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1. INTRODUCTION AND PRELIMINARIES 

In 1922, Banach proved the principal contraction result [4]. As we know, there have been published many 

works about fixed point theory for different kinds of contractions on some spaces such as quasi-metric 

spaces, cone metric spaces, convex metric spaces, partially ordered metric spaces, G-metric spaces, partial 

metric spaces, quasi-partial metric spaces, fuzzy metric spaces and Menger spaces. 

 The study of 2-metric spaces was initiated by Gahler[7] and some fixed point theorems in 2-metric spaces 

were proved in [8],[9], [10] and [15]. In 1987, Zeng [23] gave the generalization of 2-metric to Probabilistic 2-

metric as follows; 

A  probabilistic metric space shortly PM-Space, is an ordered pair (X, F) consisting of a non empty set X and a mapping F  from X ×  X to  L, where L  is the collection of all distribution functions (a distribution 

function F is non decreasing and left continuous mapping of reals in to [0,1] with properties, inf F(x) = 0 and sup F(x) = 1).   

1. The value of F at (x, y) ∈  X ×  X is represented by F�,�. The function F�,� are assumed satisfy the following 

conditions; 

2. (FM-0) F�,� (t)  =  1, for all t > 0, iff x = y;  
3. (FM-1) F�,� (0) =  0, if t = 0; 
4. (FM-2) F�,�(t) =F�,�(t); 

5. (FM-3) F�,� (t)  =  1 and  F�,� (s)  =  1 then F�,� (t +  s)  =  1. 
6. A mapping T: [0,1] × [0,1] → [0,1] is a t-norm, if it satisfies the following conditions; 

7. (FM-4) T(a, 1) = a for every a ∈ [0,1]; 
8. (FM-5) T(0, 0) = 0, 
9. (FM-6) T(a, b) = T(b, a) for every a, b ∈ [0,1]; 
10. (FM-7) T(c, d)  ≥ T(a, b)for c ≥ a and d ≥ b 

11. (FM-8) T(T(a, b), c) = T(a, T(b, c)) where a, b, c, d ∈ [0,1]. 
12. A Menger space is a triplet (X, F, T), where (X, F) is a PM-Space, X is a non-empty set and a t − norm 

satisfying instead of (FM-8) a stronger requirement. 

13. (FM-9)  F�,� (t +  s) ≥  T *F�,�(t), F�,�(s)+ for all x ≥ 0, y ≥ 0. 
14. For a given metric space (X, d) with usual metric d, one can put F�,� (t)  =  H (t − d(x, y)) for all x, y ∈

 X and t >  0. where H is defined as:  

                     H(t)  =  - 1  if s > 0, 0  if s ≤ 0. 
        and t-norm T is defined as T(a, b) =  min 0a, b1.  

For the proof of our result we required the following definitions. 

Definition 1.1 :-A triangular norm ∗(shortly t-norm) is a binary operation on the unit interval [0,1] such that for 

all a, b, c, d ∈ [0,1] the following conditions are satisfied: 

(1) a ∗ 1 = a, 
(2) a ∗ b = b ∗ a, 
(3) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, 
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(4) a ∗ (b ∗ c) = (a ∗ b) ∗ c. 
Examples of t-norms are a ∗ b = min0a, b1 , a ∗ b = ab and a ∗ b = max0a + b − 1,01. 

Definition 1.2 :- Let (X, F,∗) be a Menger space and  be a continuous t-norm. 

(a) A sequence {x8} in X is said to be converge to a point x in X (written x8→x) iff for every ε > 0 and λ ∈ (0, 1), there exists an integer n; =  n;(ε, λ) such that F�<,�(ε) > 1 − λ for all n ≥  n;. 
(b) A sequence {x8} in X is said to be Cauchy if for every ε > 0 and λ ∈  (0, 1), there exists an integer n; = 

n;(ε, λ) such       that F�<,�<=> (ε) > 1 − λ for all n ≥  n; and p >  0. 

(c) A Menger space in which every Cauchy sequence is convergent is said to be complete. 

Remark 1.3:- If  is a continuous t-norm, it follows from (FM − 4) that the limit of sequence in Menger space 

is uniquely determined. 

Definition 1.4:- Self maps A and B  of a Menger space (X, F,∗)  are said to be weakly compatible (or 

coincidentally commuting) if they commute at their coincidence points, i.e. if Ax =  Bx for some x ∈  X then ABx =  BAx. 
Weakly Compatible Maps 

In 1982, Sessa [17], weakened the concept of commutativity to weakly commuting mappings. Afterwards, Jungck 

[4] enlarged the concept of weakly commuting mappings by adding the notion of compatible mappings. In 1991, 

Mishra [16] introduced the notion of compatible mappings in the setting of probabilistic metric space. 

Definition 1.5 :- Self maps A and B of a Menger space (X, F,∗) are said to be compatible if FBC�D,CB�<,(t)  →  1 

for all t >  0, whenever 0x81 is a sequence in X such that Ax8 →  x, Bx8 →  x for some x in X as n → ∞. . 

Definition 1.6:- Let S and T be weakly compatible of a Menger space (X, M,∗) and Su =  Tu for some u in X then STu =  TSu =  SSu =  TTu. 
Definition 1.7:- (Implicit Relation) Let 4 be the set of real and continuous function from  

4

R R   so that 

(i)   is non-increasing in 2 ,3nd rd
argument and 

(ii) For  , 0 , , , 0u v u v v v u v   
 

Example 1.8:- Let X =  [0, 3] be equipped with the usual metric d(x, y) = |x − y| Define f, g: [0,3] → [0,3] by 

f(x)  =  J x  if x ∈ [0,1), 3  if x ∈ [1,3]. 
And                                                            g(x) = J3 − x  if x ∈ [0,1), 3       if x ∈ [1,3].  

Then for any x ∈  [1,3], x is a coincidence point and fgx =  gfx, showing that f, g are weakly compatible maps on [0, 3]. 
Lemma 1.9:-  Let (X, M,∗) be a Menger space. Then for all x, y ∈  X, M(x, y, . ) is a non-decreasing function. 

Lemma 1.10:- Let (X, M,∗) be a Menger space. If there exists k ∈  (0, 1) such that  

for all x, y ∈  X M�,�(t) ≥ M�,�(t)   ∀ t > 0 

then x =  y. 

Lemma 1.11:- Let 0xn1 be a sequence in a Menger space (X, M,∗). If there exists a number k ∈ (0, 1) such that M�<=M,�<=N(kt) ≥ M�<=N,�<(t) ∀ t > 0 and n ∈ N. 
Then 0xn1 is a Cauchy sequence in X. 

Lemma 1.12:- The only t-norm ∗ satisfying r ∗  r ≥  r for all r ∈  [0, 1] is the minimum t-norm, that is a ∗  b =  min 0a, b} for all a, b ∈  [0, 1]. 
Lemma 1.13:- Let  , ,X M   be a Menger space and  , , 0x y X t   and if for a number  0,1k  , 

   , , , ,M x y kt M x y t  then x y . 

Example 1.14:- Let (X, d) be a metric space. Define a ∗  b =  min 0a, b1 and  

M�,�(t) = P
PQR(�,�), for all x, y ∈  X.and all t >  0. Then (X, M,∗) is a Menger space. It is called the Menger space 

induced by d. 

Remark 1.15:- If self maps A and B of a Menger space (X, F,∗) are compatible then they are weakly compatible.  

 

2. MAIN RESULT 

Now we prove the following results: 

Theorem 2.1: Let  , ,X M   be a common fixed point theorem in 2- Menger space with compatible maps. Let 
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, ,A B S  and T be mappings of X into itself satisfying following conditions: 

(2.1) AX TX  and BX SX  

(2.2)  ,A S  or  ,B T  satisfy the (S-B) property 

(2.3) there exists a constant  0,1q  such that x, y, a ∈ X and t > 0, 
α TMB�,C�,U(qt) ∗ MW�,X�,U(t) + MB�,W�,U(t)

2 ∗ MC�,X�,U(t) + MB�,X�,U(t)
2 Z ≥ 0 

                                                                                                                                        (2.1.1) 

(2.4) If the pairs  ,A S  or  ,B T  are weakly compatible 

(2.5) One of A(X), B(X), S(X)or T(X)  is closed subset of X . 

Indeed, , ,A B S  and T  have a unique common fixed point in X . 

Proof. Suppose that  ,B T  satisfies the (S-B) property. Then there exists a sequence  nx  in X  such that 

lim limn n
n n
Bx Tx z

 
   for some z X . 

Since BX SX , there exists in X  a sequence  ny  such that n nBx Sy .  

Hence lim n
n
Sx z


 .  

Let us show that lim n
n
Ay z


 . 

Now by equation (2.1.1), we have 

 

α TMB�<,C�<,U(qt) ∗ MW�<,X�<,U(t) + MB�<,W�<,U(t)
2 ∗ MC�<,X�<,U(t) + MB�<,X�<,U(t)

2 Z ≥ 0 

α TMB�<,C�<,U(qt) ∗ MC�<,X�<,U(t) + MB�<,C�<,U(t)
2 ∗ MC�<,X�<,U(t) + MB�<,X�<,U(t)

2 Z ≥ 0 

Since lim limn n
n n
Bx Tx

 
  

 , , 1n nM Bx Tx t   

So taking limn
 

α TMB�<,C�<,U(qt) ∗ 1 + MB�<,C�<,U(t)
2 ∗ 1 + MB�<,C�<,U(t)

2 Z ≥ 0 

  is non-increasing in 2 ,3nd rd
 argument  

α *MB�<,C�<,U(qt) ∗ MB�<,C�<,U(t) ∗ MB�<,C�<,U(t)+ ≥ 0 

By the definition (1.7) MB�<,C�<,U(qt) ≥ MB�<,C�<,U(t) 

Since M  is continuous function lim8→] MB�<,C�<,U(qt) ≥ lim8→] MB�<,C�<,U(t) 

By lemma (1.13) 

lim limn n
n n
Ay Bx

 
  and we deduce that 

lim n
n
Ay z


  

Suppose SX  is a closed subset of X .  

Then z Su  for some u X .  

Subsequently we have,  

lim lim lim limn n n n
n n n n
Ay Bx Tx Sy Su

   
    . 

By  (2.3), we have 

α TMB^,C�<,U(qt) ∗ MW^,X�<,U(t) + MB^,W^,U(t)
2 ∗ MC�<,X�<,U(t) + MB^,X�<,U(t)

2 Z ≥ 0 



Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) DOI: 10.7176/MTM 

Vol.9, No.5, 2019 

 

4 

α TMB^,C�<,U(qt) ∗ MW^,X�<,U(t) + MB^,W^,U(t)
2 ∗ MC�<,X�<,U(t) + MB^,X�<,U(t)

2 Z ≥ 0 

Taking limn , we have  

α TMB^,W^,U(qt) ∗ MW^,W^,U(t) + MB^,W^,U(t)
2 ∗ MW^,W^,U(t) + MB^,W^,U(t)

2 Z ≥ 0 

α TMB^,W^,U(qt) ∗ 1 + MB^,W^,U(t)
2 ∗ 1 + MB^,W^,U(t)

2 Z ≥ 0 

  is non-increasing in 2 ,3nd rd
 argument  

α *MB^,W^,U(qt) ∗ MB^,W^,U(t) ∗ MB^,W^,U(t)+ ≥ 0 

By the definition (1.7) MB^,W^,U(qt) ≥ MB^,W^,U(t) 

Thus by lemma (1.13) 

We have Au Su . 

The weak compatibility of A and S implies that ASu SAu  and then AAu ASu SAu SSu   .  

On the other hand, 

 Since AX TX , there exists a point v X such that Au Tv . We claim that Au Bv  using (2.3); we 

have 

α TMB^,C_,U(qt) ∗ MW^,X_,U(t) + MB^,W^,U(t)
2 ∗ MC_,X_,U(t) + MB^,X_,U(t)

2 Z ≥ 0 

 

α TMB^,C_,U(qt) ∗ MW^,B^,U(t) + MB^,W^,U(t)
2 ∗ MC_,B^,U(t) + MB^,B^,U(t)

2 Z ≥ 0 

α TMB^,C_,U(qt) ∗ 1 ∗ 1 + MB^,C_,U(t)
2 Z ≥ 0 

 

  is non-increasing in 2 ,3nd rd
 argument  

α *MB^,C_,U(qt) ∗ MB^,C_,U(t)  ∗ MB^,C_,U(t)+ ≥ 0 

By the definition (1.7) MB^,C_,U(t) ≥ MB^,C_,U(t) 

Therefore by lemma, we have 

Au Bv  

Thus .Au Su Tv Bv     

The weak compatibility of B and T implies that BTv TBv and .TTv TBv BTv BBv     

Let us show that Au  is a common fixed point of , ,A B S  and T .  

In view of (2.3) we have  

α TMBB^,C_,U(qt) ∗ MWB^,X_,U(t) + MBB^,WB^,U(t)
2 ∗ MC_,X_,U(t) + MBB^,X_,U(t)

2 Z ≥ 0 

 

α TMBB^,B^,U(qt) ∗ MBB^,B^,U(t) + MBB^,BB^,U(t)
2 ∗ MB^,B^,U(t) + MBB^,B^,U(t)

2 Z ≥ 0 

α TMBB^,B^,U(qt) ∗ 1 + MBB^,B^,U(t)
2 ∗ 1 + MBB^,B^,U(t)

2 Z ≥ 0 

  is non-increasing in 2 ,3nd rd
 argument  

α *MBB^,B^,U(qt) ∗ MBB^,B^,U(t) ∗ MBB^,B^,U(t)+ ≥ 0 

By the definition (1.7) MBB^,B^,U(qt) ≥ MBB^,B^,U(t) 

Therefore by lemma, we have 

Au AAu SAu  and Au  is a common fixed point of A and S .  

Similarly, we can validate that Bv  is a common fixed point of B  and T .  

Since Au Bv , we achieve that Au is point of , ,A B S  and T , 
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which is called common fixed point.. 

If Au Bu Su Tu u    and Av Bv Sv Tv v    . 

 Then by (2.3), we have 

α TMB^,C_,U(qt) ∗ MW^,X_,U(t) + MB^,W^,U(t)
2 ∗ MC_,X_,U(t) + MB^,X_,U(t)

2 Z ≥ 0 

 

α TM^,_,U(qt) ∗ M^,_,U(t) + M^,^,U(t)
2 ∗ M_,_,U(t) + M^,_,U(t)

2 Z ≥ 0 

 

α TM^,_,U(qt) ∗ 1 + M^,_,U(t)
2 ∗ 1 + M^,_,U(t)

2 Z ≥ 0 

  is non-increasing in 2 ,3nd rd
 argument  

α *M^,_,U(qt) ∗ M^,_,U(t) ∗ M^,_,U(t)+ ≥ 0 

By  the definition (1.7) M^,_,U(t) ≥ M^,_,U(t) 

Therefore by lemma, we have u v  and the common fixed point is a unique.   

This explanation is verified the theorem. Hence , ,A B S  and T  have a unique common fixed point in X . 
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