Closed Ideal with Respect a Binary Operation * On BCK-Algebra

Azal Taha Abdul Wahab ${ }^{1 *}$ Rusul Hassan Naser ${ }^{2}$ Zahraa M. Ali ${ }^{3}$

1. Faculty of Education for girls\University of Kufa, Najaf, IRAQ.
2. Faculty of Education for girls\University of Kufa, Najaf, IRAQ.
3. Faculty of Education for girls\University of Kufa, Najaf, IRAQ.

* E-mail of the corresponding author: Azalt.almussawy@uokufa.edu.iq

The research is financed by authors own budget and efforts.

Abstract

In this paper, we define a new ideal of BCK-algebra, we call it a closed ideal with respect a binary operation $*$, and denoted by ($*$-closed ideal). We stated and proved some properties on closed ideal and give some examples on it.
Indexing Terms/Keywords: BCK-algebra, Closed Ideal, A Binary Operation $*$ on BCK-Algebra.

1) Introduction

The notion of BCK- algebras was introduced and formulated first in 1966 by Y.Imai and K.Iseki [Y.Imai and K.Iseki, 1966]. In the same year, K.Iseki [K.Iseki , 1966] introduced two classes of abstract algebras: BCKalgebras and BCI -algebras where the class of BCK -algebras is a proper subclass of the class of BCI -algebras. The notion of a BCI-algebra is a generalization of a BCK-algebra. The general development of BCK/ BCIalgebra the ideal theory plays an important role. We introduce a new ideal of BCK-algebra is called a closed ideal with respect a binary operation $*$, then we study and prove some properties of them.

2) Preliminary

In this section we review some concepts we needed in this paper
Definition 2.1 [Z.M.Samaei , M.A.Azadani and L.N. Ranjbar, ,2011]
Let X be a non-empty set with binary operation " $*$ " and 0 is a constant an algebraic system ($\mathrm{X}, *, 0$) is called a BCK-algebra if it satisfies the following conditions:

1) $((x * y) *(x * z)) *(z * y)=0$,
2) $(x *(x * y)) * y=0$,
3) $x * x=0$,
4) If $x * y=0$ and $y * x=0$ then $x=y, \forall x, y, z \in X$
5) $0 * x=0$.

Remarks 2.2 [A.A.A. Agboola1 and B. Davvaz2, 2015]
Let X be a BCK-algebra then:
a) A partial ordering" \leq " on X can be defined by $x \leq y$ if and only if
$\mathrm{x} * \mathrm{y}=0$.
b) A BCK-algebra X has the following properties:

1) $x * 0=x$.
2) If $x * y=0 \operatorname{implies}(x * z) *(y * z)=0$ and $(z * y) *(z * x)=0$.
3) $(x * y) * z=(x * z) * y$.
4) $(x * y) *(x * z) \leq(x * z)$.

Example 2.3

The set $\mathrm{X}=\{0,1,2\}$ with binary operation $" * "$ defined by the following table is a BCK-algebra.

Table 1. BCK-algebra

Definition 2.4 [Sun Shin Ahn and Keumseong Bang, 2003]
Let $(\mathrm{X}, *, 0)$ and $\left(\mathrm{X}^{\prime}, *^{\prime}, 0^{\prime}\right)$ be two BCK-algebras. A mapping
$f: X \rightarrow Y$ is called a homomorphism from X to X^{\prime} if for any $x, y \in X, f(x * y)=f(x) *{ }^{\prime} f(y)$.
Note that If $f: X \rightarrow Y$ is a homomorphism of BCK-algebras, then $f(0)=0$.

Definition 2.5:

A mapping $\mathrm{f}:\left(\mathrm{X},{ }^{*}, 0\right) \rightarrow\left(\mathrm{Y},{ }^{*}, 0\right)$ of BCK-algebras is called an epimorphism if f is a homomorphism and surjective.
Definition 2.6 [Young Bae Jun, and Kyoung Ja Lee, 2012]
A BCK-algebra is said to be commutative if $x *(x * y)=y *(y * x)$ for any $x, y \in X$

Example 2.7

The set $\mathrm{X}=\{0,1,2\}$ with binary operation $" *$ " defined by the following table is commutative BCK-algebra.

Table 2. commutative BCK-algebra

Definition 2.8 [Young Bae Jun, and Kyoung Ja Lee, 2012]
A nonempty subset S of a BCK-algebra X is called a $B C K$ sub algebra of X if $x * y \in S$ for all $x, y \in S$.
Definition 2.9 [Young Bae Jun, and Kyoung Ja Lee, 2012]
A nonempty subset A of a BCK-algebra X is called a BCK ideal of X if it satisfies:

1) $0 \in A$
2) $x * y \in A, y \in A$ then $x \in A$ and $x, y \in X$

Proposition 2.10 [Sajda Kadhum Mohammed \& Azal Taha Abdul Wahab, 2015]
Let I and J are BCK-algebra of X, then $I \times J$ is BCK-algebra of $X \times X$.
Proposition 2.11 [Sajda Kadhum Mohammed \& Azal Taha Abdul Wahab, 2015]
Let A and B are BCK-algebra of X , then $\mathrm{A} \cap \mathrm{B}$ is BCK-algebra of X .

Proposition 2.12 [Sajda Kadhum Mohammed \& Azal Taha Abdul Wahab, 2015]
Let A and B are $B C K$-algebra of X, then $A \cup B$ is $B C K$-algebra of X if $A \subseteq B$ or $B \subseteq A$.

3) Main Results:

In this section, we define a closed ideal with respect a binary operation $*$ of BCK-algebra. We stated and proved some properties on closed ideal and give some examples on it.

Definition 3.1

Let X is a BCK-algebra. A non empty subset I of X is said closed ideal with respect a binary operation $*$ and denoted by (*-closed ideal) on X if satisfies the following conditions :

1) $\mathrm{a} * \mathrm{~b} \in \mathrm{I} \quad \forall \mathrm{a}, \mathrm{b} \in \mathrm{I}$
2) $\mathrm{I} * \mathrm{X} \subseteq \mathrm{I}$

Example 3.2:

Let $\mathrm{X}=\{0,1,2\}$ with binary operations ' $*$ ' defined by the following tables is BCK-algebra:

Table 3. (* -closed ideal)

$*$	0	1	2
0	0	0	0
1	1	0	1
2	2	0	0

Then by usual calculation we can prove that $\mathrm{I}=\{0,1\} \subseteq \mathrm{X}$ is (* -closed ideal)

Example 3.3:

Let $\mathrm{X}=\{0,1,2,3\}$ with binary operations ' $*$ ' defined by the following tables is BCK-algebra:

Table 4. is not (*-closed ideal)

$*$	0	1	2	3
0	0	0	0	0
1	1	0	3	2
2	2	0	0	0
3	3	0	0	0

Then $\mathrm{I}=\{0,1,2\} \subseteq \mathrm{X}$ is not $(*$-closed ideal) since $1 \in \mathrm{I}$ and $2 \in \mathrm{I}$ but $1 * 2=3 \notin \mathrm{I}$

Remark 3.4

If I is (*-closed ideal) of BCK-algebra, then, $0 \in \mathrm{I}$
Proof

Let I be (*-closed ideal) so $\mathrm{I} \neq \emptyset$. Then $\exists \mathrm{a} \in \mathrm{I}$,
then $\mathrm{a} * \mathrm{x} \in \mathrm{I} \forall \mathrm{x} \in \mathrm{X}$
[by 2 of definition 3.1]
So, $0=\mathrm{a} * \mathrm{a} \in \mathrm{I}$, and therefore $0 \in \mathrm{I}$.

Remark 3.5

If I is (* -closed ideal) of BCK-algebra, then I is sub algebra.

Proof

Let I is (*-closed ideal) of BCK-algebra and let $\mathrm{a}, \mathrm{b} \in \mathrm{I}$
$\Rightarrow \mathrm{a} * \mathrm{~b} \in \mathrm{I} \Rightarrow \mathrm{I}$ is sub algebra.

Remark 3.6

The converse of above remark in general is not true.

Proof

We will prove it by using the example (3.3):
Take $\mathrm{I}=\{0,1\} \subseteq \mathrm{X}$ it is clear that is a sub algebra but I is not ($*$-closed ideal)
since $\mathrm{I} * \mathrm{x} \not \subset \mathrm{I}$ where $1 \in \mathrm{I}$ and $3 \in \mathrm{X}$ but $1 * 3=2 \notin \mathrm{I}$.
Proposition 3.7
Let X is BCK-algebra and let A, B (* -closed ideal) of X Then $\mathrm{A} \cap \mathrm{B}$ is (*-closed ideal) of X
Proof
Let X is $B C K$-algebra and since $A \cap B \neq \varnothing$ by (3.4)

1) Let $\mathrm{a}, \mathrm{b} \in \mathrm{A} \cap \mathrm{B} \Rightarrow \mathrm{a}, \mathrm{b} \in \mathrm{A}$ and $\mathrm{a}, \mathrm{b} \in \mathrm{B}$

Since A, B are (*-closed ideal) then $a * b \in A$ and $a * b \in B \Rightarrow a * b \in A \cap B$
2) Let $a \in A \cap B$ and $x \in X \Rightarrow a \in A$ and $a \in B$ and $x \in X$
$\Rightarrow \mathrm{a} * \mathrm{x} \in \mathrm{A}$ and $\mathrm{a} * \mathrm{x} \in \mathrm{B} ; \quad$ [since A and B (*-closed ideal)]
$\Rightarrow \mathrm{a} * \mathrm{x} \in \mathrm{A} \cap \mathrm{B} \Rightarrow(\mathrm{A} \cap \mathrm{B}) * \mathrm{X} \subseteq(\mathrm{A} \cap \mathrm{B})$,
then $\mathrm{A} \cap \mathrm{B}$ is ($*$-closed ideal).

Remark 3.8

The converse of above remark is not true in general.
Take $\mathrm{A}=\{0,1\}$ and $\mathrm{B}=\{0,1,2\}$ in (example 3.3) then:
$A \cap B=\{0,1\}$ is ($*$-closed ideal) but $B=\{0,1,2\}$ is not (*-closed ideal); since $1 * 2=3 \notin B$

Remark 3.9

Let X is BCK -algebra and let A, B (*-closed ideal) of X . Then $\mathrm{A} \cup \mathrm{B}$ is (*-closed ideal) of X if $\mathrm{A} \subseteq \mathrm{B}$ or $\mathrm{B} \subseteq$ A , and the converse is not true in general.

Proof

Proof is clear now, we show that the converse is not true in general; since if we take A, B and $A \cup B$ are $\left(_{*}\right.$ closed ideal) of X

Table 5. the converse is not true in general.

$*$	0	1	2	3
0	0	0	0	0
1	1	0	0	0
2	2	2	0	2
3	3	0	0	0

$\mathrm{A}=\{0,1\}$ is ($*$-closed ideal)
$B=\{0,2\}$ is $(*$-closed ideal), $A \cup B=\{0,1,2\}$ is ($*$-closed ideal),
but $\mathrm{A} \not \subset \mathrm{B}$ and $\mathrm{B} \not \subset \mathrm{A}$

Proposition 3.10

Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is BCK-algebra homomorphism. Then ker f is (* -closed ideal) of X .

Proof

Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is BCK-algebra homomorphism. Then

1) $\mathrm{a}, \mathrm{b} \in \operatorname{ker} \mathrm{f} \Rightarrow \mathrm{f}(\mathrm{a})=0$ and $\mathrm{f}(\mathrm{b})=0$

$$
\Rightarrow \mathrm{f}(\mathrm{a} * \mathrm{~b})=\mathrm{f}(\mathrm{a}) * \mathrm{f}(\mathrm{~b})=0 * 0=0 \Rightarrow \mathrm{f}(\mathrm{a} * \mathrm{~b})=0 \Rightarrow \mathrm{a} * \mathrm{~b} \in \operatorname{ker} \mathrm{f}
$$

2) let $a \in \operatorname{ker} f$ and $x \in X \Rightarrow f(a)=0$

$$
\begin{array}{lc}
\Rightarrow \mathrm{f}(\mathrm{a} * \mathrm{x})=\mathrm{f}(\mathrm{a}) * \mathrm{f}(\mathrm{x}) ; & \text { [since } \mathrm{f} \text { is a homomorphism] } \\
=0 * \mathrm{f}(\mathrm{x})=0 ; & \text { [by } 5 \text { of definition 2.1] } \\
\Rightarrow \mathrm{f}(\mathrm{a} * \mathrm{x})=0 \Rightarrow \mathrm{a} * \mathrm{x} \in \operatorname{ker} \mathrm{f} \forall \mathrm{a} \in \operatorname{ker} \mathrm{f} \text { and } \mathrm{x} \in \mathrm{X} & \\
\Rightarrow \operatorname{ker} \mathrm{f} * \mathrm{X} \subseteq \operatorname{ker} \mathrm{f} &
\end{array}
$$

Then ker f is (*-closed ideal)

Proposition 3.11

Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is BCK-algebra epimorphism if A is (*-closed ideal) of X , then $\mathrm{f}(\mathrm{A})$ is (*-closed ideal) of Y .

Proof

Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is BCK-algebra epimorphism. Let A be ($*$-closed ideal) of X then:

1) Let $x^{\prime}, y^{\prime} \in f(A)$, then $\exists x, y \in A$ such that $x^{\prime}=f(x), y^{\prime}=f(y)$, since A is (*-closed ideal) $\Rightarrow x * y \in A \Rightarrow f(x * y) \in f(A)$ but $\mathrm{f}(\mathrm{x} * \mathrm{y})=\mathrm{f}(\mathrm{x}) * \mathrm{f}(\mathrm{y}) \Rightarrow \mathrm{f}(\mathrm{x}) * \mathrm{f}(\mathrm{y}) \in \mathrm{f}(\mathrm{A})$ So $\mathrm{x}^{\prime} * \mathrm{y}^{\prime} \in \mathrm{f}(\mathrm{A})$
2) Let $a^{\prime} \in f(A)$ and $y \in Y$ since f is an epimorphism
$\Rightarrow \exists \mathrm{a} \in \mathrm{A}$ and $\mathrm{x} \in \mathrm{X}$ such that $\mathrm{f}(\mathrm{a})=\mathrm{a}^{\prime}$ and $\mathrm{f}(\mathrm{x})=\mathrm{y}$
$\Rightarrow \mathrm{a} * \mathrm{x} \in \mathrm{A}$; \quad [since A is (* -closed ideal)]
$\Rightarrow \mathrm{f}(\mathrm{a} * \mathrm{x}) \in \mathrm{f}(\mathrm{A}) \Rightarrow \mathrm{f}(\mathrm{a}) * \mathrm{f}(\mathrm{x}) \in \mathrm{f}(\mathrm{A}) ; \quad$ [since f is a homomorphism]
$\Rightarrow \mathrm{a}^{\prime} * \mathrm{y} \in \mathrm{f}(\mathrm{A}) \forall \mathrm{a}^{\prime} \in \mathrm{f}(\mathrm{A})$ and $\mathrm{y} \in \mathrm{Y}$
$\Rightarrow \mathrm{f}(\mathrm{A}) * \mathrm{Y} \subseteq \mathrm{f}(\mathrm{A})$
Then, $\mathrm{f}(\mathrm{A})$ is ($*$-closed ideal).

Proposition 3.12

Let X is BCK-algebra and let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{X}^{\prime}$ is BCK-algebra homomorphism of X if B is (* -closed ideal) of X^{\prime}, then $f-1(B)=\{a \in X: f(a) \in B\}$ is (*-closed ideal) of X.

Proof

Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{X}^{\prime}$ is BCK-algebra homomorphism of X if B is (* -closed ideal) of X^{\prime}, then:

1) Let $a, b \in f-1(B) \Rightarrow f(a), f(b) \in B$

Since B is (*-closed ideal) then:
$\mathrm{f}(\mathrm{a}) * \mathrm{f}(\mathrm{b})=\mathrm{f}(\mathrm{a} * \mathrm{~b}) \in \mathrm{B} ;$
$\Rightarrow \mathrm{a} * \mathrm{~b} \in \mathrm{f}-1(\mathrm{~B})$$\quad$ [since B is $(*$-closed ideal)]
$\Rightarrow \mathrm{a} * \mathrm{~b} \in \mathrm{f}-1(\mathrm{~B})$
2) Let $a \in f-1(B)$ and $x \in X$ so $f(x) \in X^{\prime} \Rightarrow f(a) \in B$ and $f(x) \in X^{\prime}$

$$
\begin{aligned}
& \Rightarrow \mathrm{f}(\mathrm{a}) * \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{a} * \mathrm{x}) \in \mathrm{B} ; \\
& \Rightarrow \mathrm{a} * \mathrm{x} \in \mathrm{f}-1(\mathrm{~B}) \forall \mathrm{a} \in \mathrm{f}-1(\mathrm{~B}) \text { and } \mathrm{x} \in \mathrm{X} \\
& \Rightarrow \mathrm{f}-1(\mathrm{~B}) * \mathrm{X} \subseteq \mathrm{f}-1(\mathrm{~B}) \Rightarrow \mathrm{f}-1(\mathrm{~B}) \text { is }(*-\text { closed ideal). }
\end{aligned}
$$

Proposition 3.13

Let X is BCK-algebra and let I , J be ($*$-closed ideal) of X . Then $\mathrm{I} \times \mathrm{J}$ is ($*$-closed ideal) of $\mathrm{X} \times \mathrm{X}$.

Proof

Let X is BCK-algebra, and let I , J be ($*$-closed ideal) of X

1) Let $x=\left(a, a^{\prime}\right) \in I \times J \quad$ and $y=\left(b, b^{\prime}\right) \in I \times J$
$\Rightarrow \mathrm{x} * \mathrm{y}=\left(\mathrm{a}, \mathrm{a}^{\prime}\right) *\left(\mathrm{~b}, \mathrm{~b}^{\prime}\right)=\left(\mathrm{a} * \mathrm{~b}, \mathrm{a}^{\prime} * \mathrm{~b}^{\prime}\right)$
then $\mathrm{a} * \mathrm{~b} \in \mathrm{I}$ and $\mathrm{a}^{\prime} * \mathrm{~b}^{\prime} \in \mathrm{J}$;
[since I, J are (*-closed ideal)]
$\Rightarrow\left(\mathrm{a} * \mathrm{~b}, \mathrm{a}^{\prime} * \mathrm{~b}^{\prime}\right) \in \mathrm{I} \times \mathrm{J}$ so $\mathrm{x} * \mathrm{y} \in \mathrm{I} \times \mathrm{J}$
2) Let $(x 1, x 2) \in X \times X$ and $(a 1, a 2) \in I \times J$
$\Rightarrow \mathrm{a} 1 * \mathrm{x} 1 \in \mathrm{I}, \mathrm{a} 2 * \mathrm{x} 2 \in \mathrm{~J}$ because I and J are $(*$-closed ideal)
Then $(\mathrm{a} 1, \mathrm{a} 2) *(\mathrm{x} 1, \mathrm{x} 2)=(\mathrm{a} 1 * \mathrm{x} 1, \mathrm{a} 2 * \mathrm{x} 2) \in \mathrm{I} \times \mathrm{J}$ Then $\mathrm{I} \times \mathrm{J}$ is $(*$-closed ideal)

Proposition 3.14

Let X is BCK-algebra and let $I^{\prime}=\{(a, 0) / a \in X\}$ and $J^{\prime}=\{(0, b) / b \in X\}$.
Then I^{\prime} and J^{\prime} are ($*$-closed ideal) of $\mathrm{X} \times \mathrm{X}$.

Proof

Let X is BCK-algebra to prove that I^{\prime} is (*-closed ideal).

1) Let $x, y \in I^{\prime} \Rightarrow x=(a, 0), y=(b, 0)$

$$
\Rightarrow \mathrm{x} * \mathrm{y}=(\mathrm{a}, 0) *(\mathrm{~b}, 0)=(\mathrm{a} * \mathrm{~b}, 0) \in \mathrm{I}^{\prime} ; \quad[\text { since } \mathrm{a} * \mathrm{~b} \in \mathrm{X}]
$$

$\Rightarrow \mathrm{x} * \mathrm{y} \in \mathrm{I}^{\prime}$
2) Let $x=(a, 0) \in I^{\prime}$ and $t=(r, s) \in X \times X$
$\Rightarrow \mathrm{x} * \mathrm{t}=(\mathrm{a}, 0) *(\mathrm{r}, \mathrm{s})=(\mathrm{a} * \mathrm{r}, 0 * \mathrm{~s})=(\mathrm{a} * \mathrm{r}, 0) ; \quad$ [by 5 of definition 2.1]
$\Rightarrow \mathrm{x} * \mathrm{t}=(\mathrm{a} * \mathrm{r}, 0) \in \mathrm{I}^{\prime} ; \quad \quad[$ since $\mathrm{a} * \mathrm{r} \in \mathrm{X}$]
$\Rightarrow \mathrm{I}^{\prime} * \mathrm{X} \times \mathrm{X} \subseteq \mathrm{I}^{\prime}$ then I^{\prime} is $(*$-closed ideal) of $\mathrm{X} \times \mathrm{X}$.
In a similar way, we can prove that J^{\prime} is $(*$-closed ideal) of $\mathrm{X} \times \mathrm{X}$.

Remark 3.15

Let X is BCK-algebra and let I^{\prime} and J^{\prime} be defined as in the above proposition.
Then $\mathrm{I}^{\prime} \cap \mathrm{J}^{\prime}=(0,0)$.

Proof

Let X is BCK-algebra and let I^{\prime} and J^{\prime} is (* -closed ideal) and
let $x \in I^{\prime} \cap J^{\prime} \Rightarrow x \in I^{\prime}$ and $x \in J^{\prime}$ then $x=(a, 0)$ and
$x=(0, b)$ where $a \in X$ and $b \in X \Rightarrow(a, 0)=(0, b) \Rightarrow a=0, b=0$
$\Rightarrow \mathrm{x}=(0,0) \Rightarrow \mathrm{I}^{\prime} \cap \mathrm{J}^{\prime}=(0,0)$.

References

[1] Y.Imai and K.Iseki, 1966"On Axiom Systems of Propositional Calculi XIV", Proc.Japan Acad,42 , 19-22 . http://projecteuclid.org/euclid.pja/1195522169
[2] K.Iseki , 1966 " An Algebra Related with a Propositional Calculus" , Japan Acad . ,42, 26-29. http://projecteuclid.org/euclid.pja/1195522171
[3] Z.M.Samaei , M.A.Azadani and L.N. Ranjbar, ,2011" A Class of BCK-Algebras" ,International Journal of Algebra,Vol.5,No.28,1379-1385.
http://www.m-hikari.com/ija/ija-2011/ija-25-28-2011/samaeiIJA25-28-2011.pdf
[4] A.A.A. Agboola1 and B. Davvaz2, 2015 "Introduction to Neutrosophic BCI/BCK-Algebras", Yazd University Yazd, Iran, Hindawi Publishing Corporation International Journal of Mathematics and Mathematical Sciences Volume, Article ID 370267, 6 pages.
http://fs.gallup.unm.edu/IntroductionToNeutrosophicBCI.pdf
[5] Sun Shin Ahn and Keumseong Bang, 2003"ON PROJECTIVE BCI-ALGEBRAS" Commun. Korean Math. Soc. 18 , No. 2, pp. 225-233.
http://www.mathnet.or.kr/mathnet/kms tex/980603.pdf
[6] Young Bae Jun, and Kyoung Ja Lee, 2012 "Commutative N-Ideals Based on a Sub-BCK-Algebra of a BCIAlgebra" Applied Mathematical Sciences, Vol. 6, No. 64, 3169-3175
http://www.m-hikari.com/ams/ams-2012/ams-61-64-2012/leeAMS61-64-2012.pdf
[7] Sajda Kadhum Mohammed \& Azal Taha Abdul Wahab, 2015"Some Results on Special Kind of Algebra", Mathematical Theory and Modeling ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.5, No. 1
http://www.iiste.org/Journals/index.php/MTM/article/view/19238

