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Abstract 

Anthrax is an infectious disease that can be categorised under zoonotic diseases. It is caused by the bacteria known 

as Bacillus anthraces. Anthrax is one of the most leading causes of deaths in domestic and wild animals. In this 

paper, we develop and investigated a mathematical model for the transmission dynamics of the disease. Ordinary 

differential equations were formulated from the mathematical model. We performed the quantitative and 

qualitative analysis of the model to explain the transmission dynamics of the anthrax disease. We analysed and 

determined the model’s steady states solutions. The disease-free equilibrium of the anthrax model is analysed for 

locally asymptotic stability and the associated epidemic basic reproduction number. The model’s disease free 

equilibrium has shown to be locally asymptotically stable when the basic reproductive number is less than unity. 

The model is found to exhibit the existence of multiple endemic equilibria. Sensitivity analysis was performed on 

the model’s parameters to investigate the most sensitive parameters in the dynamics of the diseases.  

Keywords: Anthrax model, Basic reproductive number, Asymptotic stability, Endemic equilibrium, Sensitivity 

analysis. 

 

1 Introduction  

Bacillus anthraces is the bacteria responsible for anthrax disease. The disease is found naturally in soil and mostly 

affects wild and domestic and animals worldwide. Susceptible individuals can easily get sick with anthrax if they 

interact with infected animals or consumed contaminated dairy foods and animal products [27]. They are useful in 

the production of cheese, chemicals, yogurt and medicines. Bacteria play important roles as they manufacture and 

synthesize food particles in the digestive system to produce energy. However, bacteria organisms are responsible 

for many zoonotic diseases [29].  

In recent times, mathematical models describing the phenomenon and dynamics of infectious diseases have played 

a key role in the control of diseases in epidemiology. Some of the models are able to explain the dynamics and 

mode of disease transmission [24, 21]. Many authors have proposed several nonlinear incidence rates to model the 

disease transmission dynamics. Complex transmission dynamics of some diseases such as periodic orbits, Hoff 
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bifurcations and multiple equilibrium have been described, they clearly explain and give a comprehensive 

qualitative illustration of the disease dynamics and give better analysis and implications for the control or 

prediction of diseases [5, 13].  

Authors in [25, 2] formulated epidemic models on anthrax transmission in animals. They do not consider anthrax 

as a zoonotic disease. Anthrax affects both human and animal population in an environment. We further improve 

their work by developing an anthrax model that incorporate both human and animal populations. We incorporate 

vaccination as a compartment in the animal population. Authors in [25] analysed the compartmental model using 

the basic reproduction number but did consider sensitivity analysis. We improved the model by considering 

sensitivity analysis to see the contribution of each parameter on the model.  

Authors in [27] investigated zoonotic diseases in Bangladesh. The findings revealed that, there were 

approximately 1415 human pathogens of which sixty-one percent are zoonotic related diseases. Authors in [15] 

investigated the effectiveness of constant and pulse vaccination policies using SIR model. From the theoretical 

results of their study under constant vaccination, the dynamics of the disease model is similar to dynamics without 

vaccination. Several studies have used the methods of optimal control theory in the formulation of the models 

[12][13]. However, a number of these studies focused on the effect of vaccination on the spread and transmission 

of the diseases as in the case of the authors in [18]. Also, authors in [3] studied a disease transmission model by 

considering the impact of a protective vaccine and came out with the optimal vaccine coverage threshold required 

for disease control and eradication. Moreover, in [9], optimal control was used to study a nonlinear SIR epidemic 

model with a vaccination strategy. Several mathematical modeling techniques have been employed to study the 

role of optimal control using SIR epidemic model [17, 30, 31]. [32], formulated an SIR epidemic model by 

considering vaccination as a control.  

[16], also considered and applied optimal control to investigate the impact of chemo-therapy on malaria disease 

with infection immigrants and [4] applied optimal control methods associated with preventing exogenous 

reinfection based on a exogenous reinfection tuberculosis model. [11], considered and studied essential role of 

three basic types of control: personal protection, treatment, and mosquito reduction approaches in the control of 

malaria. Also, the authors developed a more general mathematical model in [23] of a vector-borne disease 

comprising of two vertebrate host species and one insect vector species.  

[13] formulated an optimal control problem for an SIR epidemic model with saturated incidence and saturated 

treatment. Treatment and vaccination are basically the two main efforts that are considered to reduce the disease 

transmission. The concept of basic reproduction number was used to discuss the impacts of vaccination and 

treatment on the disease transmission. A compartmental and simulation models for evaluating Med-kits 

propositioning strategies for anthrax attack response was developed [6]. [6] developed a discrete-time 

compartmental difference equation model that analysed the policy. Their findings showed that distributing any 

number of Med-kits has a significant impact on the reduction of deaths expected.  

Pathogenic bacteria and viruses can get access to waste matter and those designed for composting are not 

exception [7]. Authors in [21] formulated a model for the transmission dynamics of Listeriosis as a zoonotic 

disease in both animal and human populations. Zoonotic disease is an integral part both of human and animal 

population and therefore, the need to find alternative ways of combating these diseases.  

Studies on experimental anthrax by Robert Koch in the early 1870s, demonstrated for the first time the bacterial 

origin of a specific disease and realised the spore stage that allows persistence of listeria monocytogenes in the 

environment [22]. Shortly afterwards, successful immunization of livestock against anthrax soon followed in 1880 

by William Green field’s. Even although Louis Pasteur’s 1881 trial of a heat-cured anthrax vaccine in sheep would 

always be remembered as the initial use of a live vaccine [22]. The incidence of anthrax has actually increased in 
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African continent in recent years. This prompted the World Health Organization (WHO) to look for alternative 

measures of improving surveillance and control efforts [22]. The spread of diseases causes deaths of millions of 

people and cost of treatment of these diseases are of a great concern to every human endeavour. Public health is a 

major concern to the world at large. Adequate attention must be given to eradicate the spread of these diseases [14, 

13]. Many studies in the literature have been carried out to determine the role of treatment and vaccination on the 

spread of diseases. A discrete-time epidemic model with vaccination for measles is formulated in [1]. Moreover, 

the effects of vaccination on the spread and transmission of periodic diseases was investigated using discrete-time 

model.  

2 Anthrax Model Description and Formulation  

The model divides the total human and vector populations at any time  into seven sub-populations 

(compartments) with respect to their disease status in the system.  

The total vector population, represented by , is divided into sub-populations of Susceptible vector , 

Infectious vector , Vaccinated vector , and Recovered vector . The total vector population becomes:  

 

 The total human population also represented by , is divided into sub-populations of Susceptible humans , 

Infected humans , and Recovered humans . The total human population is given by:  

 

 

 

Figure 1 Flow chart for the anthrax disease transmission. The blue balls indicate the vector compartments and the 

black balls indicates the human compartments.  
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Susceptible animals include those that are at risk of getting the infection. Vaccinated animals include animals that 

are vaccinated before the Anthrax disease outbreak. Infectious animal compartment consists all animals that are 

showing the symptoms of the Anthrax disease. The recovered animal compartment consists of those that have 

recovered from the Anthrax disease and got temporal immunity. Susceptible human compartment includes 

individuals who are at risk of developing the infection. Infectious human compartment consists of individuals that 

are showing the symptoms of the Anthrax disease. The recovered human compartment comprises of individuals 

who have recovered from the Anthrax disease and got temporal immunity.  

The Susceptible humans are recruited into the population at a rate . Susceptible humans acquire Anthrax 

through inhalation of spores, ingestion of contaminated foods from infected animals, contact with infectious 

animals and humans at a rate . Individuals recover from the disease at a rate . Humans who are 

infected with Anthrax die at a rate and the recovered humans may lose immunity and return to the susceptible 

compartment at a rate . The natural death rate of the entire human compartments is .  

The susceptible vector  are recruited into the population at a rate . Anthrax can be acquired through contacts 

with infectious animals and humans at a rate . The natural death rate of the animals is  and the death 

rate as a result of the disease is . The animals recover at a rate  and a fraction of the vaccinated animals may 

move to the infected animal compartment at a rate  due to waning effect. Where  is the 

efficacy of the vaccine. This is because the animals may lose immunity and move back to the susceptible 

compartment at a rate τ.  

Where .  

The following system of ordinary differential equations are obtained from the model flow diagram:  
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3 Mathematical Analysis of the Anthrax model.  

3.1 Positivity and Boundedness of Solutions  

When dealing with human population model, we are aiming at getting non-negative solutions. Therefore, the 

conditions under which the system of differential equations under study has non-negative solutions is of great 

importance. The Anthrax model would be epidemically meaningful on condition that all the solutions with 

non-negative initial data remain non-negative at every time. The concept of the derivative of a function would be 

applied. The derivative of a function at a point is one of the basic properties that determines the behaviour of that 

particular function even when that function is unknown. If the derivative of a function at a point is positive, then 

the function is said to be increasing at that point. If the derivative of the function at a point is negative, then it is said 

to be decreasing and if the derivative of the function at a point is equal to zero, then the function is constant.  

Let 

 : 

, then the solution of  

 are non-negative for all time .  

If   are non-negative, then  

 are also non-negative for all time t > 0.  

Considering the human population in the model:   
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The total human population at any time  is given by:  

 

This is given by; 

 

 

The above can be written as; 

 

In the absence of mortality due to Anthrax infections, the above equation becomes;  

  

 

Solving the ordinary differential equation;  

 

 

where A is constant.  Applying the initial condition, 

 

We obtain the relation;  

 

 

Therefore; 

 

 

 the population size  

This implies that;  and  
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Also, if  , then   

Therefore,   

The total vector(livestock) population at any time (t)is given by:  

 

 

In the absence of mortality due to Anthrax infections, the above equation becomes;  

 

 

Solving the ordinary differential equation;  

 

 

where A is constant.  Applying the initial condition, 

 

We obtain the relation;  

 

 

Therefore; 

 

 

 the population size  

This implies that;  and  

Also, if  , then   
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Therefore,                                     

 

 

            

                

               

3.2 Disease-free equilibrium for the Anthrax model.  

The disease-free equilibrium of the system of ordinary differential equations in (2.1) only exists when u1 = 0 and 

all other controls are held constant.  

This is computed by setting the system of differential equations in (2.1) to zero. This is given by:  

                       

At disease free equilibrium (DFE), there are no infections and recovery. 

  

 

 

Now considering the vector (Livestock) population: At disease free equilibrium, there are no infections and 

recovery.  

 

 

 

Also, from the relation;  
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3.3 The Basic Reproductive Number  

Using the Next Generation Matrix, the linear stability of the disease-free equilibrium (ξ0) can be established. This 

is done by calculating the basic reproductive number using the next generation matrix. The basic reproductive 

number or rate is the number of secondary cases produced on average by one infected animal or person when all 

are susceptible. It combines the biology of infections with the social and behaviour of the factors influencing 

contact rate. The basic reproduction rate gives the number of secondary cases one infectious individual will 

produce in a population consisting only of susceptible individuals [28, 20]. The basic reproductive number is the 

threshold parameter that governs the spread of a disease.  

The next-generation matrix is defined as;   and . Where  denotes the spectral 

radius of .  

The basic reproductive number R0, is defined as the spectral radius of the next-generation matrix.  

The spectral radius of a matrix A is defined as the maximum of the absolute values of the eigenvalues of the matrix  

 where  represents the set of eigenvalues of the matrix A.  

Using the Next Generation Matrix, we consider only the infective classes in the system of differential equations in 

(3): 

 

 

Let f=   

and  

Let F and V be represented by; 
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By computing the product of ; 

 

Finding the eigenvalues of the matrix; 

 

 

 

 and 
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The dominant eigenvalue is , therefore  

 

But  ,  and    

 

Where   and  are the reproductive numbers for human and animal respectively. 

 

 

3.4 Global stability of the disease-free equilibrium 

Theorem: If , the disease-free equilibrium is globally asymptotically stable in the interior of Ω.  

Proof: Considering the Lyapunov function below; 

 

By computing the time derivative of P along the solutions of the system of ordinary differential equations in (3), 

the following is obtained,  

 

 

 

The time derivative of P along the solutions of the system of differential equations in (3) gives the following:  
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, if and only if . 

 if and only if or  

Therefore, the highest compact invariant set in  ,  if  

is the singleton . 

This implies that  is globally asymptotically stable in . By LaSalle’s invariant principle[10].  

  

3.6 Global stability of endemic equilibrium  

The Global behaviour of the system of differential equations in equation (3) is analysed.  

The system of differential equations in equation (3), is said to have a unique endemic equilibrium if , and 

it is globally asymptotically stable.  

The endemic equilibrium can only exists if and only if . So by letting , it implies that the endemic 

equilibrium exists.  

Considering the non-linear Lyapunov function bellow;  

 

 

Where 
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Basically, however, the arithmetic mean value exceeds the geometric mean value[26]. This follows that;  

 

 

 

 

 

 

 

 

 

 

 

http://www.iiste.org/
ANTHRAX%20MODEL-WORD.docx#biblio-26


Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.8, No.6, 2018 

 

60 

 

 

From the assumption that all the model parameters are non-negative, it implies that the derivative of the Lyapunov 

function is less than zero , ,  if the basic reproduction number of the system of differential equation in 

equation (2.1) is greater than one . Therefore by LaSalle’s Invariant Principle[10, 20], as t approaches 

infinity, all the solution of the equations of the system of differential equations in the model approaches the 

endemic equilibrium point if . 

4 Sensitivity analysis of the Anthrax model  

Basically, the essence of sensitivity analysis is to determine how robust a model is to parameter values. This is 

usually done to help identify the parameters with high impact on the basic reproduction number . The basic 

reproduction number is usually analysed to find out whether or not treatment of the infective, mortality and 

vaccination could help in the control or eradication of the disease in the population[20]  

The normalised forward sensitivity index of a variable, q, which depends differentially on a parameter, r, defined 

as:  

 

4.1 Sensitivity indices of the basic reproduction number.  

In epidemiological models, the value of the basic reproductive number determines the ability of the disease or 

infection to spread within the population. We will determine the reduction in infection due to the diseases by 

computing the sensitivity indices of the basic reproduction Number  with respect to the parameter values in 

the model. The sensitivity indices serve as determinants of the significance of each parameter in the dynamics and 

prevalence of the diseases. They measure the change in model variables when a parameter changes. In this study, 

we will compute the sensitivity indices of  to parameter values for the model which will be estimated from 

data available or already published papers in the literature. Considering the thirteen different parameters of the 

system of differential equations in model (3),  we therefore derive the sensitivity of to each of the parameters 

in the model. We incorporated sensitivity analysis in our model and an improvement of the work done by [25, 2]. 

This determine the sensitive parameters in the model which comprises of both human and animal populations.  

The sensitivity indices of the basic reproduction number  ,with respect to each of the parameters of the system 

of differential equations in model (3), are given in the table below:  
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Parameter Description Sensitivity Index(+ve/-ve) 

α animals recovery rate -ve 

β Human transmission rate +ve 

λ Aanimal transmission rate +ve 

ϒ animals recovery rate -ve 

τ Waning rate +ve 

b Vaccine efficacy +ve 

 

Proportion vaccinated -ve 

 

Human recruitment +ve 

 

Human natural death rate  -ve 

 

Disease induced death rate  -ve 

 

Animal recruitment rate +ve 

 

Animal natural death rate -ve 

 

Disease induced death rate -ve 

 

Table 2 Sensitivity indices of parameters to   

The detailed sensitivity analysis of the basic reproductive number as a result of evaluation to the other 

parameters of the model in Figure 2 shows that increasing μh, μv and αwould decrease the basic reproduction 

number . Moreover, decreasing    and  would increase the basic reproductive number . Also, by 

increasing  

, , β and λ would cause an increase in the basic reproduction  number  and by decreasing , , β 

and λ would cause a decrease in the basic reproduction number .   

5 Numerical Results 

In this section, numerical simulations are used to show the impact of vaccination using the fourth order 

Range-Kutta scheme on the state equations. [20, 8]. The state equations are solved over a simulated period using 

Range-Kutta fourth order scheme.  
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Parameter Value Reference 

α 0.0025 assumed 

β 0.0001 [19] 

ϒ 0.75 [19] 

λ 0.00005 assumed 

τ 0.004 assumed 

b 0.003 assumed 

 

0.2 [19] 

 

0.0001 assumed 

 

0.2 Steven Kim  (Health-line, 

Dec 2015)  

 

0.005 [19] 

 

0.0004 [19] 

 

0.45 assumed 

 

Table 3 Variable and parameter values of Anthrax model. 

5.1 Existence of backward bifurcation.  

In this section, we show the numerical simulation of model (3) by indicating the existence of backward bifurcation. 

Biologically, this means that the necessary condition for anthrax eradication when the basic reproduction number 

is less than one is no longer applicable. Backward bifurcation in model (3), means it is not sufficient to look at the 

dynamics of anthrax based on only reproduction number.  

 

Figure 2 Simulation of model (3)indicating the existence of backward bifurcation of the endemic equilibrium. 

The red line indicates stable equilibrium and the blue dotted lines indicates an unstable equilibrium.  
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5.2 Simulations showing effects of force of infection (β) on infectious vector and human population.  

 In this section, we simulate the model in equation (3), to see the effects of the force of infection (β)on the 

infectious population of both the human and the vector. Figure 3 shows the effects of the force of infection on the 

population of the infectious vector. As the value of (β)decreases, the population of the infectious vector reduces. 

Figure 4 shows the effects of the force of infection on the infectious human population. A reduction in the value of 

(β), reduces the number of the infectious human population.  

 

Figure 3 Simulations of the anthrax model indicating the effects of force of infections on infectious vectors.  

 

Figure 4 Simulations of anthrax model indicating the effects of force of infection on infectious humans.  

5.3 Simulations of anthrax model showing infectious vector and infectious human populations.  

The diagrams show the simulations of the anthrax model indicating the pattern of the infectious vector population 

and the infectious human populations. As the number of susceptible vector and human populations increases in the 

system, there are higher chances of individuals and animals to get infected with the disease since interactions in the 
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system increases. The model assumes the concept of mass action.  

 

Figure 5 Simulation of Anthrax model showing Infectious vector and Infectious human populations.  

5.4 Simulations of anthrax model showing susceptible vector and susceptible human populations  

The number of susceptible vector and susceptible human populations increases in the system as the result of the 

model been an open system. There are more vector and humans coming into the population and this increases the 

number of susceptible vector and human populations.  

 

Figure 6 Simulation of Anthrax model showing Susceptible vector and Susceptible human populations.  

5.5 Simulations of anthrax model showing recovered vector and recovered human population  

The recovered human population decreases steadily and there is an equilibrium at some point in time. This can be 

as a result of the number of individuals recovering from the disease are equal to the number of people getting 

infected from the anthrax disease. In the vector population, the number of animals recovering from the disease 

decreases with time and a sharp increase in the number of recovery. This could be as a result of the vaccination of 

the susceptible vector populations.  
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Figure 7 Simulation of Anthrax model showing the Recovered vector and Recovered human populations.  

6 Results and Discussion  

In this paper, we developed a compartmental model for the transmission dynamics of Anthrax infections by 

addition of vaccination of susceptible vector (Livestock) compartment. We investigate the impact of the 

vaccination compartment on the transmission dynamics of the disease. We derived the basic reproductive number 

and established that our model has a globally stable infection- free equilibrium when the basic reproductive 

number is less than one. The model exhibited an existence of multiple endemic equilibrium. The implication is that 

the disease can best be eradicated if the basic reproductive number is always less than one. The advantage of our 

model is the incorporation of both human and animal population in the model. The basic reproductive number was 

computed with respect to both the human and animal compartments.  

We performed the sensitivity analysis of the basic reproductive number to each of the parameters to determine 

which parameter is more sensitive. This analysis was incorporated into our model to compare it to the work done 

by [25, 2]. This determine the sensitive parameters in the model which comprises of both human and animal 

populations. The work done by [25, 2] critical examines the anthrax disease in only animal population. Our model 

examines anthrax in both animal and human populations and the results showed that; by decreasing the animal 

recovery rate, it would cause an increase in the basic reproduction number. Moreover, by increasing the human 

recruitment rate, it would cause an increase in the basic reproduction number. Also, decreasing human recruitment 

rate, livestock recruitment rate, livestock transmission rate and human transmission rate would cause a decrease in 

the basic reproduction number. Increasing human recruitment rate, livestock recruitment rate, livestock 

transmission rate and human transmission rate would cause an increase in the basic reproduction number.  

The advantage of our model is that it explains the dynamics of the transmission of the anthrax disease by showing 

that the parameters in both human and animal contributes to the disease transmission dynamics. However, the 

incorporation of the vaccinated compartment in our has helped improved the work of [25, 2] as the results of our 

sensitivity analysis shows the effects of the vaccinated compartment. The advantage of our model to the existing 

models is that, it compares the rate of infections and rate of recovery of anthrax disease in both the human and 

animal populations. From our numerical results, it showed that the rate of recovery of the disease in animals is 

faster than the rate of recovery of the disease in humans.  
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