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Abstract 

in this paper we study the general uncertainty principal , we obtain the best constant as 

application of Sobolev inequalities for higher order fractional derivatives . 

 

1. Introduction  

Sobolev inequality has many applications in mathematics , and it is  important to estimates 

constants in these inequalities. 

𝑘 ∈ ℕ  is  an integer of Sobolev space which can be defined  in  𝐻𝑘(ℝ𝑛)  as a function 

𝑓 ∈ 𝑙2(ℝ𝑛)  satisfying |𝛻ℓ𝑓 | ∈  𝐿2(ℝ𝑛), 1 ≤ ℓ ≤ 𝑘. 

The sobolev imbedding theorem asserts that 𝐻𝑘(ℝ𝑛)  ⊆  𝐿𝑞(ℝ𝑛) for  

𝑞 =  2𝑛/(𝑛 −  2𝑘). 

For example, let 𝑘 =  1, 𝑛 ≥  3 and 𝑞 =  2𝑛/(𝑛 −  2),  

Then we have inequality 

 

               ‖𝑓‖ 2𝑛

𝑛−2

2 ≤ 𝐶𝑛‖∇𝑓‖2
2,    𝑓 ∈ 𝐶0

∞(ℝ𝑛)                                   ( 1 ) 

(𝐶𝑛 is constant) 

 

The best value for the constant  𝐶𝑛  in inequality (1) has been estimated to be 

              𝐶𝑛 = 𝜋−1 𝑛−1(𝑛 − 2)−1 [
Γ(𝑛)

Γ(𝑛
2⁄ )

]

2
𝑛⁄

                                         ( 2 ) 

If we take the formula  

𝛤 (𝑛)

Γ(𝑛 2⁄ )
=

2𝑛−1

𝜋1 2⁄
𝛤((𝑛 + 1) 2⁄ ) 

Then  

𝐶𝑛  =
 4

𝑛(𝑛 − 2)
|𝕊𝑛|−2 𝑛⁄ = 2−2 𝑛⁄ 𝜋−(𝑛+1) 𝑛⁄

4

𝑛(𝑛 − 2)
[Γ (

𝑛 + 1

2
)]

2 𝑛⁄

 

Since 𝑆𝑛 is the n- dimential unit sphere and |𝑆𝑛| is the surface area. 
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Proposition 1: for every 𝑓 ∈ 𝐻𝑠(ℝ𝑛)  we have 

‖𝑓 − 𝑒−𝑡(−Δ)𝑠
𝑓‖

2
= √𝑡 ‖(−Δ)

𝑠
2⁄ 𝑓‖

2
 

Proof: let 𝑓 ∈ 𝐻𝑠(ℝ𝑛) then 

‖𝑓 − 𝑒−𝑡(−Δ)𝑠
𝑓‖

2

2
= ∫|𝑓(𝑘)|

2
(1 − 𝑒−𝑡(2𝜋|𝑘|)2𝑠

)
2

𝑑𝑘 

Let 1 − 𝑒−𝑥 ≤ 𝑥       for   𝑥 ≥ 0 

Hence   

‖𝑓 − 𝑒−𝑡(−Δ)𝑠
𝑓‖

2

2
≤ 𝑡 ∫(2𝜋|𝑘|)2𝑠|𝑓(𝑘)|

2
𝑑𝑘 = 𝑡‖(−∆)𝑠 2⁄ 𝑓‖

2

2
 

By taking square root of both sides we have 

 

‖𝑓 − 𝑒−𝑡(−Δ)𝑠
𝑓‖

2
= √𝑡 ‖(−Δ)

𝑠
2⁄ 𝑓‖

2
 

 

Theorem 1: let 𝑛 > 2𝑠 and 𝑞 = 2𝑛 (𝑛 − 2𝑠)⁄  then 

‖𝑓‖𝑞
2 ≤ 𝑆(𝑛, 𝑠)‖(−∆)𝑠 2⁄ ‖

2

2
                          , 𝑓 ∈ 𝐻𝑠(ℝ𝑛).          (3) 

where  

𝑆(𝑛, 𝑠) = 2−2𝑠𝜋−𝑠
Γ(

𝑛−2𝑠

2
)

Γ(
𝑛+2𝑠

2
)

[
Γ(𝑛)

Γ(𝑛 2⁄ )
]

2𝑠 𝑛⁄

                            (4) 

We have equality in (3) if and only if 

𝑓(𝑥) = 𝐶(𝜇2 + (𝑥 − 𝑥0)2)−
𝑛−2𝑠

2                  , 𝑥 ∈ ℝ𝑛. 

where  𝐶 ∈ ℝ , 𝜇 > 0  and  𝑥0 ∈ ℝ𝑛  are fixed constants. 

Also we have  

𝑆(𝑛, 𝑠) =
Γ (

𝑛 − 2𝑠
2 )

Γ (
𝑛 + 2𝑠

2 )
|𝑆𝑛|−

2𝑠
𝑛  

Proof: 

First :if 𝐶0
∞(ℝ𝑛)  is dense in 𝐻𝑠(ℝ𝑛)  and 𝑓 ∈ 𝐶0

∞(ℝ𝑛) then the relation (3)  is true. 

Now , let 𝑓, 𝑔 ∈ 𝐶0
∞(ℝ𝑛)  then 

(𝑓, 𝑔) = (𝑓, �̂�) = ∫|𝐾|𝑠𝑓(𝑘)̅̅ ̅̅ ̅̅ |𝑘|−𝑠�̂�(𝑘)𝑑𝑘 = ∫(−∆)𝑠 2⁄̂ 𝑓(𝑘)(−∆)−𝑠 2⁄̂ 𝑔(𝑘)𝑑𝑘 

                                               = ((−∆)𝑠 2⁄ 𝑓 ∙ (−∆)−𝑠 2⁄ 𝑔).   (5) 

Hence 

|(𝑓, 𝑔)| ≤ ‖(−∆)𝑠 2⁄ 𝑓‖
2

‖(−∆)−𝑠 2⁄ 𝑔‖
2
                         (6) 

Hardy-Littlewood-Sobolev inequality defined as : 
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‖(−∆)−𝑠 2⁄ (𝑔)‖
2

≤ 2−𝑠𝜋−𝑠 2⁄ (
Γ(

𝑛−2𝑠

2
)

Γ(
𝑛+2𝑠

2
)
)

1

2

[
Γ(𝑛)

Γ(𝑛 2⁄ )
]

𝑠 𝑛⁄

‖𝑔‖𝑝         (7) 

where 
1

𝑝
+

1

𝑞
= 1 , i.e 𝑝 =

2𝑛

(𝑛+2𝑠)
 

combining (6) and (7) we have  

|(𝑓, 𝑔)| ≤ (𝑆(𝑛, 𝑠))
1

2‖(−∆)𝑠 2⁄ (𝑓)‖
2

‖𝑔‖𝑝.                        (8) 

Let us take 𝑔 = 𝑓𝑞−1 , there for  we have  

|(𝑓, 𝑔)| = |(𝑓, 𝑓𝑞−1)| = ‖𝑓‖𝑞
𝑞
 

‖𝑔‖𝑝 = ‖𝑓𝑞−1‖𝑝 = ‖𝑓‖𝑞
𝑞−1

 

Hence (8) be comes 

‖𝑓‖𝑞
2 ≤ 𝑆(𝑛, 𝑠)‖(−∆)𝑠 2⁄ ‖

2

2
 

Notation : 

If 𝑥 =  (𝑥1, . . . , 𝑥𝑛), 𝑘 =  (𝑘1, . . . , 𝑘𝑛)  ∈  ℝ𝑛 , then we denote (𝑘, 𝑥) =  𝑘1𝑥1  + · · ·

+ 𝑥𝑛𝑘𝑛   and |𝑥|  =  (𝑥, 𝑥)1 2⁄ . 

If  𝑓, 𝑔 ∈  𝐿2(ℝ𝑛), then we denote (𝑓, 𝑔) = ∫ 𝑓(𝑥)𝑔(𝑥 )𝑑𝑥 . 

 

Theorem 2: Sobolev’s inequality For 𝑛 ≥  3  let 𝑓 is a function in 𝐶1(ℝ𝑛) with compact 

support. A constant 𝐶𝑛 exists depending on the dimension rather than  𝑓  so that 

 

‖𝑓‖𝑝 ≤ 𝑆𝑛‖∇𝑓‖ 2 

Where  

𝑝 =
2𝑛

𝑛 − 2
 

 

Which is denoted as  Sobolev index. 

Remark 1: if  𝑛 ≥ 3, does not make a statement in 2 and 3 dimensions. 

Remark 2: The Sobolev index can be understood as follows. assuming the inequality holds, 

pick any function f and consider its  as a scaled verion 𝑓(𝜆𝑥) with 𝜆  >  0 arbitrary. Then, 

by changing variables 

(∫ |𝑓(𝜆𝑥)|𝑝

ℝ𝑛

𝑑𝑥)

1 𝑝⁄

= 𝜆−𝑛 𝑝⁄ (∫ |𝑓(𝑥)|𝑝

ℝ𝑛

𝑑𝑥)

1 𝑝⁄

 

Which is  

≤ 𝐶𝑛 (∫ |∇𝑓(𝜆𝑥)|2

ℝ𝑛

𝑑𝑥)

1 2⁄

= 𝜆1−𝑛 2⁄ 𝐶𝑛 (∫ |∇𝑓(𝑥)|2

ℝ𝑛

𝑑𝑥)

1 2⁄

 

Thus, the   𝜆   exponents must necessarily be the same, i.e., 𝑛/𝑝 =  𝑛/2 −  1. 

Remark 3:The best possible constant in Sobolev’s inequality is defined  and it has the value. 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.7, No.6, 2017 

 

185 

𝑛(𝑛 −  2)

4
|𝑆𝑛|𝑛 2⁄  

where |𝑆𝑛| is the surface area of the unit n-sphere in   ℝ𝑛+1, i.e., 

|𝑆𝑛| =
2𝜋(𝑛+1) 2⁄

Γ (
𝑛 + 1

2 )
. 

The functions which yield equality are of the form 

𝑘

(𝜇2 + |𝑥 − 𝑎|2)(𝑛−2) 2⁄
.              𝑘 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

 

See [1] , [3] and [4] for other proofs. 

 

Theorem 3 : The values of  𝑝  is a possible for the inequality 

 

                ‖𝑓‖𝑝 ≤ 𝐶𝑛,𝑞‖∇𝑓‖𝑞.                                                         ( 9 ) 

 

to hold is   

                                         𝑝 =
𝑞𝑛

𝑛−𝑞
. 

 

In particular for     𝑞 =  1,    𝑝 =  𝑛/(𝑛 −  1). 

Proof: the proof of inequality (9)  is due to Gagliardo and Nirenberg, we prove  it in 3-space  

.  

Using the fundamental theorem of calculus 

 

𝑓(𝑥, 𝑦, 𝑧)  = ∫ 𝜕𝑥𝑓
𝑥

−∞

(𝑟, 𝑦, 𝑧)𝑑𝑟 

 

and in particular 

 

|𝑓(𝑥, 𝑦, 𝑧)| ≤ ∫ |𝜕𝑥𝑓(𝑟, 𝑦, 𝑧)|
∞

−∞

𝑑𝑟 = 𝑔1(𝑦, 𝑧). 

  

Similarly, repeating the same argument in the other variables 

 

|𝑓(𝑥, 𝑦, 𝑧)|3  ≤  𝑔1(𝑦, 𝑧)𝑔2(𝑥, 𝑧)𝑔3(𝑥, 𝑦) , 

and hence 

‖𝑓‖3 2⁄ ≤ (∫ √𝑔1(𝑦, 𝑧)√𝑔2(𝑥, 𝑧)√𝑔3(𝑥, 𝑦)𝑑𝑥𝑑𝑦𝑑𝑧)
2 3⁄

, 

Using Schwarz’ inequality on the 𝑥- variable yields the upper bound 

(∫ √𝑔1(𝑦, 𝑧)√∫ 𝑔2(𝑥, 𝑧)𝑑𝑥 √∫ 𝑔3(𝑥, 𝑦)𝑑𝑥 𝑑𝑦𝑑𝑧)

2 3⁄
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Applying Schwarz’ inequality once more in the 𝑦-variable yields 

(∫ √∫ 𝑔1(𝑦, 𝑧)𝑑𝑦 √∫ 𝑔2(𝑥, 𝑧)𝑑𝑥 √∫ 𝑔3(𝑥, 𝑦)𝑑𝑥𝑑𝑦 𝑑𝑧)

2 3⁄

, 

 

(√𝑔1(𝑦, 𝑧)𝑑𝑦𝑑𝑧√𝑔2(𝑥, 𝑧)𝑑𝑥𝑑𝑧√𝑔3(𝑥, 𝑦)𝑑𝑥𝑑𝑦)
2 3⁄

, 

 

                     =  (∫ 𝑔1(𝑦, 𝑧)𝑑𝑦𝑑𝑧 ∫ 𝑔2(𝑥, 𝑧)𝑑𝑥𝑑𝑧 ∫ 𝑔3(𝑥, 𝑦)𝑑𝑥𝑑𝑦)1 3⁄ , 

                               = (‖𝜕𝑥𝑓‖1‖𝜕𝑦𝑓‖
1

‖𝜕𝑧𝑓‖1)
1 3⁄

, 

                                               ≤ ‖∇𝑓‖1. 

                         

Thus it is established that 

 

                       ‖𝑓‖3 2⁄ ≤ ‖∇𝑓‖1 .                                            (10) 

 

To arrive at the general inequality, replace f by  |𝑓|𝑠 for a number 𝑠 >  0 to be chosen later 

and calculate 

 

‖𝑓𝑠‖3 2⁄ ≤ 𝑠‖|∇𝑓||𝑓|𝑠−1‖1 

 

Using Hölder’s inequality on the right side yields the estimate 

  

                ‖𝑓𝑠‖3 2⁄ ≤ 𝑠‖|∇𝑓|‖𝑞‖|𝑓|𝑠−1‖𝑞ꞌ                                   (11) 

  

where 1/𝑞 +  1/𝑞ꞌ =  1 or 𝑞ꞌ =  𝑞/(𝑞 −  1). Now if we choose 𝑠 =  2𝑞/(3 −  𝑞) so that 

3𝑠

2
=

(𝑠 −  1)𝑞

𝑞 −  1
=

3𝑞

3 − 𝑞
= 𝑝, 

we get from (11) 

 

‖𝑓‖𝑝
2𝑝 3⁄

≤ 2𝑞 (3 − 𝑞)⁄ ‖||∇𝑓||‖
𝑞

‖𝑓‖𝑝
𝑝(𝑞−1) 𝑞⁄

 

 

and upon dividing both sides by  ‖𝑓‖𝑝
𝑝(𝑞−1) 𝑞⁄

 we obtain 

 

‖𝑓‖𝑝
2𝑝 3−𝑝⁄ (𝑞−1) 𝑞⁄

≤ 2𝑞 (3 − 𝑞)⁄ ‖|∇𝑓|‖𝑞, 

 

which is our desired inequality. Note, as a check, that 
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𝑝[2/3 − (𝑞 −  1)/𝑞]  =  1 . 

 

Remark 4: The sharp constant in (10) is strongly related to the isoperimetric inequality. 

This is a substantial subject all by itself and we just touch it with a few remarks. The inequality 

(10) on ℝ𝑛 in its sharp form reads as 

‖𝑓‖ 𝑛
𝑛−1

≤ 𝑛
−(𝑛−1)

𝑛 |𝑆𝑛−1|−1 𝑛⁄ ‖∇𝑓‖1. 

In other words, we claim that 

𝑠𝑢𝑝𝑓≠0

‖𝑓‖ 𝑛
𝑛−1

‖∇𝑓‖1
= 𝑛

−(𝑛−1)
𝑛 |𝑠𝑛−1|−1 𝑛⁄ . 

The constant is exactly the surface area of a ball divided by the (𝑛 −  1)/𝑛 – th power of its 

volume. The constant is not attained by any function whose gradient is integrable but can be 

obtained arbitrarily close as the following calculation shows.  

Consider  Sobolev inequality (10), in ℝ𝑛, A among all functions the spherically symmetric 

functions delivers the worst constant. Thus, it is assumed that all the level sets are rearranged 

into balls with radius 

[
𝑛

|𝑆𝑛−1|
]

1
𝑛

|{𝑥: |𝑓(𝑥)| > 𝛼}|1 𝑛⁄  

and hence this inequality reads 

𝐶𝑛 ≥ [
1

𝑛 − 1
]

𝑛−1
𝑛

|𝑆𝑛−1|−1 𝑛⁄ 𝑠𝑢𝑝𝑓≠0

[∫ 𝛼1 (𝑛−1)⁄ (𝛼)
𝑛

𝑛−1𝑑𝛼
∞

0
]

𝑛−1
𝑛

∫ 𝜆(𝛼)𝑑𝛼
∞

0

               (12) 

where 𝜆(𝛼)  =  |{𝑥 ∶  |𝑓(𝑥)|  >  𝛼}|
𝑛−1

𝑛 . Two observations about the function 𝜆(𝛼): it is a non 

increasing function and can be assumed that 

∫ 𝜆(𝛼)𝑑𝛼
∞

0
= 0 as well as 𝜆(0)  =  1, since the scaling 𝜆(𝛼)  →  𝐶𝜆(𝐷𝛼) leaves the ratio in 

(12) fixed. To maximize 

[∫ 𝛼1 (𝑛−1)⁄ (𝛼)
𝑛

𝑛−1𝑑𝛼
∞

0

]

𝑛−1
𝑛

 

 

over all such functions 𝜆(𝛼) we proceed as follows. The functional 

𝜆(𝛼) ⟼ ℱ(𝜆) = [∫ 𝛼1 (𝑛−1)⁄ (𝛼)
𝑛

𝑛−1𝑑𝛼
∞

0

]

𝑛−1
𝑛

 

is convex. Now restrict the set over which to maximize in order to consist of non-increasing 

functions haveing the value 1 at 𝛼 =  0, whose integral equals 1 and are 0 outside the interval 

[0, 𝑁] for some 𝑁 larger values. This set is called  𝑇𝑁 and that 𝑇𝑁 is a convex set and 
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𝐹(𝑁)  =  𝑠𝑢𝑝𝜆∈𝑇𝑁
ℱ(𝜆) 

 

is a non- decreasing function of   𝑁. 

          Suppose that our  functional is convex it attains the maximum on the set  𝑇𝑁 at the 

extreme points which consists of functions which have only 0 and 1 values. Since the function 

is  a non-increasing, has the value 1 at 𝛼 =  0 and integrates to 1. 

It  must be 

 

𝜆𝑜𝑝𝑡(𝛼)  =  𝜆[0,1](𝛼) .                           (13) 

 

which does not depend on the value of  𝑁  as long as 𝑁 >  1, and hence inserting  the 

inequality (12),  the result is: 

 

𝐶𝑛  ≥  |𝑆𝑛−1|−1 𝑛⁄ 𝑛−(𝑛−1) 𝑛⁄  , 
 

which demonstrates our claim. 
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