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  Abstract: 

In this work we give a detailed look to the Practical implementation of 

unconstrained optimization  tested on quadratic functions. Section (1) speak 

about the theory of optimization problems, introduce definitions and theorems of 

linear programming problems , definitions and theorems of quadratic 

programming problems . Section (2) introduce some methods of unconstrained 

optimization.  In section(3) we look at methods for approximating solutions to 

equations, solving unconstrained optimization problems .        

Section(4) gives  practical implementation of some method s using Matlab  

programs. 

 Section (1) 

Introduction:           

In this section we give theory of optimization problems, introduce definitions 

and theorems of linear programming problems , definitions and theorems of 

quadratic programming problems .  

Theoretical background:       

Linear programming problems: Definition(1): 

 Optimization might be defined as the science of determining the( best) solution 

to certain mathematically defined problems , which are often models of physical 

reality.  It involves the study of optimality criteria for problems. 
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 Example(1):  

minimize :4a + 5b + 6(a + b) = 10a + 11b  

subject to :  a + b ≥ 11  

a - b ≤ 5  

7a + 12b ≥35  

a ≥ 0, b ≥ 0  

the minimum occurs at a - b = 5 and a + b = 11  

i.e. a = 8 and b = 3 with c = a + b = 11 and the value of the objective function 

10a + 11b = 80 + 33 = 113.  

Definition (2) :  

A point x ∈ ℜnis said to be a relative minimum point or a local ℜn if ∃ an ℰ > 0 

such that f(x)≥ f(x∗) ∀x ∈ ℜna strict relative minimum point of over ℜn . 

Definition (3): ( constrained optimization problems)  

The general form of a constrained optimization problem the form[9] : 

minx∈ℜn f(x)  

ci(x) = 0 , i = 1,2,…… , p            (1)  Subject to 

 

2))ci(x) ≥ 0, i = p + 1 , …… , n               

Where ci is the ith constraint function . the constraints ci(x) = 0 are termed 

equality constraints  and the set of such . constraints is denoted by (E) and the  

constraints ci(x) ≥ 0 are termed inequality constraints denoted by(Ι) 

Proposition (1): (First order necessary condition ) 
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Let S be a subset of ℜn , and let f  ∈ ȼ(1) be a function on S . If x∗ is a relative 

any minimum point of f over p , then for any f ∈ ℜn , that is a feasible direction 

at x∗ , we have  ∇f(x∗)pT ≥ 0[1] . 

 Corollary (1) : 

                Let S be a subset of ℜn , let f ∈ ȼ(1), be a function on ℜn . If 𝑥∗ is a 

relative minimum point of f and if 𝑥∗ is an interior point of ℜn , then  

 𝛻𝑓(𝑥∗) = 0. 

Descent directions at a point : 

    Consider the Taylor expansion of f(𝑥) about 𝑥′ up to the first order term  

𝑓 (𝑥′ + 𝛼𝑝) = 𝑓(𝑥′) + 𝛼𝑝𝑇𝑔 (𝑥′ + 𝛼𝜃𝑝) 

  α > 0  .       Where,0< θ < 1 , 

Since   f(𝑥) is smooth enough (i.e, all the partial derivatives are continuous ), 

then 𝑝𝑇𝑔(𝑥) is < 0, ∀𝑥 ,then sufficiently close to 𝑥′ (by continuity ). Thus if α 

is taken sufficiently small. 

 𝑝𝑇𝑔 (𝑥′ + 𝛼𝜃𝑝) < 0 

 More precisely   ∃α > 0 such that  

𝑝𝑇𝑔 (𝑥′ + 𝛼𝜃𝑝) < 0       ∀𝛼 ∈ [0, 𝛼]  

               Thus         𝑓 (𝑥′ + 𝛼𝑝) < 𝑓(𝑥′)                                                              

  we notice that if 𝑝𝑇𝑔′ < 0 , then the value of 𝑓 decreases (locally if we move 

in the direction 𝑝) . 

Such a direction 𝑝 is called a descent direction at 𝑥′, and it chamcterized . by :  

𝑝𝑇𝑔′ < 0 

An example of a descent direction at x′  is  𝑝 = −𝑔′since  

http://www.iiste.org/
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                           −𝑔′𝑇𝑔′ < 0 provided 𝑔′ ≠ 0 

 

(5): (Definite and semi definite matrices )   Definition 

       Let C be symmetric matrix we say that C is positive definite if 𝑥𝑇  𝐶𝑥 > 0 

∀𝑥 ∈ ℜ𝑛 ,𝑥 ≠ 0 , C is called positive semi definite if 

 𝑥𝑇∁𝑥 ≥ 0 for ∀ 𝑥 ∈ ℜ𝑛 

Section (2) 

Introduction:       In this section we introduce some  unconstrained  

optimization  methods tested on quadratic functions . 

Definition(6): (Unconstrained optimization problems)  

The problem takes the form: 

minimize 𝑓 (𝑥).  

Subject to 𝑥   ∈ ℜ𝑛  

Where  𝑓 is a continuous real valued function 

 Definition(7):    

    Quadratic programming (QP) is a special type of mathematical optimization 

problem. It is the problem of optimizing (minimizing or maximizing) a quadratic 

function of several variables subject to linear constraints on these variables . 
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1-Babylonian method: 

 

Graph charting the use of the Babylonian method for approximating the square 

root of 100 (10) using starting values x0 = 50, x0 = 1, and x0 = −5. Note that 

using a negative starting value yields the negative root [3]. 

Perhaps the first algorithm used for approximating is known as the 

"Babylonian method", named after the Babylonians,  or "Heron's method", 

named after the first-century Greek mathematician Hero of Alexandria who gave 

the first explicit description of the method. It can be derived from (but predates 

by many centuries) Newton's method. The basic idea is that if x is an 

overestimate to the square root of a non-negative real number S then will be 

an underestimate and so the average of these two numbers may reasonably be 

expected to provide a better approximation (though the formal proof of that 

assertion depends on the inequality of arithmetic and geometric means that 

shows this average is always an overestimate of the square root, as noted in the 

article on square roots, thus assuring convergence)[3]. This is a quadratically 

convergent algorithm, which means that the number of correct digits of the 

approximation roughly doubles with each iteration. It proceeds as follows: 

http://www.iiste.org/
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1. Begin with an arbitrary positive starting value x0 (the closer to the actual 

square root of S, the better). 

2. Let xn+1 be the average of xn and S / xn (using the arithmetic mean to 

approximate the geometric mean). 

3. Repeat step 2 until the desired accuracy is achieved. 

It can also be represented as: 

 

 

 

This algorithm works equally well in the p-adic numbers, but cannot 

be used to identify real square roots with p-adic square roots; it is 

easy, for example, to construct a sequence of rational numbers by this 

method that converges to +3 in the reals, but to −3 in the 2-adics [5]. 

Example (2):      Calculate , where S = 125348, to 6 significant figures, use 

the rough estimation method above to get x0. The number of digits in S is 

D = 6 = 2·2 + 2. So, n = 2 and the rough estimate is: 

 

 

 

 

http://www.iiste.org/
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Therefore,  

Convergence: 

Let the relative error in xn be defined by 

 

and thus 

 

Then it can be shown that 

 

and thus that 

 

and consequently that convergence is assured provided that x0 and 

S are both positive. 

http://www.iiste.org/
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Worst case for convergence: 

If using the rough estimate above with the Babylonian method, 

then the worst cases are: 

 

Thus in any case, 

 

 

 

 

 

 

 

 

Remember that rounding errors   will slow the convergence. It is recommended 

to keep at least one extra digit beyond the desired accuracy of the xn being 

calculated to minimize round off error. 

 2- Bakhshali  approximation:        This method for finding an approximation 

to a square root was described in an ancient Indian mathematical manuscript 

called the Bakhshali manuscript. It is equivalent to two iterations of the 

http://www.iiste.org/
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Babylonian method beginning with N [2]. The original presentation goes as 

follows: To calculate , let N
2
 be the nearest perfect square to S. Then, 

calculate: 

 

 

 

 

This can be also written as: 

 

 

Example (3) by discussion: 

      Consider the perfect square 2809 = 53
2
. Use the duplex method to find the 

square root of 2,809. 

Solution: 

 Set down the number in groups of two digits. 

 Define a divisor, a dividend and a quotient to find the root. 

 Given 2809. Consider the first group, 28.  

o Find the nearest perfect square below that group. 

o The root of that perfect square is the first digit of our root. 

o Since 28 > 25 and 25 = 5
2
, take 5 as the first digit in the square root. 

o For the divisor take double this first digit (2 · 5), which is 10. 

 Next, set up a division framework with a colon.  

http://www.iiste.org/
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o 28: 0 9 is the dividend and 5: is the quotient. 

o Put a colon to the right of 28 and 5 and keep the colons lined up 

vertically. The duplex is calculated only on quotient digits to the right of 

the colon. 

 Calculate the remainder. 28: minus 25: is 3:  

o Append the remainder on the left of the next digit to get the new 

dividend. 

o Here, append 3 to the next dividend digit 0, which makes the new 

dividend 30. The divisor 10 goes into 30 just 3 times. (No reserve needed 

here for subsequent deductions.) 

 Repeat the operation.  

o The zero remainder appended to 9. Nine is the next dividend. 

o This provides a digit to the right of the colon so deduct the duplex, 3
2
 = 9. 

o Subtracting this duplex from the dividend 9, a zero remainder results. 

o Ten into zero is zero. The next root digit is zero. The next duplex is 

2(3·0) = 0. 

o The dividend is zero. This is an exact square root, 53. 

Example (4): (analysis and square root framework): 

      Find the square root of 2809. 

Solution : 

    Set down the number in groups of two digits. 

The number of groups gives the number of whole digits in the root. 

Put a colon after the first group, 28, to separate it. 

From the first group, 28, obtain the divisor, 10, since 

28 > 25=5
2
 and by doubling this first root, 2x5=10. 

       Gross dividend:     28:  0  9. Using mental math: 

              Divisor: 10)     3  0   Square: 10)  28:  30  9 

http://www.iiste.org/
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    Duplex, Deduction:     25: xx 09  Square root:  5:   3. 0 

             Dividend:         30 00 

            Remainder:      3: 0 0 0 0 

Square Root, Quotient:      5:  3. 0         

3 -Taylor series: 

If N is an approximation to , a better approximation can be found by using 

the Taylor series of the square root function: 

 

As an iterative method, the order of convergence is equal to the number of 

terms used. With 2 terms, it is identical to the Babylonian method; With 3 

terms, each iteration takes almost as many operations as the Bakhshali 

approximation, but converges more slowly. Therefore, this is not a 

particularly efficient way of calculation. 

Section(3) 

Unconstrained optimization methods: 

 Introduction :In this section we are going to look at some unconstrained 

optimization algorithms  and test them on non linear functions. 

1 - Newton's Method: 

Introduction:  Newton's Method attempts to construct a sequence xn from an 

initial guess x0 that converges towards 𝑥∗such that . This is 𝑥∗ called 

a stationary point of   f . 

http://www.iiste.org/
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The second order Taylor expansion fT(x) of the function around xn (where Δx = x 

− xn) is: , 

attains its extremum when its derivative with respect to Δx is equal to zero, i.e. 

when Δx solves the linear equation: 

 

(Considering the right-hand side of the above equation as a quadratic in  Δx, 

with constant coefficients.) 

Thus, provided that is a twice-differentiable function well approximated 

by its second order Taylor expansion and the initial guess   is chosen close 

enough to x∗, the sequence (xn) defined by:  

 

will converge towards a root of f', i.e. 𝑥∗ for which f'(𝑥∗) = 0. 

 Newton's method (also known as the Newton–Raphson method), named after 

Isaac Newton and Joseph Raphson, is a method for finding successively better 

approximations to the roots (or zeroes) of a real-valued function. The algorithm 

is first in the class of Householder's methods, succeeded by Halley's method. 

2- The Newton-Raphson method in one variable: 

Given a function ƒ(x) and its derivative ƒ '(x), we begin with a first guess x0 for a 

root of the function. Provided the function is reasonably well-behaved a better 

approximation x1 is 

http://www.iiste.org/
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Geometrically, x1 is the intersection with the x-axis of a line tangent to f at 

f(x0). 

The process is repeated until a sufficiently accurate value is reached: 

 

The idea of the method is as follows: one starts with an initial guess which is 

reasonably close to the true root, then the function is approximated by its tangent 

line (which can be computed using the tools of calculus), and one computes the 

x-intercept of this tangent line (which is easily done with elementary algebra). 

This x-intercept will typically be a better approximation to the function's root 

than the original guess, and the method can be iterated [5], [9]. 

Suppose ƒ : [a, b] → R is a differentiable function defined on the interval [a, b] 

with values in the real numbers R. The formula for converging on the root can 

be easily derived. Suppose we have some current approximation xn. Then we 

can derive the formula for a better approximation, xn+1 by referring to the 

diagram on the right. We know from the definition of the derivative at a given 

point that it is the slope of a tangent at that point. 

That is 

 

Here, f ' denotes the derivative of the function f. Then by simple algebra we 

can derive 

http://www.iiste.org/
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We start the process off with some arbitrary initial value x0. (The closer to 

the zero, the better. But, in the absence of any intuition about where the 

zero might lie, a "guess and check" method might narrow the possibilities 

to a reasonably small interval by appealing to the intermediate value 

theorem.) The method will usually converge, provided this initial guess is 

close enough to the unknown zero, and that ƒ'(x0) ≠ 0. Furthermore, for a 

zero of multiplicity 1, the convergence is at least quadratic (see rate of 

convergence) in a neighborhood of the zero, which intuitively means that 

the number of correct digits roughly at least doubles in every step. More 

details can be found in the analysis section below. 

The Householder's methods are similar but have higher order for even 

faster convergence. However, the extra computations required for each 

step can slow down the overall performance relative to Newton's method, 

particularly if f or its derivatives are computationally expensive to 

evaluate [8]. 

 

Proof of quadratic convergence for Newton's iterative method: 

          According to Taylor's theorem, any function f(x) which has a 

continuous second derivative can be   by an expansion about a point that 

is close to a root of f(x). Suppose this root is Then the expansion of 

f(α) about xn is: 

 

      (1) 

http://www.iiste.org/
http://en.wikipedia.org/wiki/Intermediate_value_theorem
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where the Lagrange form of the Taylor series expansion remainder is 

 

where ξn is in between xn and  

Since is the root, (1) becomes: 

 

  
  

  
  

 

(2) 

Dividing equation (2) by and rearranging gives 

 

  
  

  
  

 

(3) 

Remembering that xn+1 is defined by 

 

  
  

  
  

 

(4) 

one finds that 

 

That is, 

 

      (5) 
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Taking absolute value of both sides gives 

 

  
  

  
  

 

(6) 

 

Equation (6) shows that the rate of convergence is quadratic if 1-

following conditions are satisfied: 

1.  

2.   sufficiently close to the root  

The term sufficiently close in this context means the following: 

(a) Taylor approximation is accurate enough such that we can ignore higher 

order terms, 

(b)  

(c) 

 

Finally, (6) can be expressed in the following way: 
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where M is the supremum of the variable coefficient of 𝜖2on the interval 

defined in the condition 1, that is: 

 

The initial point  has to be chosen such that conditions ( 1) through ( 3) 

are satisfied, where the third condition requires that  

Minimization and maximization problems ( Newton's method in 

optimization): 

Newton's method can be used to find a minimum or maximum of a 

function. The derivative is zero at a minimum or maximum, so minima 

and maxima can be found by applying Newton's method to the derivative. 

The iteration becomes: 

 

Example(5) :      Let's start by computing . Of course, this is easy if you 

have a calculator, but it is a simple example which will illustrate a more general 

method.  

First, we'll think about the problem in a slightly different way. We are looking 

for which is a solution of the equation .  

The problem is that it is difficult to generate a numerical solution to this 

equation. But remember in the section on approximations , we saw how to 

approximate a function near a given point by its tangent line. The idea here will 

http://www.iiste.org/
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be to actually solve the approximate equation which is easy since it is a linear 

one.  

If we think for a minute, we know that is between 2 and 3 so let's just choose 

to use the linear approximation at . We know that so that 

. The linear approximation is then  

 

Notice that the linear equation is easy to solve. We will then approximate the 

solution to by the solution to which is . If 

you have a look on a calculator, you will see that . So you can 

see that we have found a fairly good approximation.  

We can understand what we have done graphically. We are looking for a 

solution to which is where the graph of crosses the X-axis. We 

approximate that point by the point where the tangent line crosses the X-axis 

Now this is where the story becomes interesting since we can repeat what we 

have just done using the new approximate solution. That is, we will call 

and consider the linear approximation at that point.  

 

Now if we call the solution to , we find that which is an 

even better approximate solution to the equation. We could continue this process 
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generating better approximations to at every step. This is the basic idea of a 

technique known as Newton's Method 

The general method:  

        More generally, we can try to generate approximate solutions to the 

equation using the same idea. Suppose that is some point which we 

suspect is near a solution. We can form the linear approximation at and solve 

the linear equation instead.  

That is, we will call the solution to . In other 

words,  

 

If our first guess was a good one, the approximate solution should be an 

even better approximation to the solution of . Once we have , we can 

repeat the process to obtain , the solution to the linear equation  

 

Solving in the same way, we see that  

 

http://www.iiste.org/
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Maybe now you see that we can repeat this process indefinitely: from , we 

generate and so on. If, after n steps, we have an approximate solution , 

then the next step is  

 

Provided we have started with a good value for , this will produce 

approximate solutions to any degree of accuracy. 

3-The gradient –descent method: 

The gradient –descent method is the simplest Newton –type for nonlinear 

optimization .The price for this simplicity is that the method is hopelessly 

inefficient at solving most problems . The method has theoretical uses , though , 

in proving the convergence of other methods, and in providing lower bounds on 

the performance of better algorithms . It is well known and has been widely used 

and discussed, so it is worthwhile being familiar with it if only to know not to 

use it on general problems . The gradient –descent is old , but not as old as 

Newton's method ,it is much simpler than Newton's method . 

The gradientt –descent method computes the search direction form 

𝑝𝑘 = −𝛻𝑓(𝑥𝑘) 

and  then uses a line search to determine 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘  . 

Hence the cost of computing the search direction is just the cost of computing 

the gradient . Since the gradient must be computed to determine if the solution 

has been found , it is reasonable to say that the search direction is available for 

free. The search direction is a descent direction if  𝛻𝑓(𝑥𝑘) ≠ 0 , that is , it is a 

descent direction unless 𝑥𝑘 

   .is a stationary point of the function f 

     The formula for the search direction can be derived in two ways, both 

of which have connections of Newton's method 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.7, No.6, 2017 

 

 

104 

 

( ((𝛻2𝑓)𝑝 = −𝛻𝑓)   but with the Hessian approximated by the identity matrix 

∇2f ≈ I , then the formula for the steepest − descent method is   

 obtained . 

Gradient descent has problems with pathological functions such as 

the Rosenbrock function shown here: 

𝑓(𝑥1 , 𝑥2) = (1 − 𝑥1
2) + 100(𝑥2 − 𝑥1

2)2 

The Rosenbrock function has a narrow curved valley which contains the 

minimum. The bottom of the valley is very flat. Because of the curved flat 

valley the optimization is zig-zagging slowly with small stepsizes towards 

the minimum. 

 

The "Zig-Zagging" nature of the method is also evident below, where the 

gradient descent method is applied to: 

𝐹(𝑥, 𝑦) = 𝑠𝑖𝑛 (
1

2
𝑥2 −

1

4
𝑦2 + 3) . 𝑐𝑜𝑠 (2𝑥 + 1 − 𝑒𝑦) 

 

 

 

http://www.iiste.org/
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Gradient descent can also be used to solve a system of nonlinear equations. 

Below is an example that shows how to use the gradient descent to solve for 

three unknown variables, x1, x2, and x3. This example shows one iteration of the 

gradient descent. 

Example(6): Consider the non linear system of equations: 

3𝑥1 − 𝑐𝑜𝑠(𝑥2𝑥3) −
3

2
   = 0 

4𝑥1
2 − 625𝑥2

2  + 2𝑥2 − 1 = 0  

𝑒(−𝑥1𝑥2) + 20𝑥3 +
1

3
(10𝜋 − 3) = 0 

suppose we have the function: 

𝐺(𝑥) =

[
 
 
 
 3𝑥1 − 𝑐𝑜𝑠(𝑥2𝑥3) −

3

2
   

4𝑥1
2 − 625𝑥2

2  + 2𝑥2 − 1

𝑒(−𝑥1𝑥2) + 20𝑥3 +
1

3
(10𝜋 − 3)

]
 
 
 
 

 

 

Where  𝑥 = [

𝑥1

𝑥2

𝑥3

] , the objective function  𝐹(𝑥) =
1

2
𝐺𝑇(𝑥)𝐺(𝑥) 

http://www.iiste.org/
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= 
1

2
((3𝑥1 − 𝑐𝑜𝑠(𝑥2𝑥3) −

3

2
)2 + (4𝑥1 − 625𝑥2

2 + 2𝑥2 − 1)4 +

𝑒(−𝑥1𝑥2) + 20𝑥3 +
1

3
(10𝜋 − 3)2) 

 with the initial guess:𝑥(0)   = [
0
0
0
] 

𝑥(1) = 𝑥(0) − 𝛾0𝛻 𝐹(𝑥(0)) 

where 𝛻 𝐹(𝑥(0)) =  𝐽𝐺(𝑥(0))𝑇 . 𝐺(𝑥(0)) 

 

the Jacobean  matrix   𝐽𝐺(𝑥(0)) 

𝐽𝐺   = [

3 𝑠𝑖𝑛 (𝑥2𝑥3)𝑥3 𝑠𝑖𝑛 (𝑥2𝑥3)𝑥2

8𝑥1 −1250𝑥2 + 2 0

−𝑥2𝑒
(−𝑥1𝑥2) −𝑥1𝑒

(−𝑥1𝑥2) 20

] 

Then evaluating these items at  𝑥(0) 

𝐽𝐺(𝑥(0))𝑇 = [
3 0 0
0 2 0
0 0 20

] , 𝐺(𝑥(0)) = [
−25
−1

10.472
] 

so that 𝑥(1) = 0 − 𝛾0 [
−7.5
−2

209.44
] 

 

and 𝐹(𝑥(0)) =  
1

2
((−2.5)2 + (−1)2 + (10.472)2) = 58.450 

for suitable γ0 must be found such that  

𝐹(𝑥(1)) ≤ 𝐹(𝑥(0)), this can be done with any of a variety of line 

search algorithm. 

One might also simply guess  γ0 = 0.001  which gives :  𝑥(1) =

[
0.0075
0.002

−0.209
] 

Evaluating at this value 

 F(𝑥(1)) =
1

2
((−2.48)2 + (−1.00)2 + (6.28)2) = 23.306 

The decrease from 𝐹(𝑥(0)) =58.450 

to the next steps value 𝐹(𝑥(1)) = 23.306 
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is a sizable decrease in the objective function .Further steps would reduce 

its value until a solution to the system was found 

 

 

An animation showing the first 83 

iterations of gradient descent applied to 

this example. Surfaces 

are isosurfaces of 𝐹(𝑥(𝑛)) at current 

guess   𝑥(𝑛) , and arrows show the 

direction of descent. Due to a small and 

constant step size, the convergence is 

slow. 

 

 

Multidimensional unconstrained optimization:  

3- Analytical method: 

Definition(4):    

- If 𝑓(𝑥, 𝑦) < 𝑓(𝑎, 𝑏), ∀ (𝑥, 𝑦)𝑛𝑒𝑎𝑟 (𝑎, 𝑏), 𝑓(𝑎, 𝑏) 

𝑖𝑠 𝑎 𝑙𝑜𝑐𝑎𝑙 𝑚𝑎𝑥𝑖𝑚𝑢𝑚. 

http://www.iiste.org/
https://en.wikipedia.org/wiki/Isosurface
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- If 𝑓(𝑥, 𝑦) > 𝑓(𝑎, 𝑏), ∀ (𝑥, 𝑦)𝑛𝑒𝑎𝑟 (𝑎, 𝑏), 𝑓(𝑎, 𝑏) 

𝑖𝑠 𝑎 𝑙𝑜𝑐𝑎𝑙 𝑚𝑖𝑛𝑖𝑚𝑢𝑚. 

- If 𝑓(𝑥, 𝑦) has a local maximum or minimum at (𝑎, 𝑏), and the first order 

partial derivatives of 𝑓(𝑥, 𝑦) exist at (𝑎, 𝑏), , then  

- 
𝜕𝑓

𝜕𝑥
|
(𝑎,𝑏)

= 0   , 𝑎𝑛𝑑  
𝜕𝑓

𝜕𝑦
|
(𝑎,𝑏)

= 0     

- If  
𝜕𝑓

𝜕𝑥
|
(𝑎,𝑏)

= 0   , 𝑎𝑛𝑑  
𝜕𝑓

𝜕𝑦
|
(𝑎,𝑏)

= 0     

Then  (𝑎, 𝑏), is a critical point or stationary point  of 𝑓(𝑥, 𝑦)  

- If  
𝜕𝑓

𝜕𝑥
|
(𝑎,𝑏)

= 0   , 𝑎𝑛𝑑  
𝜕𝑓

𝜕𝑦
|
(𝑎,𝑏)

= 0     

and the second order partial derivatives of 𝑓(𝑥, 𝑦) are continuous , then  

 When |𝐻|  > 0  and 
𝜕2𝑓

𝜕𝑥2
|
(𝑎,𝑏)

< 0 ,  𝑓(𝑎, 𝑏) is a local maximum of 

𝑓(𝑥, 𝑦). 

 When |𝐻|  > 0  and 
𝜕2𝑓

𝜕𝑥2
|
(𝑎,𝑏)

> 0 ,  𝑓(𝑎, 𝑏) is a local maximum of 

𝑓(𝑥, 𝑦). 

 When |𝐻| < 0 , 𝑓(𝑎, 𝑏) is a saddle point. 

Hessian of 𝑓(𝑥, 𝑦)               H =   [

𝜕2𝑓

𝜕𝑥2

𝜕2𝑓

𝜕𝑥𝜕𝑦

𝜕2𝑓

𝜕𝑦𝜕𝑥

𝜕2𝑓

𝜕𝑦2

]   

|𝐻| =  
𝜕2𝑓

𝜕𝑥2
.
𝜕2𝑓

𝜕𝑦2
  −  

𝜕2𝑓

𝜕𝑥𝜕𝑦
. 

𝜕2𝑓

𝜕𝑦𝜕𝑥
 

when 
𝜕2𝑓

𝜕𝑥𝜕𝑦
. is contiuous  ,

𝜕2𝑓

𝜕𝑥𝜕𝑦
=

𝜕2𝑓

𝜕𝑦𝜕𝑥
. 
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When |𝐻| > 0 ,
𝜕2𝑓

𝜕𝑥2
 .

𝜕2𝑓

𝜕𝑦2
> 0 

Example(7):  

𝑓(𝑥, 𝑦)  = -2𝑥𝑦 +  2𝑥 − 𝑥2 −  2𝑦2   , find the optimum of 𝑓(𝑥, 𝑦)  

Solution :   
𝜕𝑓

𝜕𝑥
  == 2𝑦 + 2 − 2𝑥   ,

𝜕𝑓

𝜕𝑦
= 2𝑥 − 4 𝑦     

Let      
𝜕𝑓

𝜕𝑥
   = 0  , -2x +2y =2  .     Let   

𝜕𝑓

𝜕𝑦
   = 0    , 2𝑥 − 4 𝑦    = 0 

Then 𝑥∗  = 𝟐 and 𝑦∗ = 1  𝒊. 𝒆. (2,1)is a critical point. 

𝜕2𝑓

𝜕𝑥2
= −2   ,

𝜕2𝑓

𝜕𝑦2
 =  −4   , 

𝜕2𝑓

𝜕𝑥𝜕𝑦
= 2 or 

𝜕2𝑓

𝜕𝑦𝜕𝑥
. = 2 

|𝐻| =  
𝜕2𝑓

𝜕𝑥2
.
𝜕2𝑓

𝜕𝑦2
  −  

𝜕2𝑓

𝜕𝑥𝜕𝑦
. 

𝜕2𝑓

𝜕𝑦𝜕𝑥
  = (-2) . (- 4)  - 22 = 4 > 0 

𝜕2𝑓

𝜕𝑥2
< 0  , (𝑥∗, 𝑦∗) = (2,1)is alocal maximum.  

Section(4) 

A  Matlab programs to the unconstrained optimization algorithms applied to 

some problems: 

Example (1) :(Newton's method) 

This example solves the system of two equations and two unknowns: 

 

Start your search for a solution at x0 = [-5 -5]. 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.7, No.6, 2017 

 

 

110 

 

x = 

    0.5671 

    0.5671 

fval = 

  1.0e-006 * 

      -0.4059 

      -0.4059 

If the system of equations is linear, use\ (matrix left division) for better speed 

and accuracy. For example, to find the solution to the following linear system of 

equations: 

3x1 + 11x2 – 2x3 = 7 

x1 + x2 – 2x3 = 4 

x1 – x2 + x3 = 19. 

Formulate and solve the problem as 

A = [ 3 11 -2; 1 1 -2; 1 -1 1]; 

b = [ 7; 4; 19]; 

x = A\b 

x = 

   13.2188 

   -2.3438 

    3.4375 

 

Example( 2):( Implementation of the gradient -decent method) 

      Consider the problem of finding a solution to the following system of two 

nonlinear equations: 

𝑔1(x, y) = x
2
 + y

2
 -1=0 , 𝑔2  (x, y)= x

4
-y

4
+xy = 0.  

Newton's iteration scheme  

    (𝑥𝑛+1,𝑦𝑛+1)
T
 = (𝑥𝑛, ,𝑦𝑛)

T
 – (Jg (,𝑥𝑛,𝑦𝑛))

-1
(𝑔1(𝑥𝑛𝑦𝑛),(𝑔2(𝑥𝑛𝑦𝑛))

T
 

Requires the Jacobean   Jg (x, y). The components of Jg are : 

   (𝐽𝑔)11 = 2x , (𝐽𝑔)12 = 2y , (𝐽𝑔)21 = 4x
3
+y , (𝐽𝑔)22 = 4y

3
+x .  

http://www.iiste.org/
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The iteration starts with some properly chosen starting value (𝑥0, 𝑦0) . We stop 

the iteration if one of the following criteria is satisfied : 

 The number of iterations exceeds an upper bound nmax 

 The error 𝜀 = 𝑔1(x, y)|+|𝑔2(x, y)| is below a threshold εmax 

We choose nmax = 100 and εmax = 10
-10

 . For the starting value (𝑥0, 𝑦0) = (1,1) , 

the iteration is implemented in Matlab through the following commands ( 

executed in a script file ):  

n= 0;  

eps = 1;  

x = [1;1]; 

while eps˃1e -10 &n ˂ 100 

           g= [x (1)ˆ2+x(2)ˆ3-1;x(1)ˆ4-x(2)ˆ4+x(1)
*
x(2) ] ;  

eps = abs (g (1) ) +abs (g (2) ) ;  

Jg= [2
*
x (1) , 3

*
x (2) ˆ2; 4

*
x(2) ˆ3+x(1) ] ;  

Y = x-Jg∖ g ;  

           x= y; 

           n=n+1 ; 

end  

       n, x, eps, 

The answer in the Matlab command window is :  

  n   =  

         6 

x     =  

       0.56497837204568 

        0.87971040708669 
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eps   = 

           10139643934777723e-013 

Thus it took only 6 iterations to find a solution with an error below 10
-13

. If the 

starting value is changed to ((x0, y0) = (-1,-1) , the output is  

n  =  

         9 

x   = 

     -0.89443195117284 

      0.58479524791598 

eps   = 

       8. 626432901337466e – 014 

giving another approximate solution . 

x=y; 

n=n+1; 

end  

n ,x ,eps, 

Answer : 

n      =    85 

x      =      

         0.03349047167893 

        -0.56698094332619 

eps    =   

           8.552891728186296e-011 

Example(3): 

function f = simple_mult(x) 

 

f(:,1) = sqrt(1+x.^2); 

f(:,2) = 4 + 2*sqrt(1+(x-1).^2); 

http://www.iiste.org/
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Both components are increasing as x decreases below 0 or increases above 1. In 

between 0 and 1, f1(x) is increasing and f2(x) is decreasing, so there is a tradeoff 

region. 

t = linspace(-0.5,1.5); 

F = simple_mult(t); 

plot(t,F,'LineWidth',2) 

hold on 

plot([0,0],[0,8],'g--'); 

plot([1,1],[0,8],'g--'); 

plot([0,1],[1,6],'k.','MarkerSize',15); 

text(-0.25,1.5,'Minimum(f_1(x))') 

text(.75,5.5,'Minimum(f_2(x))') 

hold off 

legend('f_1(x)','f_2(x)') 

xlabel({'x';'Tradeoff region between the green lines'}) 

 

Appendix 

Difficulty in calculating derivative of a function: 

       Newton's method requires that the derivative be calculated directly. An 

analytical expression for the derivative may not be easily obtainable and could 

be expensive to evaluate. In these situations, it may be appropriate to 
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approximate the derivative by using the slope of a line through two nearby 

points on the function. Using this approximation would result in something like 

the secant method whose convergence is slower than that of Newton's method. 

Failure of the method to converge to the root: 

     It is important to review the proof of quadratic convergence of Newton's 

Method  [2] before implementing it. Specifically, one should review the 

assumptions made in the proof. For situations where the method fails to 

converge, it is because the assumptions made in this proof are not met. 

 

References: 

 [1]  Bonnans, J. Frédéric; Gilbert, J. Charles; Lemaréchal, Claude; Sagastizábal, 

Claudia A. (2006). Numerical optimization: Theoretical and practical aspects. 

Universitext (Second revised ed. of translation of 1997 French ed.). Berlin: 

Springer-Verlag. pp. xiv+490. doi:10.1007/978-3-540-35447-5. ISBN 3-540-

35445-X. MR2265882.  

[2]   C. T. Kelley, Solving Nonlinear Equations with Newton's Method, no 1 in 

Fundamentals of Algorithms, SIAM, 2003. ISBN 0-89871-546-6.  

[3]  Endre Süli and David Mayers, An Introduction to Numerical Analysis, 

Cambridge University Press, 2003. ISBN 0-521-00794-1 

 [4]  Kaw, Autar; Kalu, Egwu (2008). Numerical Methods with Applications 

(1st ed.)   

[5] M. A. EL siddieg  Awatif( 2015)The Davidon Fletcher Powel  Method 

Tested on  Quadaratic  Programming functions 

 [6]  P. Deuflhard, Newton Methods for Nonlinear Problems. Affine Invariance 

and Adaptive Algorithms. Springer Series in Computational Mathematics, Vol. 

35. Springer, Berlin, 2004. ISBN 3-540-21099-7.  

http://www.iiste.org/
http://en.wikipedia.org/wiki/Secant_method
http://en.wikipedia.org/wiki/Claude_Lemar%C3%A9chal
http://www.springer.com/mathematics/applications/book/978-3-540-35445-1
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1007%2F978-3-540-35447-5
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/3-540-35445-X
http://en.wikipedia.org/wiki/Special:BookSources/3-540-35445-X
http://en.wikipedia.org/wiki/Mathematical_Reviews
http://en.wikipedia.org/wiki/Mathematical_Reviews
http://en.wikipedia.org/wiki/Special:BookSources/0898715466
http://en.wikipedia.org/wiki/Endre_S%C3%BCli
http://en.wikipedia.org/wiki/Special:BookSources/0521007941
http://en.wikipedia.org/wiki/Special:BookSources/3540210997


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.7, No.6, 2017 

 

 

115 

 

[7]  Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007). "Chapter 

9. Root Finding and Nonlinear Sets of Equations Importance Sampling". 

Numerical Recipes: The Art of Scientific Computing (3rd ed.). New York: 

Cambridge University Press. ISBN 978-0-521-88068-8.. See especially Sections 

9.4, 9.6, and 9.7.  

 [8]   Tjalling J. Ypma, Historical development of the Newton-Raphson method, 

SIAM Review 37 (4), 531–551, 1995. doi:10.1137/1037125 

 [9]  J. M. Ortega, W. C. Rheinboldt, Iterative Solution of Nonlinear Equations 

in Several Variables. Classics in Applied Mathematics, SIAM, 2000. ISBN 0-

89871-461-3.  

http://www.iiste.org/
http://apps.nrbook.com/empanel/index.html#pg=442
http://apps.nrbook.com/empanel/index.html#pg=442
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-0-521-88068-8
http://apps.nrbook.com/empanel/index.html#pg=456
http://apps.nrbook.com/empanel/index.html#pg=473
http://apps.nrbook.com/empanel/index.html#pg=477
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1137%2F1037125
http://en.wikipedia.org/wiki/Special:BookSources/0898714613
http://en.wikipedia.org/wiki/Special:BookSources/0898714613

