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Abstract 

This research proposed a three-parameter probability distribution called Gompertz-Lindley distribution using 

Gompertz generalized (Gompertz-G) family of distributions. The mathematical properties of the distribution 

such as moment, moment generating function, survival function and hazard function were derived. The 

parameters of the distribution were estimated using the method of maximum likelihood and the distribution was 

applied to model the strength of glass fibres. Gompertz-Lindley distribution performed best (AIC = 62.8537) 

when compared with other generalizations of the Lindley distribution. 
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1. Introduction 

There are several statistical distributions that have been useful in various fields such as medicine, economics, 

insurance, agriculture, finance, engineering, etc. The quest for more flexible models to model complex data sets 

has led to several new distributions that are obtained by generalizing the baseline distributions (Oguntunde et al. 

2015). Lindley distribution has been known for its good performance generally in many applications most 

especially in modelling lifetime data sets (Shanker et al. 2017). The Lindley distribution introduced by Lindley 

(1958) in the context of Bayesian analysis as a counter example of fiducial statistics. The cumulative distribution 

function (C. D. F) and probability density function (P. D. F) are given below: 
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respectively, where 0, 0,x    and   is the scale parameter of the distribution. 

Several research works have been carried out in the past on Lindley distribution and its improvement for greater 

flexibility. Some of these can be found in the works of Shanker et al. (2017) that proposed a three-parameter 

Lindley distribution for modelling lifetime data, Shanker and Mishra (2014) which proposed two parameter 

Poisson-Lindley distribution, its properties and application to real life data set. Shanker and Mishra (2013b) 

proposed a two-parameter Lindley distribution. Zakerzadeh and Dolati (2009) introduced a three-parameter 

generalized Lindley distribution, its estimation and application to real life data. This research focuses on the 

improving the flexibility of Lindley distribution. 
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This article is arranged in sections. Section 2 includes the methods which involve the distributional properties of 

the proposed Gompertz-Lindley distribution. Section 3 includes results and discussion, which involve application 

of the distribution to real life data. Section 4 is the conclusion.  

 

2. Methods 

This section describes the properties of the proposed Gompertz-Lindley distribution. For any continuous 

distribution with cumulative distribution function ( )G x  and probability density function, ( )g x , Alizadeh et 

al. (2017) proposed the Gompertz generalized (denoted as “Gompertz-G) family of distributions that provides 

greater flexibility in modelling of real data sets. The cdf and pdf of the Gompertz-G family are defined for any 

continuous distribution as:  
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Solving the integral above, equation (3) yields the cdf and pdf of the Gompertz-G family as 
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respectively, where g(x) and G(x) are the pdf and cdf of any continuous distribution to be generalized respectively. 

The parameters, 0   and 0   are the two additional shape parameters useful for making the kurtosis 

more flexible compared to the baseline model. These produce skewness for symmetrical distributions, generate 

distributions with symmetric, left-skewed, right-skewed, and reversed-J shaped and special models with all types 

of the hazard functions. This family of distribution will provide consistently better fits than other generated 

models under the same baseline distribution (Alizadeh et al., 2017). 

Inserting equations (1) and (2) into equations (4) and (5) and simplifying, the cdf and pdf of the 

Gompertz-Lindley distribution are obtained as follows: 
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And 
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respectively. Hence equations (6) and (7) are the cdf and pdf of the Gompertz-Lindley distribution (GLD) where 

θ > 0 is a scale parameter while α > 0 and β > 0 are the extra shape parameters. 

 

 

2.1 Properties of the Gompertz-Lindley Distribution 

 

2.1.1 Valid Probability Density Function 

The above distribution is valid if and only if 
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Therefore, substituting for dx in equation (8) and simplifying, we obtain 
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Hence, equation (9) is a proof that the model in equation (7) is a valid probability density function. 

The following is a graphical representation of the pdf and cdf of the Gompertz-Lindley distribution. Given some 

values for the parameters ,   and  , possible plots for the pdf  and the cdf of the Gompertz-Lindley 

distribution are shown in the figures below: 

 

Figure 1. Probability Density Function plots of Gompertz-Lindley Distribution
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Figure.2. Cumulative Distribution Function plots of Gompertz-Lindley Distribution 

 

2.1.2 Moment 

Let X denote a continuous random variable, the nth moment of X is given by; 
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Take f(x) to be the pdf of the Gompertz-Lindley distribution as given in equation (7) and substituting in equation 

(10), to get the moment of the distribution. 

 

( )
1 1 12

1
( ) 1 1

1 1

xx

x x
ex

f x x ee e







  


 

−
−

    − − − +   + − −    
  

= + +  + +  
                 

 

(11)

 

Consider the following expansion and simplification of the pdf 

By expanding the exponential term in (11) using power series, we obtain: 
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Making use of the result in (12) above, equation (11) becomes 
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Also, using the generalized binomial theorem, we can write the last term from the above result as: 
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Making use of the result in (14) above, equation (13) becomes 
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Using power series expansion on the last term in equation (15), it gives:   
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Now, substituting equation (16), the power series expansion in equation (15) above gives: 
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Simplifying equation (17)  results in the following:

             

( ) ( )
( )

( )

1
2

1

0 0 0

1 1 1
( ) 1

1 ! 1

j ki
j xk

i
i j k

i j
f x x x

ji k
e

  

  

−
  

+−

= = =

 −  + +   
= +     

+ +      
 

 

               

( )
( )1

, ,( ) 1
j xk

i j kf x x x e



+−= +

                            (18) 

Where  

                     

( ) ( )
1

2

, ,

0 0 0

1 1 1

1 ! 1

j ki

i j k i
i j k

i j

ji k

  


  

−
  

= = =

 −  + +   
=      

+ +      
 

 

Hence, 

 

( ) ( )
( )' 1

, ,

0 0

( ) 1
n j xn n k

i j kn
E f x dx x x dxx eX




 
+−= = = + 

                                

 

( ) ( )' 1 11

, ,

0 0 0

( )
nn j x j xn k n k

i j kn
E f x dx x e dx x e dxxX

 


  
+ +− − +

 
 = = = +  

 
      

  (19) 

Solving equation (19); it gives the nth moment of X for the Gompertz-Lindley distribution as follows: 
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2.1.3 Moment Generating Function 

The mgf of a random variable X can be obtained by 
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Simplifying the integral in (21), it gives;  
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2.1.4 Survival Function 

Survival function is the likelihood that a system or an individual will not fail after a given time. Mathematically, it 

is given by: 

                            ( ) ( )1S x F x= −                                                      (23) 

Where F(x) is cdf of the Gompertz-Lindley distribution. 
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Below is a plot of the survival functions at chosen parameter values in figure 3: 
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Figure 3. Survival function plots of Gompertz-Lindley Distribution 

 

2.1.5 Hazard Function 

The hazard function which is the failure rate is defined mathematically as; 
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Taking f(x) and F(x) to be the pdf and cdf of the proposed Gompertz-Lindley distribution, the hazard function is 

given as: 
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The following is a plot of the hazard functions at chosen parameter values in figure 4. 
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Figure 4. The hazard function plots of Gompertz-Lindley distribution 

 

2.1.6 Estimation of Parameters 

Let 1 2, ,...., nX X X  be a sample of size ‘n’ independently and identically distributed random variables from 

the Gompertz-Lindley Distribution (GLD) with unknown parameters α, β and Ө defined previously. The pdf of 

the GLD is given from (7) as; 
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Using the Maximum Likelihood Estimation method, the likelihood function is given by; 
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and the log-likelihood function, ( )log | , ,l L X   = is given by; 
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Differentiating  partially with respect to α, β and Ө respectively gives the maximum likelihood estimates of the 

model parameters. These estimates can be obtained using the R programming software in the presence of data 

sets. 

 

3. Results and Discussion 

In this section, the proposed Gompertz-Lindley distribution was applied to a data set and compared with some 

extensions of the Lindley distribution. The performance was compared with some other generalizations of the 

Lindley distribution such as Generalized Lindley distribution (GenLnD), a three-parameter Lindley distribution 

(ATPLnD), Transmuted two-parameter Lindley distribution (TTPLnD), Transmuted Lindley distribution (TLnD) 

and the Lindley distribution (LnD). The data set used is on the strengths of 1.5cm glass fibres initially collected by 

members of staff at the UK National Physical Laboratory. It has been used by Mansour et al. (2018), 

Barreto-Souza et al. (2011), Bourguignon et al. (2014), Oguntunde et al. (2015) as well as Smith and Naylor 

(1987). The descriptive statistics and the performance of the models are given in the tables below: 

 

 

Table 1. Descriptive Statistics for the Glass Fibres data set 

n Minimum 
1Q  

Median 
3Q  

Mean Maximum Variance Skewness Kurtosis 

63 0.550 1.375 1.590 1.685 1.507 2.240 0.105 -0.8786 3.9238 
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Table 2. Model Performances 

Distribution Parameter 

estimates  

-ƖƖ=(-log

-likeliho

od 

value) 

AIC CAIC BIC HQIC Rank of 

model 

perform

ance 

1.GLD =0.5724  

=0.3188 

=5.9338 

28.4268 62.8537 63.2605 69.2831 65.3824 1 

2.GenLnD =2.2962 

=8.8328 

36.8119 77.6237 77.8237 81.9100 79.3095 2 

3.TTPLnD =1.7837  

=9.5847 

=-0.9779 

53.8047 113.6095 114.0162 120.0389 116.1382 3 

4. ATPLnD =1.2473 

=0.6207 

=7.0493  

69.3115 144.6229 145.0297 151.0523 147.1516 5 

5. TLnD =1.3216  

=-0.9998  

62.6736 129.3471 129.5471 133.6334 131.0329 4 

6. LnD =0.9961 81.2784 164.5569 164.6225 166.7000 165.3998 6 

ll = log-likelihood, AIC = Akaike Information Criterion, CAIC = Consistent Akaike Information Criterion, BIC = 

Bayesian Information Criterion and HQIC = Hannan Quinn Information Criterion 

 

The data size for the data set on the strengths of glass fibres from Table 1 was 63 with the mean and median 

being approximately the same (mean = 1.507, median = 1.590). The proposed Gompertz-Lindley distribution 

performed best in modelling the strength of glass fibres (AIC = 62.8537), followed by Generalized Lindley 

distribution (AIC = 77.6237).  The Lindley distribution had the least performance with the highest information 

criterion values. The performance of the model was based on the information criterion values, that is, the lower 

the information criterion value, the better the model.  

The research outcome supports the notion that generalizing a baseline distribution produces a more flexible 

distribution than the baseline distribution itself (Oguntunde et. al. 2015). 

 

4. Conclusion 

The three-parameter Gompertz-Lindley distribution was proposed in this article as an improvement on the 

Lindley distribution. The distribution provided greater flexibility in modelling real life data. The distribution also 

performed best when compared with other generalizations of the Lindley distribution to fit the strength of glass 

fibres. 
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