Mathematical Theory and Modeling ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.7, No.8, 2017

Closed Ideal with Respect a Binary Operation * On BCK-Algebra

Azal Taha Abdul Wahab^{1*} Rusul Hassan Naser² Zahraa M. Ali³

- 1. Faculty of Education for girls\University of Kufa, Najaf, IRAQ.
- 2. Faculty of Education for girls\University of Kufa, Najaf, IRAQ.
- 3. Faculty of Education for girls\University of Kufa, Najaf, IRAQ.

* E-mail of the corresponding author: <u>Azalt.almussawy@uokufa.edu.iq</u>

The research is financed by authors own budget and efforts.

Abstract

In this paper, we define a new ideal of BCK-algebra, we call it a closed ideal with respect a binary operation *, and denoted by (* -closed ideal). We stated and proved some properties on closed ideal and give some examples on it.

Indexing Terms/Keywords: BCK-algebra, Closed Ideal, A Binary Operation * on BCK-Algebra.

1) Introduction

The notion of BCK- algebras was introduced and formulated first in 1966 by Y.Imai and K.Iseki [Y.Imai and K.Iseki, 1966]. In the same year, K.Iseki [K.Iseki, 1966] introduced two classes of abstract algebras: BCK-algebras and BCI-algebras where the class of BCK-algebras is a proper subclass of the class of BCI-algebras. The notion of a BCI-algebra is a generalization of a BCK-algebra. The general development of BCK/ BCI-algebra the ideal theory plays an important role. We introduce a new ideal of BCK-algebra is called a closed ideal with respect a binary operation *, then we study and prove some properties of them.

2) Preliminary

In this section we review some concepts we needed in this paper

Definition 2.1 [Z.M.Samaei , M.A.Azadani and L.N. Ranjbar, ,2011]

Let X be a non-empty set with binary operation "*" and 0 is a constant an algebraic system (X, *, 0) is called a BCK-algebra if it satisfies the following conditions:

1) ((x * y) * (x * z)) * (z * y) = 0,

2) (x * (x * y)) * y = 0,

3) x * x = 0,

4) If x * y = 0 and y * x = 0 then x = y, $\forall x, y, z \in X$

5) 0 * x = 0.

Remarks 2.2 [A.A.A. Agboola1 and B. Davvaz2, 2015]

Let X be a BCK-algebra then:

a) A partial ordering" \leq " on X can be defined by $x \leq y$ if and only if

x * y = 0.

b) A BCK-algebra X has the following properties:

- 1) x * 0 = x.
- 2) If x * y = 0 implies (x * z) * (y * z) = 0 and (z * y) * (z * x) = 0.
- 3) (x * y) * z = (x * z) * y.
- 4) $(x * y) * (x * z) \le (x * z).$

Example 2.3

The set $X = \{0, 1, 2\}$ with binary operation " * " defined by the following table is a BCK-algebra.

Table 1. BCK-algebra				
	*	0	1	2
	0	0	0	0
	1	1	0	0
	2	2	2	0

Table 1 DCV alashas

Definition 2.4 [Sun Shin Ahn and Keumseong Bang, 2003]

Let (X, *, 0) and (X', *', 0') be two BCK-algebras. A mapping

f: X \rightarrow Y is called a homomorphism from X to X' if for any x, y \in X, f (x * y) = f (x) *' f (y).

Note that If f: $X \rightarrow Y$ is a homomorphism of BCK-algebras, then f(0) = 0.

Definition 2.5:

A mapping f: $(X, *, 0) \rightarrow (Y, *', 0)$ of BCK-algebras is called an epimorphism if f is a homomorphism and surjective.

Definition 2.6 [Young Bae Jun, and Kyoung Ja Lee, 2012]

A BCK-algebra is said to be commutative if x * (x * y) = y * (y * x) for any $x, y \in X$

Example 2.7

The set $X = \{0, 1, 2\}$ with binary operation " * " defined by the following table is commutative BCK-algebra.

*	0	1	2
0	0	0	0
1	1	0	1
2	2	2	0

Table 2. commutative BCK-algebra

Definition 2.8 [Young Bae Jun, and Kyoung Ja Lee, 2012]

A nonempty subset S of a BCK-algebra X is called a BCK sub algebra of X if $x * y \in S$ for all $x, y \in S$.

Definition 2.9 [Young Bae Jun, and Kyoung Ja Lee, 2012]

A nonempty subset A of a BCK-algebra X is called a BCK ideal of X if it satisfies:

1) $0 \in A$

2) $x * y \in A, y \in A$ then $x \in A$ and $x, y \in X$

Proposition 2.10 [Sajda Kadhum Mohammed & Azal Taha Abdul Wahab, 2015]

Let I and J are BCK-algebra of X, then $I \times J$ is BCK-algebra of $X \times X$.

Proposition 2.11 [Sajda Kadhum Mohammed & Azal Taha Abdul Wahab, 2015]

Let A and B are BCK-algebra of X, then $A \cap B$ is BCK-algebra of X.

Proposition 2.12 [Sajda Kadhum Mohammed & Azal Taha Abdul Wahab, 2015]

Let A and B are BCK-algebra of X, then $A \cup B$ is BCK-algebra of X if $A \subseteq B$ or $B \subseteq A$.

3) Main Results:

In this section, we define a closed ideal with respect a binary operation * of BCK-algebra. We stated and proved some properties on closed ideal and give some examples on it.

Definition 3.1

Let X is a BCK-algebra. A non empty subset I of X is said closed ideal with respect a binary operation * and denoted by (*-closed ideal) on X if satisfies the following conditions :

1)
$$a * b \in I \quad \forall a, b \in I$$

$$I * X \subseteq I$$

Example 3.2:

Let $X = \{0, 1, 2\}$ with binary operations '*' defined by the following tables is BCK-algebra:

*	0	1	2
0	0	0	0
1	1	0	1
2	2	0	0

Table 3. (* -closed ideal)

Then by usual calculation we can prove that $I = \{0, 1\} \subseteq X$ is (* -closed ideal)

Example 3.3:

Let $X = \{0, 1, 2, 3\}$ with binary operations '*' defined by the following tables is BCK-algebra:

*	0	1	2	3
0	0	0	0	0
1	1	0	3	2
2	2	0	0	0
3	3	0	0	0

Table 4. is not (* -closed ideal)

Then I = {0, 1, 2} \subseteq X is not (* -closed ideal) since 1 \in I and 2 \in I but 1 * 2 = 3 \notin I

Remark 3.4

If I is (* -closed ideal) of BCK-algebra, then, $0 \in I$

Proof

www.iiste.org

[by 2 of definition 3.1]

Let I be (* -closed ideal) so $I \neq \emptyset$. Then $\exists a \in I$,

 $\text{then } a \ast x \in I \ \, \forall \; x \in X$

So, $0 = a * a \in I$, and therefore $0 \in I$.

Remark 3.5

If I is (* -closed ideal) of BCK-algebra, then I is sub algebra.

Proof

Let I is (* -closed ideal) of BCK-algebra and let a, b $\in I$

 \Rightarrow a * b \in I \Rightarrow I is sub algebra.

Remark 3.6

The converse of above remark in general is not true.

Proof

We will prove it by using the example (3.3):

Take I = $\{0, 1\} \subseteq X$ it is clear that is a sub algebra but I is not (* -closed ideal)

since $I * x \not\subset I$ where $1 \in I$ and $3 \in X$ but $1 * 3 = 2 \notin I$.

Proposition 3.7

Let X is BCK-algebra and let A, B (* -closed ideal) of X Then A \cap B is (* -closed ideal) of X

Proof

Let X is BCK-algebra and since $A \cap B \neq \emptyset$ by (3.4)

- Let a, b ∈ A ∩ B ⇒ a, b ∈ A and a, b ∈ B Since A, B are (* -closed ideal) then a * b ∈ A and a * b ∈ B ⇒ a * b ∈ A ∩ B
 Let a ∈ A ∩ B and x ∈ X ⇒ a ∈ A and a ∈ B and x ∈ X ⇒ a * x ∈ A and a * x ∈ B; [since A and B (* -closed ideal)]
- $\Rightarrow a * x \in A \text{ and } a * x \in B; \qquad [since A = a + x \in A \cap B] \Rightarrow (A \cap B) * X \subseteq (A \cap B),$

then $A \cap B$ is (* -closed ideal).

Remark 3.8

The converse of above remark is not true in general.

Take $A = \{0, 1\}$ and $B = \{0, 1, 2\}$ in (example 3.3) then:

 $A \cap B = \{0, 1\}$ is (* -closed ideal) but $B = \{0, 1, 2\}$ is not (* -closed ideal); since $1 * 2 = 3 \notin B$

Remark 3.9

Let X is BCK-algebra and let A, B (* -closed ideal) of X. Then $A \cup B$ is (* -closed ideal) of X if $A \subseteq B$ or $B \subseteq A$, and the converse is not true in general.

Proof

Proof is clear now, we show that the converse is not true in general; since if we take A, B and A \cup B are (* - closed ideal) of X

*	0	1	2	3
0	0	0	0	0
1	1	0	0	0
2	2	2	0	2
3	3	0	0	0

Table 5. the converse is not true in general.

A = $\{0, 1\}$ is (* -closed ideal)

 $B = \{0, 2\}$ is (* -closed ideal), $A \cup B = \{0, 1, 2\}$ is (* -closed ideal),

but $A \not \subset B$ and $B \not \subset A$

Proposition 3.10

Let f: $X \rightarrow Y$ is BCK-algebra homomorphism. Then ker f is (* -closed ideal) of X.

Proof

Let $f: X \to Y$ is BCK-algebra homomorphism. Then

1) $a, b \in \ker f \implies f(a) = 0 \text{ and } f(b) = 0$ $\implies f(a * b) = f(a) * f(b) = 0 * 0 = 0 \implies f(a * b) = 0 \implies a * b \in \ker f$ 2) let $a \in \ker f$ and $x \in X \implies f(a) = 0$ $\implies f(a * x) = f(a) * f(x);$ [since f is a homomorphism] = 0 * f(x) = 0; [by 5 of definition 2.1] $\implies f(a * x) = 0 \implies a * x \in \ker f \forall a \in \ker f \text{ and } x \in X$ $\implies \ker f * X \subseteq \ker f$

Then ker f is (* -closed ideal)

Proposition 3.11

Let f: $X \rightarrow Y$ is BCK-algebra epimorphism if A is (* -closed ideal) of X, then f(A) is (* -closed ideal) of Y.

Proof

Let f: $X \rightarrow Y$ is BCK-algebra epimorphism. Let A be (* -closed ideal) of X then:

 Let x', y' ∈ f(A), then ∃ x, y ∈ A such that x'=f(x), y'= f(y), since A is (*-closed ideal) ⇒ x * y ∈ A ⇒ f(x * y) ∈ f(A) but f(x * y) = f(x) * f(y) ⇒ f(x) * f(y) ∈ f(A) So x'* y' ∈ f(A)
Let a' ∈ f(A) and y ∈ Y since f is an epimorphism ⇒ ∃ a ∈ A and x ∈ X such that f(a) = a' and f(x) = y ⇒ a * x ∈ A; [since A is (*-closed ideal)] ⇒ f(a * x) ∈ f(A) ⇒ f(a) * f(x) ∈ f(A); [since f is a homomorphism] ⇒ a' * y ∈ f(A) ∀ a' ∈ f(A) and y ∈ Y ⇒ f(A) * Y ⊆ f(A)

Then, f(A) is (* -closed ideal).

Proposition 3.12

Let X is BCK-algebra and let $f: X \to X'$ is BCK-algebra homomorphism of X if B is (* -closed ideal) of X', then $f -1(B) = \{a \in X: f(a) \in B\}$ is (* -closed ideal) of X.

Proof

Let f: $X \rightarrow X'$ is BCK-algebra homomorphism of X if B is (* -closed ideal) of X', then:

 Let a, b ∈ f -1(B) ⇒ f(a), f(b) ∈ B Since B is (* -closed ideal) then: f(a) * f(b) = f(a * b) ∈ B; [since B is (* -closed ideal)] ⇒ a * b ∈ f -1(B)
Let a ∈ f -1(B) and x ∈ X so f(x) ∈ X' ⇒ f(a) ∈ B and f(x) ∈ X' ⇒ f(a) * f(x) = f(a * x) ∈ B; [since B is (* -closed ideal)] ⇒ a * x ∈ f -1(B) ∀ a ∈ f -1(B) and x ∈ X

 $\Rightarrow f - 1(B) * X \subseteq f - 1(B) \Rightarrow f - 1(B) \text{ is } (* \text{ -closed ideal}).$

Proposition 3.13

Let X is BCK-algebra and let I, J be (* -closed ideal) of X. Then $I \times J$ is (* -closed ideal) of $X \times X$. **Proof**

Let X is BCK-algebra, and let I, J be (* -closed ideal) of X

1) Let $x = (a, a') \in I \times J$ and $y = (b, b') \in I \times J$ $\Rightarrow x * y = (a, a') * (b, b') = (a * b, a' * b')$

www.iiste.org

then $a * b \in I$ and $a' * b' \in J$;

[since I, J are (* -closed ideal)]

 $\Rightarrow (a * b, a' * b') \in I \times J \text{ so } x * y \in I \times J$ 2) Let $(x1, x2) \in X \times X$ and $(a1, a2) \in I \times J$ $\Rightarrow a1 * x1 \in I$, $a2 * x2 \in J$ because I and J are (* -closed ideal)

Then $(a1, a2) * (x1, x2) = (a1 * x1, a2 * x2) \in I \times J$ Then $I \times J$ is (* -closed ideal)

Proposition 3.14

Let X is BCK-algebra and let $I' = \{(a, 0) / a \in X\}$ and $J' = \{(0, b) / b \in X\}$.

Then I' and J' are (* -closed ideal) of X \times X.

Proof

Let X is BCK-algebra to prove that I' is (* -closed ideal).

- Let x, y ∈ I' ⇒ x = (a, 0), y = (b, 0) ⇒ x * y = (a, 0) * (b, 0) = (a * b, 0) ∈ I'; [since a * b ∈ X] ⇒ x * y ∈ I'
 Let x = (a, 0) ∈ I' and t = (r, s) ∈ X × X ⇒ x * t = (a, 0) * (r, s) = (a * r, 0 * s) = (a * r, 0); [by 5 of definition 2.1]
- $\begin{array}{l} \Rightarrow x * t = (a * r, 0) \in I'; \\ \Rightarrow I' * X \times X \subseteq I' \text{ then } I' \text{ is } (* \text{ -closed ideal}) \text{ of } X \times X. \end{array}$

In a similar way, we can prove that J' is (* -closed ideal) of $X \times X$.

Remark 3.15

Let X is BCK-algebra and let I' and J' be defined as in the above proposition.

Then $I' \cap J' = (0, 0)$.

Proof

Let X is BCK-algebra and let I' and J' is (* -closed ideal) and

let $x \in I' \cap J' \Rightarrow x \in I'$ and $x \in J'$ then x = (a, 0) and

x = (0, b) where $a \in X$ and $b \in X \Rightarrow (a, 0) = (0, b) \Rightarrow a = 0, b = 0$

 $\Rightarrow x = (0, 0) \Rightarrow \ I' \cap \ J' = (0, 0).$

References

[1] Y.Imai and K.Iseki, 1966"On Axiom Systems of Propositional Calculi XIV", Proc.Japan Acad, 42 ,19-22. http://projecteuclid.org/euclid.pja/1195522169

[2] K.Iseki , 1966 " An Algebra Related with a Propositional Calculus" , Japan Acad . ,42 ,26-29. http://projecteuclid.org/euclid.pja/1195522171

[3] Z.M.Samaei , M.A.Azadani and L.N. Ranjbar, ,2011" A Class of BCK-Algebras" ,International Journal of Algebra, Vol.5, No.28, 1379-1385.

http://www.m-hikari.com/ija/ija-2011/ija-25-28-2011/samaeiIJA25-28-2011.pdf

[4] A.A.A. Agboola1 and B. Davvaz2, 2015 "Introduction to Neutrosophic BCI/BCK-Algebras", Yazd University Yazd, Iran, Hindawi Publishing Corporation International Journal of Mathematics and Mathematical Sciences Volume, Article ID 370267, 6 pages.

http://fs.gallup.unm.edu/IntroductionToNeutrosophicBCI.pdf

[5] Sun Shin Ahn and Keumseong Bang, 2003"ON PROJECTIVE BCI-ALGEBRAS" Commun. Korean Math. Soc. 18, No. 2, pp. 225–233.

http://www.mathnet.or.kr/mathnet/kms_tex/980603.pdf

[6] Young Bae Jun, and Kyoung Ja Lee, 2012 "Commutative N-Ideals Based on a Sub-BCK-Algebra of a BCI-Algebra" Applied Mathematical Sciences, Vol. 6, No. 64, 3169 - 3175

http://www.m-hikari.com/ams/ams-2012/ams-61-64-2012/leeAMS61-64-2012.pdf

[7] Sajda Kadhum Mohammed & Azal Taha Abdul Wahab, 2015"Some Results on Special Kind of Algebra", Mathematical Theory and Modeling ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.5, No.1 http://www.iiste.org/Journals/index.php/MTM/article/view/19238