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Abstract 

A new lifetime distribution with three parameters, called odd Frѐchet Lomax (OFrL), is introduced. Some 

statistical properties of the OFrL are provided. Explicit expressions for the quntile, moments, moment generating 

function, probability weighted moments and order statistics are studied. Maximum likelihood estimation technique 

is employed to estimate the model parameters are studied. In addition, the superiority of the OFrL distribution is 

illustrated with applications to one real data set.   

Keywords: Odd Frѐchet -G family; Lomax distribution, Order statistics; moments. 

DOI: 10.7176/MTM/9-1-08 

 

1. Introduction 

Lomax (1954) introduced The Lomax (L) distribution. The L distribution has found wide applications such as the 

analysis of the business failure life time data, income and wealth inequality, medical and biological sciences, 

engineering, lifetime and reliability modeling. The L distribution is used for reliability modelling and life testing 

by Hassan and Al-Ghamdi (2009). Corbelini et al. (2007) proposed it to model firm size and queuing problems. 

Many researchers introduced several generalizations of the L distribution. Ghitany et al. (2007) investigated the 

Marshal–Olkin extended L distribution, Abdul-Moniem and Abdel-Hameed (2012) introduced the exponentiated 

L distribution, Lemonte and Cordeiro (2013) proposed the McDonald L, Cordeiro et al. (2013) investigated the 

gamma L distribution. The exponential L distribution is studied by ElBassiouny et al. (2015). Al-Weighted L 

introduced by Kilany (2016), and Tahir et al. (2015) introduced Weibull L distribution. The L distribution it has 

the following cumulative distribution function (cdf)  and probability density function (pdf) as  

𝐺(𝑥) = 1 − (1 +
𝑥

𝜆
)

−𝛼

          𝑥 > 0, 𝛼, 𝜆 > 0,           (1) 

and 

𝑔(𝑥) =
𝛼

𝜆
(1 +

𝑥

𝜆
)

−𝛼−1

                        𝑥 > 0, 𝛼, 𝜆 > 0.          (2) 

Where α is a shape parameters and λ is a scale parameter.  

      Recently, Haq and Elgarhy (2018) studied odd Frѐchet generated (OF-G) family of distributions. The cdf of 

OF-G is given by: 

𝐹(𝑥: 𝜃, 𝜉) = ∫
𝜃

𝑥𝜃+1
𝑒−𝑥−𝜃

[
𝐺(𝑥;𝜉)

1−𝐺(𝑥;𝜉)
]

0

𝑑𝑥 = 𝑒
−[

1−𝐺(𝑥;𝜉)
𝐺(𝑥;𝜉)

]
𝜃

     , 𝑥 ∈ 𝑅, 𝜃 > 0.                                        (3) 

The corresponding pdf to (3) is given by 

𝑓(𝑥: 𝜃, 𝜉) =
𝜃𝑔(𝑥; 𝜉)[1 − 𝐺(𝑥; 𝜉)]𝜃−1

𝐺(𝑥; 𝜉)𝜃+1
𝑒

−[
1−𝐺(𝑥;𝜉)

𝐺(𝑥;𝜉)
]

𝜃

    ,                                           (4) 

where 𝑔(𝑥: 𝜉) considers a pdf of baseline distribution. Hereafter, a random variable 𝑋 with density function (4) is 

denoted by 𝑋~𝑂𝐹 − 𝐺(𝜃, 𝜉).  

      The rest of the paper is arranged as follows: In Section 2, we define the OFrL distribution. In Section 3, we 

derive a very useful expansion for the OFrL density and distribution functions. Further, we derive some 
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mathematical properties of the new distribution. The maximum likelihood (ML) method is used to estimate the 

model parameters in Section 4. Simulation study is carried out to estimate the model parameters of OFrL 

distribution in Section 5. In Section 6, we using one real data set to show the importance of the OFrL distribution. 

Finally, summary in Section 7.                                                                                             

 

2. The OFrL distribution 

In this section,we introduce the new three-parameter OFrL distribution, the cdf and pdf of the OFrL distribution 

is given by  

𝐹(𝑥;  𝜃, 𝛼, 𝜆) = 𝑒
−[(1+

𝑥
𝜆

)
𝛼

−1]
−𝜃

     , 𝑥 > 0, 𝜃, 𝛼, 𝜆 > 0.                                        (5) 

and 

𝑓(𝑥) =
𝛼𝜃

𝜆
(1 +

𝑥

𝜆
)

𝛼−1

 [(1 +
𝑥

𝜆
)

𝛼

− 1]
−𝜃−1

 𝑒
−[(1+

𝑥
𝜆

)
𝛼

−1]
−𝜃

,    𝑥, 𝜃, 𝛼, 𝜆 > 0.      (6)   

Where λ is scale parameter and α, θ are two shape parameters. 

Figure 1 displays some plots of the pdf for the OFrL pdf for some different values of parameters. 

 
Figure 1:  Plots of the pdf for OFrL distribution for different values of parameters 

From Figure 1, we conclude that pdf of OFrL distribution can be unimodal and right skewed. 

The survival function (sf), hazard rate function (hrf), reversed hrf and cumulative hrf of X are given, respectively, 

as follows: 

𝑅(𝑥) = 1 − 𝑒
−[(1+

𝑥
𝜆

)
𝛼

−1]
−𝜃

  , 

ℎ(𝑥) =

𝛼𝜃
𝜆

(1 +
𝑥
𝜆

)
𝛼−1

 [(1 +
𝑥
𝜆

)
𝛼

− 1]
−𝜃−1

 𝑒
−[(1+

𝑥
𝜆

)
𝛼

−1]
−𝜃

  

1 − 𝑒
−[(1+

𝑥
𝜆

)
𝛼

−1]
−𝜃     , 
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𝜏(𝑥) =
𝛼𝜃

𝜆
(1 +

𝑥

𝜆
)

𝛼−1

 [(1 +
𝑥

𝜆
)

𝛼

− 1]
−𝜃−1

, 

and 

𝐻(𝑥) = −ln (1 − 𝑒
−[(1+

𝑥
𝜆

)
𝛼

−1]
−𝜃

). 

Figure 2 displays some plots of the hrf for the OFrL for some different values of parameters. 

 
Figure 2:  Plots of the hrf for OFrL distribution for different values of parameters 

From Figure 2, we conclude that the hrf of OFrL distribution can be J- shaped and increasing. 

3. Fundamental properties  

In this section, we study some fundamental statistical properties for OFrL distribution.  

3.1 Useful expansions 

In this section expansion of the pdf for OFrL distribution are calculated.  

Haq and Elgarhy (2018) expressed the equation (6) as 

𝑓(𝑥) = ∑ 𝜂𝑘𝑔(𝑥, 𝜉)𝐺(𝑥, 𝜉)𝑘

∞

𝑘=0

,                                   (7)     

where 

𝜂𝑘 = ∑
𝜃(−1)𝑖+𝑘

𝑖!
(

𝜃(𝑖 + 1) + 𝑗
𝑗

) (
𝜃(𝑖 + 1) + 𝑗 − 1

𝑘
) .

∞

𝑖,𝑗=0
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By inserting (6) in (7) we can rewite the OFrL as a linear combination of PL distribution as 

𝑓(𝑥) = ∑ 𝜂𝑘

𝛼

𝜆
(1 +

𝑥

𝜆
)

−𝛼−1

(1 − (1 +
𝑥

𝜆
)

−𝛼

)
𝑘∞

𝑘=0

,                                   (8)     

now, consider the following well-known binomial expansions (for 0 < a< 1), 

 (1 − 𝑎)𝑛 = ∑ (−1)𝑚 (
𝑎
𝑚

) 𝑎𝑚
∞

𝑚=0
.                                                                  (9) 

Thus, using (9), the following term in (8) can be expressed as  

(1 − (1 +
𝑥

𝜆
)

−𝛼

)
𝑘

= ∑ (−1)𝑚 (
𝑘
𝑚

) (1 +
𝑥

𝜆
)

−𝛼𝑚
∞

𝑚=0

.                  (10) 

Therefore, from (10) and (8) the pdf of OFrL can be write as  

𝑓(𝑥) =
1

𝜆
∑  𝑤𝑚 (1 +

𝑥

𝜆
)

−𝛼(𝑚+1)−1

                                     (11)

∞

𝑚=0

 

Where 𝑤𝑚 = ∑ 𝛼𝜂𝑘(−1)𝑚 (
𝑘
𝑚

)∞
𝑘=0 . 

3.2 Quantile and Median 

The quantile function, say 
1( ) ( )Q u F u−=  of X is given by 

                                                     𝑄(𝑢) = 𝜆 (1 + (𝑙𝑛 (
1

𝑢
))

−1

𝜃
)

1

𝛼

− 𝜆.                                (7) 

Where, u is considered as a uniform random variable on the unit interval ( )0,1 . 

The median can be calculated by setting  0.5u =  in (7). Then, the median (M) is given by  

𝑀 = 𝜆 (1 + (𝑙𝑛(2))
−1
𝜃 )

1
𝛼

− 𝜆. 

3.3 Moments 

In this subsection, we intend to derive the moments and the moment generating function of the OFrL model.  

If X has the pdf (11), then its rth moment is given by 

𝜇´𝑟 = ∫ 𝑥𝑟𝑓(𝑥)𝑑𝑥
∞

0

.                        (12) 

By inserting (11) into (12), we get 

𝜇´𝑟 =
1

𝜆
∑ 𝑤𝑚

∞

𝑚=0

∫ 𝑥𝑟 (1 +
𝑥

𝜆
)

−𝛼(𝑚+1)−1

𝑑𝑥.
∞

0

 

Let 𝑦 =
𝑥

𝜆
, then, 

𝜇´𝑟 = ∑ 𝑤𝑚𝜆𝑟

∞

𝑚=0

∫ 𝑦𝑟(1 + 𝑦)−𝛼(𝑚+1)−1𝑑𝑦.
∞

0

 

Again make the following transformation 𝑦 =
𝑤

1−𝑤
           

𝜇´𝑟 = ∑ 𝑤𝑚𝜆𝑟

∞

𝑚=0

  ∫ 𝑤𝑟(1 − 𝑤)𝛼(𝑚+1)−𝑟−1𝑑𝑤
1

0

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) DOI: 10.7176/MTM 

Vol.9, No.1, 2019 

 

98 

 

Hence, the rth moment of OFrL distribution takes the following form 

𝜏𝑟,𝑠 = ∑ 𝑤𝑚𝜆𝑟  𝐵[𝑟 + 1, 𝛼(𝑚 + 1) − 𝑟]

∞

𝑚=0

   .                                              

The moment generating function (mgf) of the OFrL distribution is 

𝑀𝑥(𝑡) = 𝐸(𝑒𝑡𝑋) = ∫ 𝑒𝑡𝑥𝑓(𝑥)
∞

0
𝑑𝑥 = ∑

𝑡𝑟

𝑟!

∞
𝑟=0 𝐸(𝑋𝑟), 

then, 

𝑀𝑥(𝑡) = ∑
𝑡𝑟

𝑟!
𝑤𝑚𝜆𝑟  𝐵[𝑟 + 1, 𝛼(𝑚 + 1) − 𝑟]

∞

𝑟,𝑚=0

.  

3.4 Order Statistics 

Let 1: 2: :...n n n nX X X   be the order statistics of a random sample of size n  following the OFrL distribution, 

with parameters  , and , then, the pdf of the thk order statistic, can be written as follows 

1

:

1
( ) ( ) ( ) (1 ( )) ,

( , 1)

k n k

k nf x f x F x F x
B k n k

− −= −
− +

                               (13) 

where, (.,.)B is the beta function. By substituting (5) and (6) in (13), then 

 

𝑓𝑘:𝑛(𝑥) =
𝜃𝛼

𝜆𝐵(𝑘, 𝑛 − 𝑘 − 1)
(1 +

𝑥

𝜆
)

𝛼−1

 [(1 +
𝑥

𝜆
)

𝛼

− 1]
−𝜃−1

𝑒
−k[(1+

𝑥
𝜆

)
𝛼

−1]
−𝜃

 

                                    (1 − 𝑒
−[(1+

𝑥
𝜆

)
𝛼

−1]
−𝜃

)

𝑛−𝑘

.                      (14) 

When we put k=1 in (14) we get the pdf of the smallest order statistics as 

𝑓1:𝑛(𝑥) =
𝑛𝜃𝛼

𝜆
(1 +

𝑥

𝜆
)

𝛼−1

 [(1 +
𝑥

𝜆
)

𝛼

− 1]
−𝜃−1

𝑒
−[(1+

𝑥
𝜆

)
𝛼

−1]
−𝜃

(1 − 𝑒
−[(1+

𝑥
𝜆

)
𝛼

−1]
−𝜃

)

𝑛−1

, 

when we put k=n in (14) we get the pdf of the largest order statistics as 

𝑓𝑛:𝑛(𝑥) =
𝑛𝜃𝛼

𝜆
(1 +

𝑥

𝜆
)

𝛼−1

 [(1 +
𝑥

𝜆
)

𝛼

− 1]
−𝜃−1

𝑒
−k[(1+

𝑥
𝜆

)
𝛼

−1]
−𝜃

. 

`4.  ML Estimation 

The ML estimates of the unknown parameters for the OFrL distribution are determined based on complete samples. 

Let  1,..., nX X   be observed values from the OFrL model with set of parameters ( , , ) .T   =  The total log-

likelihood function for the vector of parameters   can be expressed as  

1 1 1

ln ( ) ln ln ln ( 1) ln 1 ( 1) ln 1 1 1 1 .
n n n

i i i

i i i

x x x
L n n n


 

     
  

−

= = =

        
= − + + − + − + + − − + −                   

  

The elements of the score function  ( ) ( , , )U U U U   =   are given by 
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1 1

1

1

1 ln 1

ln 1 ( 1)

1 1

1 1 1 ln 1 ,

i i

n n
i

i i i

n
i i i

i

x x

xn
U

x

x x x



 


 

 


 




  

= =

− −

=

   
+ +   

     = + + − + 
   

+ − 
 

      
+ + − + +             

 



 

 
1

2

2

1 1

1
1

2

1

1

( 1) ( 1)

1 1 1

1 1 1 ,

i
in n

i

ii i i

n
i i

i

i

x
x

xn
U

x x

x x
x



 


 


 

  


 

 
 

−

−

−

= =

− −
−

−

=

   +  −  = − − + + 
  + + −    

    
− + − +         

 



 

and 

1 1

ln 1 1 1 1 ln 1 1 .
n n

i i i

i i

x x xn
U


  


   

−

= =

          
= − + − + + − + −                         

   

Then the ML estimators of the parameters α, λ and θ are obtained by setting U  , U  and  U  to be zero and 

solving them. Clearly, it is difficult to solve them, therefore  applying the Newton-Raphson’s iteration method and 

using the computer package such as Maple or R or other software. 

5. Simulation Study 

           It is very difficult to compare the theoretical performances of the different estimators (MLE) for the OFrL 

distribution. A numerical study is performed using Mathematica 9 software. Different sample sizes are considered 

through the experiments at size n =  30, 50 and 100. In addition, the different values of parameters  α, λ and θ.                                                                                                            

The experiment will be repeated 3000 times. In each experiment, the estimates of the parameters will be obtained 

by ML methods of estimation. The means, MSEs and biases for the different estimators will be reported from these 

experiments. 

 

Table (1): The parameter estimation for OFrL distribution using MLE 

n Par 
Set 1: (0.5, 0.5,0.5) Set 2: (0.5, 0.5,0.8) 

MLE Bais MSE MLE Bais MSE 

30 

𝛼 0.5203 0.0203 0.0091 0.5242 0.0241 0.0242 

𝜆 0.5058 0.0058 0.0019 0.5063 0.0063 0.0052 

𝜃 0.5297 0.0297 0.0196 0.8536 0.0536 0.0591 

50 

𝛼 0.5062 0.0062 0.0050 0.5185 0.0185 0.0103 

𝜆 0.5012 0.0012 0.0009 0.5059 0.0059 0.0026 

𝜃 0.5139 0.0139 0.0094 0.8278 0.0278 0.0270 

100 

𝛼 0.5032 0.0032 0.0022 0.5086 0.0086 0.0043 

𝜆 0.4995 -0.0005 0.0005 0.5026 0.0026 0.0011 

𝜃 0.5133 0.0133 0.0050 0.8149 0.0149 0.0121 
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Continued of Table 1 

n Par 
Set 3: (0.5, 0.5,1.2) Set 4: (0.8, 0.5,0.5) 

MLE Bais MSE MLE Bais MSE 

30 

𝛼 0.5718 0.0718 0.2789 0.8199 0.0199 0.0215 

𝜆 0.5156 0.0156 0.0229 0.5026 0.0026 0.0022 

𝜃 1.2751 0.0751 0.1121 0.5328 0.0328 0.0192 

50 

𝛼 0.5359 0.0359 0.0508 0.8182 0.0182 0.0130 

𝜆 0.5079 0.0079 0.0061 0.5030 0.0030 0.0013 

𝜃 1.2448 0.0448 0.0606 0.5196 0.0196 0.0112 

100 

𝛼 0.5160 0.0160 0.0096 0.8082 0.0082 0.0061 

𝜆 0.5050 0.0050 0.0027 0.5023 0.0023 0.0006 

𝜃 1.2240 0.0240 0.0277 0.5054 0.0054 0.0048 

n Par 
Set 5: (1.5, 0.5,0.5) Set 6: (1.5, 0.5,0.8) 

MLE Bais MSE MLE Bais MSE 

30 

𝛼 1.5453 0.0453 0.0780 1.5696 0.0696 0.1485 

𝜆 0.5063 0.0063 0.0029 0.5116 0.0116 0.0078 

𝜃 0.5299 0.0299 0.0203 0.8451 0.0451 0.0464 

50 

𝛼 1.5205 0.0205 0.0452 1.5476 0.0476 0.0897 

𝜆 0.5016 0.0016 0.0016 0.5086 0.0086 0.0049 

𝜃 0.5177 0.0177 0.0102 0.8290 0.0290 0.0266 

100 

𝛼 1.5187 0.0187 0.0212 1.5257 0.0257 0.0380 

𝜆 0.5021 0.0021 0.0008 0.5049 0.0049 0.0022 

𝜃 0.5111 0.0111 0.0048 0.8161 0.0161 0.0133 

 

6. Application 

In this section, we provide an application to a real data set to assess the flexibility of the OFrL model. In order to 

compare the OFrL model with other fitted distributions has four, five and six parameters. we compare the fits of 

the OFrL distribution with the beta generalized inverse Weibull geometric distribution (BGIWGc) ( Elbatal et al., 

2017), beta transmuted Weibull (BTW) (Afify et al., 2017), McDonald log-logistic (McLL) (Tahir et al., 2014), 

McDonald Weibull (McW) (Cordeiro et al., 2014), new modified Weibull (NMW) (Almalki and Yuan, 2013), 

transmuted complementary Weibull-geometric (TCWG) (Afify et al., 2014), beta Weibull (BW) (Lee et al., 2007) 

and exponentiated transmuted generalized Rayleigh (ETGR) (Afify et al., 2015) distributions.  

The data set (Gross and Clark, 1975) on the relief times of twenty patients receiving an analgesic is 1.1, 1.4, 1.3, 

1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3, 1.7, 2.3, 1.6, 2. 

The ML estimates along with their standard errors (SEs) of the model parameters are provided in Tables 2 and 3. 

In the same tables, the analytical measures including minus double log-likelihood (-2log L), Anderson Darling 

statistic (A*), Cramér-von Mises statistic (W*), Akaike Information Criterion (AIC), corrected Akaike information 

criterion (CAIC), Bayesian information criterion (BIC) and Hannan-Quinn information criterion (HQIC) are 

presented. 

Tables 2 list the MLEs of the model parameters and their corresponding standard whereas errors the values of -

2LogL, AIC, CAIC, BIC, HQIC, A* and W* are given in Table 3.   
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Table 2:   MLEs and their SEs (in parentheses) for the data set. 

Model 
MLE and SE 

 

OFrL (α, θ, λ) 
2.005  

(8.109) 

3.39 

(2.518) 

3.801 

(18.275) 
- - 

- 

BGIWGc (α, γ, θ, p, a, b) 
19.1874 

(33.03) 

20.5968 

(43.241) 

1.4346 

(0.837) 

9.8485 

(2.001) 

39.2308×10-5 

(63.252) 

5.8015 

(4.346) 

BTW (α, β, a, b, λ) 
5.6186 

(9.353) 

0.5311 

(0.148) 

53.3438 

(111.453) 

3.5683 

(4.265) 

-0.7718 

(3.894) 

- 

McLL (α, β, a, b, c) 
0.8811 

(0.109) 

2.0703 

(3.693) 

19.2254 

(22.341) 

32.0332 

(43.077) 

1.9263 

(5.165) 

- 

McW (α, β, a, b, c) 
2.7738 

(6.38) 

0.3802 

(0.188) 

79.108 

(119.131) 

17.8976 

(39.511) 

3.0063 

(13.968) 

- 

NMW (α, β, γ, δ, θ) 
0.1215 

(0.056) 

2.7837 

(20.37) 

8.227×10-5 

(1.512×10-3) 

0.0003 

(0.025) 

2.7871 

(0.428) 

- 

TCWG (α, β, γ, λ) 
43.6627 

(45.459) 

5.1271 

(0.814) 

0.2823 

(0.042) 

-0.2713 

(0.656) 
- 

- 

BW (α, β, a, b) 
0.8314 

(0.954) 

0.6126 

(0.34) 

29.9468 

(40.413) 

11.6319 

(21.9) 
- 

- 

ETGR (α, β, λ, δ) 
0.1033 

(0.436) 

0.6917 

(0.086) 

-0.342 

(1.971) 

23.5392 

(105.371) 
- 

- 

 

Table 3:   Measures of goodness-of-fit statistics for the data set 

Model - 2log L 
AIC CAIC BIC HQIC 

A* W* 

OFrL  30.781 36.781 38.281 34.685 37.365 0.1717 0.03137 

BGIWGc  31.662 43.662 50.124 39.468 44.828 0.24665 0.0434 

BTW  33.051 43.051 47.337 39.556 44.023 0.39769 0.06896 

McLL  33.854 43.854 48.14 40.359 44.826 0.46199 0.07904 

McW  33.907 43.907 48.193 40.412 44.879 0.46927 0.08021 

NMW  41.173 51.173 55.459 47.678 52.145 1.0678 0.17585 

TCWG  33.607 41.607 44.274 38.811 42.385 0.43603 0.07252 

BW  34.396 42.396 45.063 39.6 43.174 0.51316 0.0873 

ETGR  36.856 44.856 47.523 42.06 45.634 0.79291 0.13629 

 

Table 3 compares the fits of the OFrL distribution with the BGIWGc, BTW, McLL, McW, NMW, TCWG, BW 

and ETGR distributions. The figures in these tables show that the OFrL model has the lowest values for -2LogL, 

AIC, CAIC, HQIC, A* and W* among all fitted distributions. So, it could be chosen as the best model. The fitted 

pdf and pp plots for the OFrL model are displayed in Figure 2. Figure 3 shows the estimated cdf and sf for the 

OFrL model. From these plots it is evident that the new model provides close fit to the data. 
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Figure 2: The empirical pdf and pp plots of the OFrL model 

  
Figure 3: The empirical cdf and sf of the OFrL model 

 

 

7. Summary 

 In this paper, we study a three-parameter distribution, called the odd Frѐchet Lomax (OFrL) distribution. 

The OFrL pdf can be expressed as a mixture of L densities. We derive explicit expressions for the quantile function, 

moments, moment generating function, probability weighted moments, and order statistics. The ML estimation 

method is used to estimate the model parameters. We provide some numerical results to assess the performance of 

the proposed model. The practical importance of the OFrL distribution is demonstrated by means of one real data 

set.  
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