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Abstract 

          In this paper we define a new two parametric generalized fuzzy average code-word 

length 𝐿𝛼
𝛽 (𝐴) for a fuzzy set ‘A’ and its relationship with two parametric generalized fuzzy 

entropy 𝐻𝛼
𝛽(𝐴) has been discussed. Using 𝐿𝛼

𝛽 (𝐴), some coding theorems for discrete noiseless 

channel has been proved. This measure is not only new but some well known measures are 

the particular cases of our proposed measure that already exist in the literature of fuzzy 

information theory. 
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1.  Introduction: 

        Fuzziness and uncertainty are the basic nature of human thinking and many real world 

objectives. Fuzziness is found in our decision, in our language and in the way of process 

information. The main objective of information is to remove uncertainty and fuzziness. In 

fact, we measure information supplied by the amount of probabilistic uncertainty removed in 

an experiment and the measure of uncertainty removed is also called as a measure of 

information, while measure of fuzziness is the measure of vagueness and ambiguity of 

uncertainties. The concept of entropy has been widely used in different areas, e.g. 

communication theory, statistical mechanics, finance pattern recognition, and neural network 

etc. Fuzzy set theory developed by Lotfi. A. Zadeh [22] has found wide applications in many 

areas of science and technology, e.g. clustering, image processing, decision making etc. 

because of its capability to model non-statistical imprecision or vague concepts. The 

importance of fuzzy sets comes from the fact that it can deal with imprecise and inexact 
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information, many fuzzy measures have been discussed and derived by Kapur [6], Lowen 

[10], Nguyen and Walker [14], Parkash [18], Pal and Bezdek [17], Zadeh [22] etc. 

            Application of fuzzy measures to engineering, fuzzy traffic control, fuzzy aircraft 

control, medicines, computer science and decision making etc, have already been established. 

The basic noiseless coding theorems by considering different information measures were 

investigated by several authors see for instance: Aczel. J [1], Kapur J. N [5], Khan A. B., 

Autar R. and Ahmad H [8], Van Der Lubbe J.C.A [21], Reyni [19]and obtain the lower 

bounds for the mean code-word length of a uniquely decipherable code in terms of Shannon’s 

[20] entropy. Kapur [7] has established relationships between probability entropy and coding. 

But there are situations where probabilistic measures of entropy do not work, to tackle such 

situations, instead of taking the probability, the idea of fuzziness can be explored. 

2. Preliminaries on fuzzy set theory: 

Let a universe of discourse be 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} then a fuzzy subset of universe 𝑋 is 

defined as: 

             𝐴 = {(𝑥𝑖, 𝜇𝐴(𝑥𝑖)): 𝑥𝑖 ∈ 𝑋, 𝜇𝐴(𝑥𝑖) ∈ [0,1]}  

Where 𝜇𝐴(𝑥𝑖): 𝑋 → [0,1] is a membership function and gives the degree of belongingness of 

the element 𝑥𝑖 to the set 𝐴 and is defined as follows: 

           µ𝐴(𝑥𝑖) = {

0, if 𝑥𝑖 ∉ 𝐴 and there is no ambiguity,
1, if 𝑥𝑖 ∈ 𝐴  and there is no ambiguity,

0.5, if 𝑥𝑖 ∈ 𝐴 or 𝑥𝑖 ∉ 𝐴 and there is maximum ambiguity,
 

In fact µ𝐴(𝑥𝑖) associates with each  𝑥𝑖 ∈ X gives a grade of membership function in the 

set  𝐴. When µ𝐴(𝑥𝑖) takes values only 0 or 1, there is no uncertainty about it and a set is said 

to be a crisp (i.e. non-fuzzy) set. Some notions related to fuzzy sets which we shall need in 

our discussion are as under: 

 Containment: If 𝐴 ⊂ 𝐵 ⟺ µ𝐴(𝑥𝑖) ≤ µ𝐵(𝑥𝑖) ⩝   𝑥𝑖 ∈ X 

 Equality: If 𝐴 = 𝐵 ⟺ µ𝐴(𝑥𝑖) = µ𝐵(𝑥𝑖) ⩝   𝑥𝑖 ∈ X 

 Compliment: If �̅� is complement of 𝐴 ⟺ µA̅(𝑥𝑖) = 1 − µ𝐴(𝑥𝑖) ⩝   𝑥𝑖 ∈ X 

 Union: If 𝐴 ∪ 𝐵 is union of 𝐴 & 𝐵 ⟺ µ𝐴∪𝐵(𝑥𝑖) =Max{µ𝐴(𝑥𝑖), µ𝐵(𝑥𝑖)} ⩝ 𝑥𝑖 ∈ X 

 Intersection: If 𝐴 ∩ 𝐵 is intersection of 𝐴 & 𝐵 ⟺ µ𝐴∩𝐵(𝑥𝑖) = Min{µ𝐴(𝑥𝑖), µ𝐵(𝑥𝑖)} ⩝

𝑥𝑖 ∈ X 

 Product: If 𝐴𝐵 is product of 𝐴 & 𝐵 ⟺ µ𝐴𝐵(𝑥𝑖) = µ𝐴(𝑥𝑖)µ𝐵(𝑥𝑖) ⩝   𝑥𝑖 ∈ X 

 Sum: If 𝐴 + 𝐵 is sum of 𝐴 & 𝐵 ⟺ µ𝐴+𝐵(𝑥𝑖) = µ𝐴(𝑥𝑖) + µ𝐵(𝑥𝑖) − µ𝐴(𝑥𝑖)µ𝐵(𝑥𝑖) 

⩝   𝑥𝑖 ∈ X 

3. Basic concepts: 

Let 𝑋 is a discrete random variable taking values 𝑥1, 𝑥2, … , 𝑥𝑛 with respective 

probabilities 𝑃 = (𝑝1, 𝑝2, … , 𝑝𝑛), 𝑝𝑖 ≥ 0 ⩝  i = 1, 2, . . . , 𝑛 and ∑ 𝑝𝑖 = 1𝑛
𝑖=1 . Shannon [20] 

gives the following measure of information and call it as entropy. 
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   𝐻(𝑃) = − ∑ 𝑝𝑖 log 𝑝𝑖
𝑛
𝑖=1      (1.1) 

The measure (1.1) serves as a suitable measure of entropy. Let 𝑝1, 𝑝2, 𝑝3,…,𝑝𝑛 be the 

probabilities of 𝑛 codewords to be transmitted and let their lengths 𝑙1, 𝑙2,…,𝑙𝑛 satisfy Kraft 

[9] inequality, 

   ∑ 𝐷−𝑙𝑖 ≤ 1𝑛
𝑖=1         (1.2) 

For uniquely decipherable codes, Shannon [20] showed that for all codes satisfying 

(1.2), the lower bound of the mean codeword length, 

   𝐿 = ∑ 𝑝𝑖𝑙𝑖
𝑛
𝑖=1        (1.3) 

lies between 𝐻(𝑃) and 𝐻(𝑃) + 1.Where 𝐷 is the size of code alphabet. 

If 𝑥1, 𝑥2, … , 𝑥𝑛 are members of the universe of discourse, with respective membership 

functions µ𝐴(𝑥1), µ𝐴(𝑥2), µ𝐴(𝑥3) ,…, µ𝐴(𝑥𝑛) then all  µ𝐴(𝑥1), µ𝐴(𝑥2), µ𝐴(𝑥3), … , µ𝐴(𝑥𝑛) lies 

between 0 and 1 but these are not probabilities because their sum is not unity. µ𝐴(𝑥𝑖) gives 

the element 𝑥𝑖 the degree of belongingness to the set “A”. The function  µ𝐴(𝑥𝑖) associates 

with each 𝑥𝑖∈ R
n
 a grade of membership to the set “A” and is known as membership function. 

Denote 

𝐹. 𝑆 = [
𝑥1                𝑥2                 …                𝑥𝑛

𝜇𝐴(𝑥1)              𝜇𝐴(𝑥2)       …              𝜇𝐴(𝑥𝑛)],0 ≤ µ𝐴(𝑥𝑖) ≤ 1 ⩝  𝑥𝑖  (1.4) 

We call the scheme (1.4) as a finite fuzzy information scheme. Every finite scheme 

describes a state of uncertainty. Since µ𝐴(𝑥𝑖) and 1 − µ𝐴(𝑥𝑖) gives the same degree of 

fuzziness, therefore corresponding to entropy due to Shannon [20], De-Luca and Termini [4] 

suggested the following measure of fuzzy entropy as 

 𝐻(𝐴) = − ∑ [µ𝐴(𝑥𝑖) log µ𝐴(𝑥𝑖) + (1 − µ𝐴(𝑥𝑖))log(1 − µ𝐴(𝑥𝑖))]𝑛
𝑖=1  (1.5) 

De-Luca and Termini [4] introduced a set of four properties and these properties are 

widely accepted as for defining new fuzzy entropy. In fuzzy set theory, the entropy is a 

measure of fuzziness which expresses the amount of average ambiguity in making a decision 

whether an element belongs to a set or not. So, a measure of average fuzziness 𝐻(𝐴) in a 

fuzzy set A should have the following properties to be valid fuzzy entropy measure: 

I. (Sharpness): 𝐻(𝐴) is minimum if and only if A is a crisp set, 

i.e µ𝐴(𝑥𝑖) = 0 or 1;  for all 𝑥𝑖, i = 1, 2, … , n. 

II. (Maximality): 𝐻(𝐴) is maximum if and only if A is most fuzzy set, 

i.e µ𝐴(𝑥𝑖) =
1

2
; for all𝑥𝑖 , i = 1, 2, … , n. 

III. (Resolution): 𝐻(𝐴∗) ≤ 𝐻(𝐴), where A
*
 is sharpened version of A. 

IV. (Symmetry): 𝐻(𝐴) = 𝐻(𝐴𝑐), where 𝐴𝑐 is the complement of A. 
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i.e  𝜇𝐴𝑐(𝑥𝑖) = 1 − µ𝐴(𝑥𝑖); for all 𝑥𝑖i = 1, 2, … , n  

Generalized fuzzy coding theorems by considering different fuzzy information 

measures were investigated by several authors see for instance the papers: M.A.K. Baig and 

Mohd Javid Dar [11], [12] & [13], Ashiq Hussain and M.A.K Baig [2], Parkash and P. K. 

Sharma [15] & [16], Bhandari and Pal [3], Kapur [6]. 

In this particular paper two parametric new generalized fuzzy code-word mean length 

is considered and bounds have been obtained in terms of two parametric new generalized 

fuzzy entropy. The main aim of these results is that it generalizes some well-known fuzzy 

information measures already existing in the literature of fuzzy information theory. 

4. Noiseless Coding theorems 

Define a two parametric new generalized measure of entropy as: 

  𝐻𝛼
𝛽(𝑃) =

𝛽

𝛽−𝛼
∑ 𝑝𝑖

𝛼𝛽𝑛
𝑖=1 ,      (2.1) 

Where  0 < 𝛼 < 1, 0 < 𝛽 ≤ 1, 𝛽 > 𝛼.  𝑝𝑖 ≥ 0 ∀ 𝑖 = 1,2, … , 𝑛 , ∑ 𝑝𝑖 = 1 𝑛
𝑖=1  

Further we define a two parametric new generalized code-word length corresponding 

to (2.1) and is given by 

  Lα
β

=
β

β−α
[∑ 𝑝i

β
𝐷−𝑙i(

α−1

α
)n

i=1 ]
α

, 0 < 𝛼 < 1, 0 < 𝛽 ≤ 1, 𝛽 > 𝛼. (2.2) 

Where D is the size of code alphabet. 

Corresponding to (2.1) we propose the following measure of fuzzy entropy as 

        𝐻𝛼
𝛽(𝐴) =

𝛽

𝛽−𝛼
[∑ (𝜇𝐴

𝛼𝛽(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
𝛼𝛽

)𝑛
𝑖=1 ] , 0 < 𝛼 < 1, 0 < 𝛽 ≤ 1, 𝛽 > 𝛼.(2.3) 

And the generalized fuzzy average codeword length corresponding to (2.3) as 

  𝐿𝛼
𝛽 (𝐴) =

𝛽

𝛽−𝛼
[∑ (𝜇𝐴

𝛼𝛽(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
𝛼𝛽

) 𝐷−𝑙i(
α−1

α
)𝑛

𝑖=1 ]
𝛼

 (2.4) 

Remarks for (2.1) 

I. When 𝛽 = 1, (2.1) reduces to entropy, 

i.e.,  𝐻𝛼(𝑃) =
1

1−𝛼
∑ 𝑝𝑖

𝛼,𝑛
𝑖=1 0 < 𝛼 < 1 

II. When 𝛽 = 1, 𝑎𝑛𝑑 𝛼 → 1, (2.1) reduces to Shannon’s [20] entropy, 

i.e.,  𝐻(𝑃) = − ∑ 𝑝𝑖𝑙𝑜𝑔𝑝𝑖
𝑛
𝑖=1  

III. When 𝛼 → 1 (2.1) reduces to  the entropy of 𝛽-power distribution, 

i.e., 𝐻𝛽(𝑃) = −𝛽 ∑ 𝑝𝑖
𝛽𝑛

𝑖=1 𝑙𝑜𝑔𝑝𝑖
𝛽
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Remarks for (2.2) 

I. For 𝛽 = 1 (2.2) reduces to code-word length, 

i.e.,  𝐿𝛼 =
1

1−𝛼
[∑ 𝑝𝑖𝐷

−𝑙𝑖(
𝛼−1

𝛼
) 𝑛

𝑖=1 ]
𝛼

 

II. For 𝛽 = 1, 𝑎𝑛𝑑 𝛼 → 1, (2.2) reduces to optimal code-word length corresponding to 

Shannon [20] entropy 

i.e., 𝐿 = ∑ 𝑝𝑖𝑙𝑖
𝑛
𝑖=1  

Now we found the bounds of (2.4) in terms of (2.3) under the condition  

  ∑ (𝜇𝐴
𝛼𝛽(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝛼𝛽
) 𝐷−𝑙𝑖 ≤ 1𝑛

𝑖=1     (2.5) 

Or we can write 

  ∑ [𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖))]𝑛
𝑖=1 𝐷−𝑙𝑖 ≤ 1     (2.6)        

Where 

  𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖)) = (𝜇𝐴
𝛼𝛽(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝛼𝛽
)  

Which is generalized fuzzy Kraft [9] inequality, where D is the size of code alphabet, it is 

easy to see that for  𝛽 = 1, 𝛼 → 1 the inequality (2.6) reduces to Kraft [9] inequality. 

Theorem 4.1: For all integers (𝐷 > 1) the code word lengths 𝑙1, 𝑙2, … , 𝑙𝑛 satisfies the 

condition (2.6) then the generalized fuzzy code-word length (2.4) satisfies the inequality  

  𝐿𝛼
𝛽 (𝐴) ≥ 𝐻𝛼

𝛽(𝐴)   Where 0 < 𝛼 < 1, 0 < 𝛽 ≤ 1, 𝛽 > 𝛼  (2.7) 

Where equality holds good iff 

   𝑙𝑖 = − log𝐷 [
1

∑ [𝑓(𝜇𝐴(𝑥𝑖),𝜇𝐴𝑐(𝑥𝑖))]𝑛
𝑖=1

]    (2.8) 

Where 

  𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖)) = (𝜇𝐴
𝛼𝛽(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝛼𝛽
)  

Proof: By Holder
’
s inequality we have 

  ∑ 𝑥𝑖𝑦𝑖 ≥𝑛
𝑖=1 (∑ 𝑥𝑖

𝑝𝑛
𝑖=1 )

1

𝑝(∑ 𝑦𝑖
𝑞𝑛

𝑖=1 )
1

𝑞     (2.9) 

For all 𝑥𝑖 , 𝑦𝑖 > 0, 𝑖 = 1, 2, 3, … , 𝑛 and 
1

𝑝
+

1

𝑞
= 1, 𝑝 < 1(≠ 0), 𝑞 < 0 or 𝑞 < 1(≠ 0), 𝑝 <

0. 

We see the equality holds iff there exists a positive constant 𝑐 such that 

http://www.iiste.org/
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   𝑥𝑖
𝑝

= 𝑐𝑦𝑖
𝑞
       (2.10) 

Making the substitution 

 𝑥𝑖  = [𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖))]
𝛼

𝛼−1𝐷−𝑙𝑖,   𝑦𝑖  = [𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖))]
1

1−𝛼    

  𝑝 =
𝛼−1

𝛼
 and  𝑞 = 1 − 𝛼 

Using these values in (2.9) and after suitable simplification we get 

∑ [𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖))]𝑛
𝑖=1 𝐷−𝑙𝑖 ≥  

 [∑ {𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖))}𝐷−𝑙𝑖(
𝛼−1

𝛼
)𝑛

𝑖=1 ]

𝛼

𝛼−1
[∑ {𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖))}𝑛

𝑖=1 ]
1

1−𝛼 

 (2.11) 

Now using the inequality (2.6) we get 

 [∑ {𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖))}𝐷−𝑙𝑖(
𝛼−1

𝛼
)𝑛

𝑖=1 ]

𝛼

𝛼−1
[∑ {𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖))}𝑛

𝑖=1 ]
1

1−𝛼 ≤ 1

 (2.12) 

Or equation (2.12) can be written as 

 [∑ {𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖))}𝐷−𝑙𝑖(
𝛼−1

𝛼
)𝑛

𝑖=1 ]

𝛼

𝛼−1
≤ [∑ {𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖))}𝑛

𝑖=1 ]
1

𝛼−1 

 (2.13) 

Here following cases arise 

Case 1: 

As 0 < 𝛼 < 1, then (𝛼 − 1) < 0, raising both sides to the power  (𝛼 − 1) < 0 , to equation 

(2.13), we get 

 [∑ {𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖))}𝐷−𝑙𝑖(
𝛼−1

𝛼
)𝑛

𝑖=1 ]
𝛼

≥ [∑ {𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖))}𝑛
𝑖=1 ] 

 (2.14) 

As 0 < 𝛼 < 1,0 <  𝛽 ≤ 1, 𝛽 > 𝛼 then  (𝛽 − 𝛼) > 0 and 
𝛽

 (𝛽−𝛼)
> 0, multiply equation (2.14) 

both sides by  
𝛽

 𝛽−𝛼
> 0, we get 

 
𝛽

 𝛽−𝛼
[∑ {𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖))}𝐷−𝑙𝑖(

𝛼−1

𝛼
)𝑛

𝑖=1 ]
𝛼

≥
𝛽

 𝛽−𝛼
[∑ {𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖))}𝑛

𝑖=1 ]

 (2.15) 

Taking  𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖)) = (𝜇𝐴
𝛼𝛽(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝛼𝛽
), we get 
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𝛽

𝛽−𝛼
[∑ (𝜇𝐴

𝛼𝛽(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
𝛼𝛽

) 𝐷−𝑙i(
α−1

α
)𝑛

𝑖=1 ]
𝛼

≥
𝛽

𝛽−𝛼
[∑ (𝜇𝐴

𝛼𝛽(𝑥𝑖) + (1 −𝑛
𝑖=1

𝜇𝐴(𝑥𝑖))
𝛼𝛽

)]  

Or equivalently we can write 

  𝐿𝛼
𝛽

≥ 𝐻𝛼
𝛽(𝑃), Hence the result for 0 < 𝛼 < 1, 0 < 𝛽 ≤ 1, 𝛽 > 𝛼. 

Case 2: 

From equation (2.8) we have 

  𝑙𝑖 = − log𝐷 [
1

∑ [𝑓(𝜇𝐴(𝑥𝑖),𝜇𝐴𝑐(𝑥𝑖))]𝑛
𝑖=1

]     (2.16) 

Or equivalently we can write equation (2.16) as 

  𝐷−𝑙𝑖 =
1

∑ [𝑓(𝜇𝐴(𝑥𝑖),𝜇𝐴𝑐(𝑥𝑖))]𝑛
𝑖=1

      (2.17) 

Raising both sides to the power (
𝛼−1

𝛼
), to equation (2.17) and after suitable simplification we 

get 

  𝐷−𝑙i(
α−1

α
) = [∑ [𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖))]𝑛

𝑖=1 ]
1−α

α     (2.18) 

Multiply equation (2.18) both sides by 𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖))  and then summing over 𝑖 =

1,2, … , 𝑛, both sides to the resultant expression and after suitable simplification, we get 

  [∑ {𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖))}𝐷−𝑙𝑖(
𝛼−1

𝛼
)𝑛

𝑖=1 ] = [∑ {𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖))}𝑛
𝑖=1 ]

1

α

 (2.19) 

Raising both sides to the power 𝛼 to equation (2.19), then multiply both sides by   
𝛽

𝛽−𝛼
, we get 

  
𝛽

𝛽−𝛼
[∑ {𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖))}𝐷−𝑙𝑖(

𝛼−1

𝛼
)𝑛

𝑖=1 ]
𝛼

=
𝛽

𝛽−𝛼
[∑ {𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖))}𝑛

𝑖=1 ] 

Or equivalently we can write 

   𝐿𝛼
𝛽 (𝐴) = 𝐻𝛼

𝛽(𝐴), Hence the result 

Where 

  𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖)) = (𝜇𝐴
𝛼𝛽(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝛼𝛽
) 

Theorem 4.2: For every code with lengths  𝑙1, 𝑙2, … , 𝑙𝑛 satisfies the condition (2.6), 𝐿𝛽
𝛼(𝐴) can 

be made to satisfy the inequality, 
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  𝐿𝛼
𝛽

(𝐴) < 𝐻𝛼
𝛽(𝑃)𝐷(1−𝛼), Where 0 < 𝛼 < 1, 0 < 𝛽 ≤ 1, 𝛽 > 𝛼. (2.20) 

Proof: From the theorem (2.1) we have, 

    𝐿𝛼
𝛽 (𝐴) = 𝐻𝛼

𝛽(𝐴). 

Holds if and only if 

   𝐷−𝑙𝑖 =
1

∑ [𝑓(𝜇𝐴(𝑥𝑖),𝜇𝐴𝑐(𝑥𝑖))]𝑛
𝑖=1

, 0 < 𝛼 < 1, 0 < 𝛽 ≤ 1, 𝛽 > 𝛼. 

Or equivalently we can write 

   𝑙𝑖 = log𝐷[∑ [𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖))]𝑛
𝑖=1 ] 

We choose the code-word lengths 𝑙𝑖, 𝑖 = 1,2, … , 𝑛 in such a way that they satisfy the 

inequality, 

 log𝐷[∑ [𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖))]𝑛
𝑖=1 ] ≤ 𝑙𝑖 < log𝐷[∑ [𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖))]𝑛

𝑖=1 ] + 1(2.21) 

Consider the interval 

 𝛿𝑖 = [log𝐷 [∑ (𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖)))𝑛
𝑖=1 ] , log𝐷 [∑ (𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖)))𝑛

𝑖=1 ] + 1]   

of length unity. In every  𝛿𝑖, there lies exactly one positive integer 𝑙𝑖, such that, 

0 < log𝐷 [∑ (𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖)))𝑛
𝑖=1 ] ≤ 𝑙𝑖 < log𝐷 [∑ (𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖)))𝑛

𝑖=1 ] + 1(2.22) 

Now we will first show that the sequence 𝑙1, 𝑙2, … , 𝑙𝑛, thus defined satisfies the inequality 

(2.6) which is generalized fuzzy Kraft [9] inequality. 

From the left inequality of (2.22), we have 

   log𝐷 [∑ (𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖)))𝑛
𝑖=1 ] ≤ 𝑙𝑖 

Or equivalently we can write 

𝐷−𝑙𝑖 ≤
1

[∑ (𝑓(𝜇𝐴(𝑥𝑖),𝜇𝐴𝑐(𝑥𝑖)))𝑛
𝑖=1 ]

     (2.23) 

Multiply equation (2.23) both sides by 𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖))  and then summing over 𝑖 =

1,2, … , 𝑛, on both sides to the result that we obtain we get the required result i.e., (2.6), which 

is generalized fuzzy Kraft [9] inequality. 

Now the last inequality of (2.22) gives 

   𝑙𝑖 < log𝐷 [∑ (𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖)))𝑛
𝑖=1 ] + 1 

Or equivalently we can write 
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𝐷𝑙𝑖 < [∑ (𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖)))𝑛
𝑖=1 ] 𝐷    

 (2.24) 

As 0 < 𝛼 < 1, then (1 − 𝛼) > 0, and (
1−𝛼

𝛼
) > 0, raising both sides to the power (

1−𝛼

𝛼
) > 0, 

to equation (2.24), we get 

𝐷𝑙i(
1−α

α
) < [∑ (𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖)))𝑛

𝑖=1 ]
(

1−𝛼

𝛼
)

𝐷
1−α

α    (2.25)  

Or we can write the equation (2.25) as 

𝐷−𝑙i(
α−1

α
) < [∑ (𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖)))𝑛

𝑖=1 ]
(

1−𝛼

𝛼
)

𝐷
1−α

α    (2.26) 

Multiply equation (2.26) both sides by 𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖))  and then summing over 𝑖 =

1,2, … , 𝑛, both sides to the resulted expression, and after making suitable operations, we get 

 ∑ {𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖))}𝐷−𝑙𝑖(
𝛼−1

𝛼
)𝑛

𝑖=1 < [∑ (𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖)))𝑛
𝑖=1 ]

1

α
𝐷

1−α

α  (2.27) 

As 0 < 𝛼 < 1, raising both sides to the power 𝛼 to equation (2.27) we get 

 [∑ {𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖))}𝐷−𝑙𝑖(
𝛼−1

𝛼
)𝑛

𝑖=1 ]
𝛼

< [∑ {𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖))}𝑛
𝑖=1 ]𝐷1−α (2.28) 

As  0 < 𝛼 < 1, 0 < 𝛽 ≤ 1, 𝛽 > 𝛼 then (𝛽 − 𝛼) > 0 and 
𝛽

𝛽−𝛼
> 0, multiply equation (2.28) 

both sides by 
𝛽

𝛽−𝛼
> 0, we get 

 
𝛽

𝛽−𝛼
[∑ {𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖))}𝐷−𝑙𝑖(

𝛼−1

𝛼
)𝑛

𝑖=1 ]
𝛼

<
𝛽

𝛽−𝛼
[∑ {𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖))}𝑛

𝑖=1 ]𝐷1−α 

Or equivalently we can write 

  𝐿𝛼
𝛽

(𝐴) < 𝐻𝛼
𝛽(𝑃)𝐷(1−𝛼), Where 0 < 𝛼 < 1, 0 < 𝛽 ≤ 1, 𝛽 > 𝛼. 

Where 

  𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐴𝑐(𝑥𝑖)) = (𝜇𝐴
𝛼𝛽(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝛼𝛽
), 

 Thus from the above two coding theorems we have shown that 

  𝐻𝛼
𝛽(𝑃) ≤ 𝐿𝛼

𝛽
(𝐴) < 𝐻𝛼

𝛽(𝑃)𝐷(1−𝛼).  

Where 0 < 𝛼 < 1, 0 < 𝛽 ≤ 1, 𝛽 > 𝛼. (2.29) 

5. Conclusion: 
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In this paper we define a two parametric new generalized fuzzy entropy measure. This 

measure also generalizes some well-known fuzzy information measures already existing in 

the literature of fuzzy information theory. Also two parametric new generalized fuzzy code-

word mean length is considered and bounds have been obtained in terms of two parametric 

new generalized fuzzy entropy measure and show that 

  𝐻𝛼
𝛽(𝑃) ≤ 𝐿𝛼

𝛽
(𝐴) < 𝐻𝛼

𝛽(𝑃)𝐷(1−𝛼). Where 0 < 𝛼 < 1, 0 < 𝛽 ≤ 1, 𝛽 > 𝛼. 
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