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Abstract:- Square root of a matrix play an important role in many applications of matrix theory. In this paper, 

we propose a new iterative method for square root of a non-singular M-matrix. We first transform the matrix 

equation X
2 

–
 
A=0 into special form of a non-symmetric algebraic Riccati equation (NARE), and then solve this 

special NARE by Newton method. Efficiency and effectiveness proved by theoretical analysis and numerical 

experiments. 
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1. Introduction and Preliminaries 

 Let 𝐴 = (𝑎𝑖𝑗) ∈ ℂ𝑛×𝑛 a matrix 𝑋 ∈ ℂ𝑛×𝑛 is said to be a square root of A if,  

                     X
2 

= A.                         (1)  

The study of square roots of a general (real or complex) matrix can he traced back to the early works of 

Sylvester, Cayley, Frobenius in the 19th century, followed by the works of Cecioni and Kreis in the early 

20th century. There are many applications of square root of a matrix in a matrix theory, such as 

computation of the matrix logarithm, the boundary value problems and so on. For the background of the 

square root of matrix, we refer to [1].  

    The computation of square root real matrix A has been studies for many years by several authors [1-6] 

and references therein. The number of square roots varies from two to infinity, not every real matrix have real 

square root any matrix with no non-positive real eigenvalue has a unique square root for which every eigenvalue 
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lies in the open right plane and sometimes called the principle square root, that is usually of interest. A class of 

matrices having no non-positive real eigenvalue is much studies class of non-singular M-matrices.   

The Matrix square root methods can be divided into two classes, direct methods and it erative methods. 

In the class of direct methods, for example Schur method proposed by "Bjorck and Hammarling" [2] and 

the iterative methods depends on second class [7-11]. 

 

In this paper, we consider the computation of square root of the non-singular M-matrix 

                   X
2 

-
 
A = 0           (2) 

 Where X, A 𝜖 ℝnxn
,
 
and A is non-singular M-matrix. The solution of the matrix equation (2) is called 

M-matrix square root of A.                                                    

From reference [1, 2], we know that the equation (2) has a unique M-matrix square root when A is a 

non-singular M-matrix.            

Our idea can be stated as follows. 

By using transformation X.= D – Y in [12], we can transform (1) into a special non-symmetric algebraic 

Riccati equation (NARE), because theory and methods of NARE is well developed and then  apply Newton 

method to special NARE for computing minimal non-negative solution. 

 In the following, we first review some notations, definitions and basic results. 

For  any matr ices  𝐴 = (𝑎𝑖𝑖), 𝐵 = (𝑏𝑖𝑖) ∈ 𝑅𝑛×𝑛 ,  𝜖 ℝ nxn
,  we wr ite  A ≥  B(A > B).  i f  𝑎𝑖𝑖 ≥

𝑏𝑖𝑖(𝑎𝑖𝑖 > 𝑏𝑖𝑖) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗. ℂ>, ℂ≥,, ℂ< and  ℂ≤ are represent open left half plane, closed left half plane, 

open right half plane and closed left half plane respectively. The set of all given values of matrix A is 

represented by 𝜌(A) = maxi {𝜆𝑖}, i = 1, 2, …, n. 

 

Definition(1-1):-  

 

The matrix A is called a Z-matrix if  𝑎𝑖𝑖 < 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗. Any Z-matrix A is called an M-matrix if 

there exists a non-negative matrix B such that A = sI - B and s ≥ 𝜌(B). In particular A is called a 

non-singular M-matrix if s > 𝜌(B) and singular M-matrix if s = 𝜌(B). 

Definition(2-1):-  [13] 

 

 Let A ∈  𝐶𝑛×𝑛with no eigenvalues on 𝑅− 
(closed negative real axis), A

1/2 
is the unique square root X of A 

whose spectrum lies in the open right half-plane, and it is primary matrix function of A. We refer to X as 

principal square root of A and we write X = A
1/2

. 

The following result on M-matrix can be found [14, 15 ] 

 

Lemma(3-1):-.  

 

Let A be a Z-matrix, then the following statements are equivalent:  

(1) A is a non-singular M-matrix; 

(2) A
- 1  

≥ 0;  

(3) There exists a vector 𝜐 > 0 such that A𝜐 > 0; 

(4) All eigenvalues of A have positive real part.  
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Lemma( 4-1):- 

 

 Let A, B be Z-matrices. If A is a nonsingular M-matrix and A ≤ B, then B is also a nonsingular M-matrix. In 

particular, for any a ≥ 0, B = I +A is a nonsingular M-matrix. 

Lemma(5-1):- 

 

 Let A be a M-matrix, 𝐵 ≥ 𝐴 be a Z-matrix. If A is non-singular or irreducible singular with 

𝐴 ≠ 𝐵, then B is also a nonsingular M-matrix 

Lemma(6-1):- 

 

 Let A be a non-singular M-matrix or an irreducible singular M-matrix. Partition of A as 

 

𝐴 = (
𝐴11       𝐴12

𝐴21      𝐴22
), 

 

Where 𝐴11 and 𝐴22 are square matrices, then 𝐴11 and 𝐴22 are non-singular M-matrices.  

Lemma(7-1):- 

 

Let A, B are two nonsingular M-matrices  and A ≤ B, then A
-1  

≥ B
-1 

We now review some basic results on non-symmetric algebraic Riccati equation (NARE) 

XCX - XD- AX + B = 0,              (3) 

where A, B, C and D are real matrices of sizes m x m, m x n, n x m and n x n respectively. 

The NARE of this kind appears in transport theory, Wiener-Hopf factorization of Markov chains and etc. for 

which one can refer to [15-17] and the references there in. For the NARE (2), minimal non-negative 

solution is the practical interest. The following basic result is from [6]. 

Lemma(8- 1):-  

 

From the coefficient matrices associated with the NARE (2), we can define an (m + n) x (m + n) 

matrix 

𝑀 = (
𝐷    − 𝐶
−𝐵       𝐴

)                                         (4) 

If M is a non-singular M-matrix, then (2) has a unique minimal nonnegative  solution S, and both D - 

CS and A - CS are non-singular M-matrices. Moreover, both D - CS and A - CS are irreducible when M is an 

irreducible (singular or nonsingular) M-matrix. 

                                    

There have been many effective methods proposed for solving numerically the NARE (2) with M being 

an M-matrix, e.g., the fixed-point iteration, Newton iteration, Schur method, matrix sign function method, 

ALI method, Doubling algorithm and etc. [16, 17, 19-22].         

The remaining of the paper is prepared as follows. In section 2, we review some existing numerical methods for 

computing matrix square root. In section 3, we first transform equation (2) into a special NARE and then solve 

this special NARE by applying Newton iteration method. In Section 4, we use some numerical experiments to 

show the effectiveness of the new method. Conclusion remarks are given in section 5. 
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2. Some previous methods 

 

There have been some existing methods to solve matrix equation (2). In reference [13], Alefeld and 

Schneider first proposed to compute square root of M-matrix, since 𝐴 ∈ ℝ𝑛×𝑛 is a non-singular M-matrix, 

so that 

𝐴 = 𝑠𝐼 − 𝐵, 𝐵 ≥ 0,   𝑠 > 𝜌(𝐵). 

This demonstration is not unique, but for the sake of computation, we can select 

𝑠 = 𝑚𝑎𝑥𝑖{𝑎𝑖𝑖}. 

Then we can write 

A = s (I - P),  P = s
-1 

B ≥ 0,  𝜌(P) < 1.               (5) 

And the iteration process as follows:                                       

Yk+1 = 0.5 (P + Yk
2
), Y0 =0.             (6) 

 

The iteration method (6) can be explained in the following algorithm. 

_______________________________________________________________________ 

Algorithm(2-1):-[9, 13] 

_______________________________________________________________________ 

Step 1.  Set Y0 = 0, and  𝜖.  Set k = 0 

Step 2.  s = max (diag (A)) 

 

Step 3.  P = I – (1/s) A 

Step 4. 𝑌𝑘+1 = 0.5(𝑃 + 𝑌2
𝑘);   

Step 5.  X = √𝑠(𝐼 − 𝑌)   

Step 6 . Let Res(X) = 
‖𝑥2−𝐴‖

∞

‖𝐴‖∞
<∈,  stop.  

Otherwise set k=k+1 and go to step 4. 

______________________________________________________________________________ 

From reference (see [1]), convergence theorem, let 𝑃 ∈ ℝ𝑛×𝑛 satisfy 𝑃 ≥ 0 (4) and 𝜌(𝐴) < 1  and 

write (I - P)
1/2

 = I - Y. 

 Then in iteration (6) 

                                 Yk →Y  

0  ≤ Y k  ≤ Y k + 1 ≤ Y ,  k ≥ 0 ;  

that is, the Yk converge monotonically to Y from below. 

In order to compute the square root of a matrix A, a natural approach is to apply Newton's method (see 

[9, 20]) to (2) and this algorithm can be stated as follows. 

_______________________________________________________________________________ 

Algorithm(2-2):-[18, 20] 

_______________________________________________________________________________ 

Step 1. Set Y0 = 0, and  𝜖.  Set k = 0. 

Step 2. Let Res(X) = 
‖𝑥2−𝐴‖

∞

‖𝐴‖∞
<∈,  stop. 

Step 3. Solve the following Sylvester equation for  𝐻𝑘 
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               𝑋𝑘𝐻𝑘 + 𝐻𝑘𝑋𝑘 = −𝐹(𝑋𝑘) 

Step 4. Update 𝑋𝑘+1 = 𝑋𝑘 + 𝐻𝑘, For k = k + 1 and go to step 2. 

_______________________________________________________________________ 

 

Applying the standard local convergence theorem to Algorithm(2- 2) [20], we conclude that the sequence 

{Xk} generated by Algorithm(2- 2) converges quadratically to a square root X of A if the starting matrix X0 

is sufficiently close to X. 

Later, some simplified Newton's methods were developed in [1, 20]. Unfortunately, these simplified 

Newton's methods have poor numerical stability. 

3. New method 

 

In this section, we will propose a new method to compute square root of M-matrix, which is motivated by 

reference [12]. We know that there have been many methods to solve NARE (3). If we let 𝐶 = 𝐼 𝑎𝑛𝑑 𝐷 =

𝐴 = 0 in equation (3), so we will get equation (2), it means (2) is special form of NARE(3)  

If we let in equation (3), we can get equation (2). So equation (2) is a special case of NARE (3). As theory 

and methods of NARE are well developed, so these methods can also be used to solve square root of 

M-matrix. Therefore, I will introduce a transformation in [12] and apply this transformation on equation on 

(2)  

The transformation is as follows: 

𝑋 = 𝐷 − 𝑌                                                           (7) 

Where 𝐷 = 𝑑𝑖𝑎𝑔(𝑑1, 𝑑2, … , 𝑑𝑛) is a posit ive diagonal matrix to be determined.  

  If we take equation (7) into equation (2),  then we get  

𝑌2 − 𝑌𝐷 − 𝐷𝑌 + 𝐷2 − 𝐴 = 0                         (8) 

Which is a NARE of special form. As theory and methods of numerically solving the NARE are ver, we can 

solve the special NARE (8) directly. 

The matrix (4) associated with the NARE is 

𝑀 = (
𝐷    − 𝐼

𝐴 − 𝐷2     𝐷
)                      (9) 

Let A = (𝑎𝑖𝑖).  If we choose the positive diagonal entries d i (i = 1,2, ... ,n) such that 

                      𝐴 − 𝐷2 ≤ 0, i.e. 

                    𝑎𝑖𝑖 − 𝑑𝑖 ≤ 0, 𝑖 = 1, 2, … , 𝑛.                    

Then we easily verify that M of (9) is a Z-matrix. In fact, only if we choose d i to satisfy 

𝑑𝑖 ≥ √𝑎𝑖𝑖  > 0, for  i =  1, 2,…, n.               (10)            

We can see that M is a non-singular M-matrix from the following theorem. 

Theorem(1-3):-  

 If  A be a non-singular M-Matrix and D be a diagonal matrix whose  diagonal  entr ies d i  

sa t i s fying (9) .  Then M defined in (8)  i s  a  non -s ingular  M-matrix. Moreover, 

if A is irreducible, then M is also irreducible.  

From the above theorem and Lemma (8-1), we easily get the following corollary. 

Corollary(2-3):-  

 Le t  A he  a  no n -s ingular  M -matr ix .  I f  D i s  a  d iago nal  matr ix  who se  d iago nal  ent r ie s  d i  

sa t i s fying (9) .  Then  
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1. The NARE (7) has a minimal non-negative solution SD, and D –  SD is also non-singular 

M-matrices. 

2. The equation (1) has a unique non-singular M-matrix square root X = D –  SD .  

Remark(3-3):-  

We use SD to denote the unique minimal non-negative solution of the NARE (7) because the minimal 

solution is related with D. However, the M-matrix square root of the (2) is not related with choice of D. 

Theorem( 4-3):-.  

Let A be nonsingular M-matrix. If Di and D2 are diagonal matrices whose diagonal entries 

satisfying (10), and D 1  ≥ D2 .  Then SD 1  ≥ SD 2
.  

Proof:- 

 Since the unique M-matrix square root X of the (2) is independent of D, we have 

X = D1 -SD1 = D 2 -SD2. The lemma follows immediately from D 1 ≥  D 2 .  

No w we  apply the  Newton  i t e ra t io n me thod  to  so lve  spec ia l  NARE(8) . For  so lving 

ℑ(𝑌) = 0 can be  descr ibed  b y  Newto n i te ra t io n for  so lv ing can be  here .   

_____________________________________________________________________________ 

Algorithm(5-3)  

____________________________________________________________________________ 

Step 1. Set 𝑌0
 
=  0. 

Step 2. For k = 1, 2,…, until convergence, computing 𝑌𝑘+1 from the following equation  

𝑌𝑘+1 = 𝑌𝑘  -  (ℑ′(𝑌𝑘))−1ℑ(𝑌𝑘).         (10) 

 Step 3.   ℑ′(𝑌𝑘)∆𝑘= − ℑ(𝑌𝑘),    𝑌𝑘+1 = 𝑌𝑘 + ∆𝑘,   𝑌0
 
=  0,   k  = 0, 1, 2,…,  

 or equivalently 

     (D –  Yk)Yk+1 + Yk+1 (D – Yk) = D
2
 – A -Y

2
k,  Y0 = 0,  k=0,1, 2,…,  

____________________________________________________________________________________ 

      In each iteration it needs to solve a Sylvester matrix equat ion. In [21, 22] it is proved that the 

sequence {Yk} generated by the Newton iteration is monotonically increasing and quadratically converges to 

SD, the minimal nonnegative solution of the NARE. 

 

4 Numerical experiments 

 

In this section, numerical experiments are done to verify our theoretical analysis. We get unique 

non-singular M-matrix square root of (2) by solving (8), which is depends on the transformation 𝑋 = 𝐷 − 𝑌 in 

[12] and compare our new algorithm(5-3) with some other algorithms i-e Algorithm(1-2) and "Algorithm(2-2). We 

present computational results of each experiment in terms of iteration numbers CPU time and residue. The 

residue is defined by 

  𝑅𝑒𝑠 =
‖𝑥2−𝐴‖∞

‖𝑋2‖∞+‖𝐴‖∞
. 

In this whole process executions all iterations are run in MATLAB2007 on personal computer, and are 

terminated when the current iterate satisfies 

 

‖𝑥2 − 𝐴‖∞

‖𝐴‖∞

< 𝑙𝑒 − 6. 
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Experiment (1-4):- 

Consider equation (1) with coefficient matrix 

 

 

𝐴 = (

1                 − 1
−1               2    ⋱

      ⋱                ⋱   −1
                 −1        𝑛

)

256×256

 

 

  Table 4.1. Computational results of experiment 1, with X0 = 0.5I. 

Algorithms Number of Iteration.  CPU time Res 

Algorithm (1-2) 262 17.7824 4.9861e-07 

Algorithm (2-2) 08 1.8591 2.3099e-07 

Algorithm (5-3) 04 0.5522 2.622e-09 

 

Experiment(2-4):- 

Consider equation (1) with coefficient matrix is given 

 

𝐴 = (

3        − 1
               3    ⋱

                  ⋱   −1
 −1                   3

)

256×256

 

 

     Table 4.2. Computational results of experiment 2, with Xo = 0.81 

Algorithms Number of  iterations 
CPU 

time 
Res 

Algorithm (1-2) 07 0.329302 3.7193e-07 

Algorithm (2-2) 06 0.25560 1.5938e-07 

Algorithm (5-3) 03 0.07096 1.0846e-08 

 

 

Experiment(3-4):- 

Consider equation (1) with coefficient matrix given below 

 

A = rand(n. n);   A = diag( Ae) — A + I,  where e = (1, 1,…, 1)
T
 and  n=256. 

 

       Table 4.3. Computational results of experiment 3, with X0 = 0.3I. 

Algorithms Number of iterations CPU time Res 

Algorithm (1-2) 104 1.830531 4.9622e-07 

Algorithm (2-2) 7 3.5845 1.4468e-07 

Algorithm (5-3) 6 1.05992 8.5039e-08 
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Experiment(4-4):- 

Consider equation (1) with coefficient matrix A given below 

 

  

𝐴 = (

3        − 1
               3    ⋱

                  ⋱   −1
 −1                   5

)

256×256

 

 

 

 

      Table 4.4. Computational results of experiment 4, with X0 = 0.41. 

Algorithms Number of iterations CPU time Res 

Algorithm(1-2) 13 0.724079 1.8719e-07 

Algorithm (2-2) 06 1.385610 2.883e-10 

Algorithm (5-3) 03 0.628560 7.2308e-09 

 

From Table 1-4. We can see that our new algorithm(5-3) by utilizing general transformation is faster and 

more effective than existing ones i-e algorithm(1-2) and algorithm(2-2) in terms of number of iterations, 

CPU time and the residue.  

5. Concluding Remarks 

 

We have proposed a new iterative method for the square root of a non-singular M-matrix. First transform this 

problem to special NARE using transformation 𝑋 = 𝐷 − 𝑌, and then solved this special NARE by Newton 

method due to it is quadratically converges to its solution Theoretical analysis and numerical experiments 

showed that our method is effective and efficient. 
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