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Abstract 

This article provides detailed construction of energy estimates of the viscous damping aspects for axially moving 

string, which is modeled by a linear homogeneous sting-like equation, will be studied. The nine different 

boundary conditions are considered for the axially moving continua. The problem at hand describes the damped 

vertical vibrations of string-like equations, for example, a conveyor belt system and a band-saw blade. In this 

work, the velocity and coefficient of damping are kept positive and fixed. The stability of the system 

substantially depends upon change in boundary and subsequently boundary conditions. Also a decay in 

oscillatory energy is observed in all the considered cases of boundary conditions due to viscous damping. In 

some cases, the belt energy may increase or may decrease due to variations in different parameters . This exposes 

the uncertainty in these cases.  
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1. Introduction 

The class of the vibratory systems is of great importance in mechanical, structural and many other fields of 

engineering and applied sciences. Axially moving systems are one of them. Such kind of systems are used to 

represent many physical phenomena mathematically. The energy dissipation for such kind of axially translating 

systems can be found by using Reynold’s transport theorem. Such energy loss is termed as damping 

(Darmawijoyo & van Horssen 2003, 2002). Conveyor belts (Sandilo & van Horssen 2012), pipes conveying 

fluids, elevator cables (Sandilo & van Horssen 2011), crane and mine hoists, and such type of mechanical 

systems and machines are subject to vibration due to different cause factors. 

For few decades it has been observed that study and analysis of axially translating systems with damping has 

been very important factor in design and manufacture aspects of these mechanical systems. It is necessary and 

important to study ways and methods to minimize unnecessary noise and vibrations from these axially 

translating systems. It is common experience that severe vibrations cause construction failures. The construction 

failure of Tacoma Narrows bridge in Washington, USA, is one of the classic examples of structural collapses. 

Damaging structures is one aspect of vibrations. The other aspects are they cause human discomfort and anxiety 

due to noise and unwanted sound energy. Keeping in view these aspects of vibrations, it becomes necessary to 

study and devise methods and techniques to mitigate vibrations from all such type of systems. 

Many studies are devoted for damping devices introduced at boundaries to control the vibration through 
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boundaries (Gaiko & van Horssen 2015). There are few studies where damping is projected along the given 

space domain of the system (Maitlo et al 2016). The control of the oscillation amplitudes in case of two 

dimensional plates the authors have provided the detailed study of dampers (Zarubinskaya & van Horssen 2006). 

(Akkaya & van Horssen 2015) is devoted for study about reflection and damping properties for a wave equation. 

The authors in (Zhu & Ni 2000) have studied the energetics of an elevator cable for different BCs. (Wickert & 

Mote 1989) is devoted for detailed study of energetics of axially transporting continua for string and beam 

equations. The string is analyzed for fixed supports and the beam is analyzed for simple supports. It is observed 

that the authors in their work did not provide any detailed piece of research work for energetics considering all 

possible cases of BCs. In some particular cases damping devices are connected at the middle of string or middle 

of the beam (Main & Jones 2007). Spatial position of damping devices play very important role. Introducing 

damping device at right position can damp the system in true technical sense and suppress unnecessary noise and 

the vibration. If a damping device is introduced at wrong place then it is possible the vibratory energy increases. 

In such cases the system becomes unstable (Hagedorn & Seemann 1998). 

This research article studies the aspects of the viscous damping of an axially translating string. The string 

exhibits a second order linear homogeneous partial differential equation (PDE). Nine different physical and 

natural boundary conditions (BCs) are studied in detail. Dirichlet, Neumann and Robin type of BCs are analyzed 

in detail. Stability and instability conditions for an axially translating system are shown in systematic way. 

Stabilizing and destabilizing of a system is depending on the design of the pulley-supports. This research work is 

presented as given below. Mathematical equations of the problem considered in this article and the energy 

estimates are studied in detail in Section 2. In Section 3 the detailed discussion of the results is provided. As far 

as authors know, this approach to construct the approximations of the energetics has not been considered before. 

 

2. Governing Equations and the energy estimates 

By the application of the Hamilton’s principle (Maitlo et al), the governing equations can easily be formulated. 

Based on this principle, dimensionless form of the governing equations is taken into account in following 

manner, 

 

 (𝑦𝑡𝑡 + 2𝑉𝑦𝑥𝑡 + �̇�𝑦𝑥 + 𝑉2𝑦𝑥𝑥) − 𝑦𝑥𝑥 + 𝛿(𝑦𝑡 + 𝑉𝑦𝑥) = 0;   0 < 𝑥 < 1, 𝑡 ≥ 0. (1) 

 

Associated nine physical BCs are given as, 

 

 (𝑖) 𝑦(0, 𝑡) = 0, and 𝑦(1, 𝑡) = 0;  (𝑖𝑖) 𝑦𝑥(0, 𝑡) = 0, and 𝑦𝑥(1, 𝑡) = 0; (𝑖𝑖𝑖) 𝑦(0, 𝑡)

= 0, and 𝑦𝑥(1, 𝑡)  = 0; (𝑖𝑣) 𝑦𝑥(0, 𝑡) = 0, and 𝑦(1, 𝑡)

= 0; (𝑣) 𝑦𝑥(0, 𝑡) + 𝑘𝑦(0, 𝑡) = 0, and 𝑦(1, 𝑡) = 0; (𝑣𝑖) 𝑦(0, 𝑡)

= 0, and 𝑦𝑥(1, 𝑡) + 𝑘𝑦(1, 𝑡) = 0; (𝑣𝑖𝑖) 𝑦𝑥(0, 𝑡) = 0, and 𝑦𝑥(1, 𝑡) + 𝑘𝑦(1, 𝑡)

= 0; (𝑣𝑖𝑖𝑖) 𝑦𝑥(0, 𝑡) + 𝑘𝑦(0, 𝑡) = 0, and 𝑦𝑥(1, 𝑡) = 0; (𝑖𝑥) 𝑦𝑥(0, 𝑡) + 𝑘𝑦(0, 𝑡)

= 0, and 𝑦𝑥(1, 𝑡) + 𝑘𝑦(1, 𝑡) = 0. 

(2) 

 

If we consider (1) and (2), y models vertical displacement. First four terms in Eq. (1) contained in braces are the 

acceleration terms often known as local, Coriolis, tangential and centripetal accelerations. The δ is related to 

external viscous damping coefficient. k, 𝑘1, and 𝑘2 are the spring constants assumed to be positive and 

constant. 𝑦𝑥𝑥 represents the elastic force. 

Multiplying both the sides of Eq. (1) with material velocity ( 𝑦𝑡 + 𝑉𝑦𝑥 ) and then by performing long 

mathematical calculations, it turn out 

 
(

1

2
(𝑦𝑡 + 𝑉𝑦𝑥)2 +

1

2
𝑦𝑥

2)
𝑡

+ (
1

2
𝑉(𝑦𝑡 + 𝑉𝑦𝑥)2 − 𝑦𝑥 (𝑦𝑡 +

1

2
𝑉𝑦𝑥))

𝑥

= −𝛿(𝑦𝑡 + 𝑉𝑦𝑥)2. 
(3) 

 

In following equation is the sum of kinetic and potential energy for the particle at any position as given by 
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Ê(𝑡) =

1

2
(𝑦𝑡 + 𝑉𝑦𝑥)2 +

1

2
𝑦𝑥

2, 
(4) 

 

Combining Eqs. (3) and (4), we arrive at 

 𝜕Ê(𝑡)

𝜕𝑡
= −𝛿(𝑦𝑡 + 𝑉𝑦𝑥)2 − (

1

2
𝑉(𝑦𝑡 + 𝑉𝑦𝑥)2 − 𝑦𝑥 (𝑦𝑡 +

1

2
𝑉𝑦𝑥))

𝑥

. 
(5) 

 

Total mechanical energy E(t) of a moving belt for the given spatial domain is as follows 

 
E(𝑡) = ∫ Ê(𝑡)𝑑𝑥

1

0

. 
(6) 

 

Now, we shall use the Reynold’s theorem of transportation. By this theorem, the total time derivative rate of 

mechanical energy within space domain (0,1) yields, 

 𝑑E

𝑑𝑡
= ∫ (�̂�(𝑡))

𝑡

1

0

+ 𝑉 Ê(𝑡)|
0

1
. 

(7) 

 

On the right hand side of Eq. (7), first term shows local change whereas second term is for the energy flux 

through boundaries. 

Now, from Eq. (7) it turns out to be 

 𝑑E

𝑑𝑡
= −𝛿 ∫ (𝑦𝑡 + 𝑉𝑦𝑥)2𝑑𝑥

1

0

− (
1

2
𝑉(𝑦𝑡 + 𝑉𝑦𝑥)2 − 𝑦𝑥 (𝑦𝑡 +

1

2
𝑉𝑦𝑥))|

0

1

+ (
1

2
𝑉(𝑦𝑡 + 𝑉𝑦𝑥)2 +

1

2
𝑦𝑥

2)|
0

1

. 

(8) 

 

Eq. (8) can be simplified and finally reaches at 

 𝑑E

𝑑𝑡
= −𝛿 ∫ (𝑦𝑡 + 𝑉𝑦𝑥)2𝑑𝑥

1

0

+ 𝑦𝑡(1, 𝑡)𝑦𝑥(1, 𝑡) − 𝑦𝑡(0, 𝑡)𝑦𝑥(0, 𝑡) + 𝑉(𝑦𝑥
2(1, 𝑡) − 𝑦𝑥

2(0, 𝑡)). 
(9) 

2.1 Case Studies: Nine Physical Boundary Conditions (BCs) 

(i) 𝑦(0, 𝑡) = 0, and 𝑦(1, 𝑡) = 0,  (pulleys of belt are kept fixed)  

𝑦(0, 𝑡) = 0 ⇒ 𝑦𝑡(0, 𝑡) = 0 and 𝑦(1, 𝑡) = 0 ⇒ 𝑦𝑡(1, 𝑡) = 0. Now, Eq. (9) can yield 

 𝑑E

𝑑𝑡
= −𝛿 ∫ (𝑦𝑡 + 𝑉𝑦𝑥)2𝑑𝑥

1

0

+ 𝑦𝑥(1, 𝑡)(𝑉𝑦𝑥(1, 𝑡)) − 𝑦𝑥(0, 𝑡)(𝑉𝑦𝑥(0, 𝑡)). 
(10) 

 

(ii) 𝑦𝑥(0, 𝑡) = 0, and 𝑦𝑥(1, 𝑡) = 0,  (both pulleys have freedom of movement in transversal direction) 

So that Eq. (9) arrives at 

 𝑑E

𝑑𝑡
= −𝛿 ∫ (𝑦𝑡 + 𝑉𝑦𝑥)2𝑑𝑥

1

0

. 
(11) 

 

(iii) 𝑦(0, 𝑡) = 0, and 𝑦𝑥(1, 𝑡) = 0,  (fixed support-free support) 
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 𝑑E

𝑑𝑡
= −𝛿 ∫ (𝑦𝑡 + 𝑉𝑦𝑥)2𝑑𝑥

1

0

− 𝑦𝑥(0, 𝑡)(𝑉𝑦𝑥(0, 𝑡)). 
(12) 

 

(iv) 𝑦𝑥(0, 𝑡) = 0, and 𝑦(1, 𝑡) = 0,  (free support-fixed support) 

 

 𝑑E

𝑑𝑡
= −𝛿 ∫ (𝑦𝑡 + 𝑉𝑦𝑥)2𝑑𝑥

1

0

+ 𝑦𝑥(1, 𝑡)(𝑉𝑦𝑥(1, 𝑡)). 
(13) 

 

(v) 𝑦𝑥(0, 𝑡) + 𝑘𝑦(0, 𝑡) = 0, and 𝑦(1, 𝑡) = 0,  (elastic support-fixed support) 

 𝑑E

𝑑𝑡
= −𝛿 ∫ (𝑦𝑡 + 𝑉𝑦𝑥)2𝑑𝑥

1

0

+ 𝑘𝑦(0, 𝑡)𝑦𝑡(0, 𝑡) + 𝑦𝑥(1, 𝑡)(𝑉𝑦𝑥(1, 𝑡)) − 𝑦𝑥(0, 𝑡)(𝑉𝑦𝑥(0, 𝑡)). 
(14) 

 

(vi) 𝑦(0, 𝑡) = 0, and 𝑦𝑥(1, 𝑡) + 𝑘𝑦(1, 𝑡) = 0,  (support kept fixed-elastic support) 

 

 𝑑E

𝑑𝑡
= −𝛿 ∫ (𝑦𝑡 + 𝑉𝑦𝑥)2𝑑𝑥

1

0

− 𝑘𝑦(1, 𝑡)𝑦𝑡(1, 𝑡) + 𝑦𝑥(1, 𝑡)(𝑉𝑦𝑥(1, 𝑡)) − 𝑦𝑥(0, 𝑡)(𝑉𝑦𝑥(0, 𝑡)). 
(15) 

 

(vii) 𝑦𝑥(0, 𝑡) = 0, and 𝑦𝑥(1, 𝑡) + 𝑘𝑦(1, 𝑡) = 0,  (support free-elastic support) 

 𝑑E

𝑑𝑡
= −𝛿 ∫ (𝑦𝑡 + 𝑉𝑦𝑥)2𝑑𝑥

1

0

− 𝑘𝑦(0, 𝑡)𝑦𝑡(0, 𝑡) + 𝑦𝑥(1, 𝑡)(𝑉𝑦𝑥(1, 𝑡)). 
(16) 

 

(viii) 𝑦𝑥(0, 𝑡) + 𝑘𝑦(0, 𝑡) = 0, and 𝑦𝑥(1, 𝑡) = 0,  (elastic boundary-free boundary) 

 𝑑E

𝑑𝑡
= −𝛿 ∫ (𝑦𝑡 + 𝑉𝑦𝑥)2𝑑𝑥

1

0

+ 𝑘𝑦(0, 𝑡)𝑦𝑡(0, 𝑡) − 𝑦𝑥(0, 𝑡)(𝑉𝑦𝑥(0, 𝑡)). 
(17) 

 

(ix) 𝑦𝑥(0, 𝑡) + 𝑘1𝑦(0, 𝑡) = 0, and 𝑦𝑥(1, 𝑡) + 𝑘2𝑦(1, 𝑡) = 0,  (elastic support-elastic support) 

 𝑑E

𝑑𝑡
= −𝛿 ∫ (𝑦𝑡 + 𝑉𝑦𝑥)2𝑑𝑥

1

0

+ 𝑘1𝑦(0, 𝑡)𝑦𝑡(0, 𝑡) − 𝑘2𝑦(1, 𝑡)𝑦𝑡(1, 𝑡) + 𝑦𝑥(1, 𝑡)(𝑉𝑦𝑥(1, 𝑡))

− 𝑦𝑥(0, 𝑡)(𝑉𝑦𝑥(0, 𝑡)). 

(18) 

 

3. Results and Discussion 

Detailed discussion about obtained results in previous section will be devoted in this Section. In Eqs. (10)-(18) 

the time derivative of a total energy of axially transporting belt equals the net rate of work done. Mathematical 

terms expressed into Eqs. (10)-(18) have simple physical definitions. In all terms the time derivative of energy 

the vibratory energy is suppressed by the constant parameter δ times an integral of vertical velocities along space 

domain (0,1). In case of BCs (free-free) and (fixed-free) as given in cases (ii) and (iii) the system is completely 

stable. The restoring force 𝑢𝑥 does work on the string through the transversal velocity component 𝑉𝑦𝑥 . So in 

total the term 𝑦𝑥(1, 𝑡)(𝑉𝑦𝑥(1, 𝑡)) − 𝑦𝑥(0, 𝑡)(𝑉𝑦𝑥(0, 𝑡)) is the energy exchange between the boundary supports 
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and in magnitude this term is smaller than the term involving δ. For boundary conditions (fixed-fixed) and 

(free-fixed) as given in Cases (i) and (iv), mechanical system is obviously bounded. Spring force 𝑘𝑦, does 

mechanical work by the term 𝑘𝑦𝑦𝑡  through the local velocity component 𝑢𝑡, in case of elastic support.  As we 

know that spring constant k is positive, but y, 𝑦𝑡  can turn out to be either both positive or both negative at a time, 

so the term 𝑘𝑦𝑦𝑡  will always remain positive term. On basis of this technical explanation, it can be concluded 

that belt system remains stable for boundary conditions (fixed-elastic) and (free-elastic) in cases (vi) and (vii), 

and it is not possible to conclude whether the belt energy decreases or increases for BCs (elastic-fixed), 

(elastic-free) and (elastic-elastic) in cases (v), (viii) and (ix). Finally, note that if the magnitude of the term 𝑘𝑦𝑦𝑡  

becomes larger than the first term related to damping, the system will be destabilized in cases (v), (viii) and (ix). 

 

3. Conclusions 

In this paper, an initial-boundary value problem for the stretched and tensioned beam equation under several 

different boundary conditions have been studied in detail. The studied problem is used as a mathematical model 

for describing lateral vibrations of a class of axially translating systems. The energy estimates provided are based 

upon the Reynold’s transport theorem where the energy inflow and outflow are also considered at boundaries. 

Such energy inflow and outflow plays very significant role for the dynamics of the problem. It has been shown 

that for certain boundary conditions system is always stable and in some other cases the system is unstable. This 

shows how geometry of BCs of an engineering system changes the physics of the system. In some cases, it is not 

possible to conclude whether the energy decreases or increases. This happens due to fact that parameters are 

changing in signs. 
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