. Hicks T. L.,"Fixed point theorems for quasi-metric spaces" Math. Jpn. 33(2), 231-236, (1988).
10. Iseki K. "Fixed point theorem in 2-metric spaces" Math. Sem. Notes. Kobe Uni. 3, 133-136, (1975).
11. Kutukcu, S: A fixed point theorem in Menger spaces. Int. Math. Forum 1(32), 1543-1554, (2006).
12. Menger, K: Statistical metrics. Proc. Natl. Acad. Sci. USA 28, 535-537 (1942).
13. Olatinwo M.O, Postolache, M.," Stability results for Jungck-type iterative processes in convex metric spaces". Appl. Math. Comput. 218(12), 6727-6732, (2012).
14. Pant, BD, Chauhan, S: Common fixed point theorems for two pairs of weakly compatible mappings in Menger spaces and fuzzy metric spaces. Sci. Stud. Res. Ser. Math. Inform. 21(2), 81-96, (2011).
15. Roades B.E., "Contraction type mapping on 2-metric spaces" Math. Nachr. 91, 151-155, (1979).
16. Sharma S., Bamboria D.,"Some new common fixed point theorems in fuzzy metric space under strict contractive conditions"J. Fuzzy Math., 14(2), 1-11, (2006).
17. Shatanawi, W, Pitea, A: Fixed and coupled fixed point theorems of omega-distance for nonlinear contraction. Fixed Point Theory Appl. 2013, 275 (2013).
18. Shatanawi, W, Pitea, A: Omega-distance and coupled fixed point in G-metric spaces. Fixed Point Theory Appl. 2013, 208 (2013).
19. Shatanawi, W, Postolache, M: Coincidence and fixed point results for generalized weak contractions in the sense of Berinde on partial metric spaces. Fixed Point Theory Appl., 54, (2013).
20. Shatanawi, W, Postolache, M: Common fixed point results of mappings for nonlinear contractions of cyclic form in ordered metric spaces. Fixed Point Theory Appl. 2013, 60 (2013).
21. Shatanawi, W, Postolache, M: Some fixed point results for a G-weak contraction in G-metric spaces. Abstr. Appl. Anal. 2012, Article ID 815870 (2012).
22. Z. K. Deng" Fuzzy Pseudo Metric Spaces" J. Math. Anal. Appl., 86, 74-95, (1982).
23. Zeng Wenzhi" Probabilistic 2- metric Spaces" J. Math. Research Expo. 2, 241-245, (1987).
