
Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.6, No.5, 2016 

 

112 

On The CW Complex of the Complement of A Hypersolvable 

Graphic Arrangement 

 

Assist. Prof. Dr. Hana' M. Ali   

Department of Mathematics , College of Science, University of Basrah  College of Science, University of 

Basrah, Basrah, Iraq 

Abstract: 

This paper interested in studying a CW complex for the complement 𝑀(𝒜𝐺) of a hypersolvable graphic 

arrangement 𝒜𝐺  that related to a hypersolvable graph 𝐺, by comparing it with the minimal CW complex for 

the complement of Jambu's-Papadima's deformed supersolvable arrangement �̃�. Motivated by our aim, a 

dimension of the first non-vanishing higher homotopy group for 𝑀(𝒜𝐺) was calculated and a fashion of the 

cohomological ring 𝑯∗(𝑀(𝒜𝐺) ) of the complement 𝑀(𝒜𝐺) was considered, just by using the hypersolvable 

partition analogue on 𝐺. Moreover, an algorithm to deform any hypersolvable graph into a supersolvable graph 

was stated.   

Key-words: connected simple graph, graphic arrangement, hypersolvable (supersolvable) graph, Orlik-Solomon 
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Introduction: 

One of powerful mathematical tool for a wide range of applications is the graph theory. Our work are 

specialized on a very interesting class of graphs is the “hypersolvable class of graphs” which is firstly introduced 

by Papadima and Suciu in (2002, [12]) as a generalization of Stanly Supersolvable (triangulated graphs or rigid 

circuit graphs or chordal) class of graphs (1972, [1]). 

In (2012, [5]) Fadhil introduced a partition to a graph 𝐺, called a hypersolvable partition. In her M.Sc. thesis 

under my supervision, Fadhil produced the existence of a hypersolvable partition as a sufficient and necessary 

condition to a graph to be hypersolvable. The advantage of studying the hypersolvable partition analogue lies in 

the fact, it makes the computations of the cycles of 𝐺 more easer and by using the duality; every graph 𝐺, 

defined a graphic arrangement 𝒜𝐺 , the analogue of the induced partition of 𝒜𝐺  makes the computation of the 

NBC (no broken circuits) bases of 𝒜𝐺  more easer. So, in this work the duality between the notions "cycle of 𝐺 

" and "circuit of  𝒜𝐺" had been used to introduce a fashion of the cohomological ring of complement of a 

hypersolvable arrangement,  𝑯∗(𝑀(𝒜𝐺)) as a tensor module, since the set of all the NBC bases of 𝒜𝐺  forms 

an explicit bases of the cohomological ring of 𝑀(𝒜𝐺), (we refer the reader to [11] as a general reference). This 

was achieved in section (3) by two parts. First, we recall the isomorphism between the chomological group of 

the complement 𝑀(𝒜𝐺) and The Orlik-Solomon algebra 𝐴∗(𝒜𝐺) of 𝒜𝐺  that had been studied firstly by 

Orlik and Solomon in (1980, [10]). Secondly, we used analogue defined in (2010, [3]) to embedding 

𝑯∗(𝑀(𝒜𝐺)) as a submodule of the partition tensor module that related to the induced hypersolvable partition of 

𝒜𝐺 , duo to [1].  

Randell in (2002, [14]), showed that 𝑀(𝒜) of any complex hyperplane arrangement has homotopy type of 

a minimal (finite type) CW-complex, i.e. the number of the 𝑘 -cells is equal to the 𝑘 th
-Betti number 

𝑏𝑘(𝑀(𝒜)) = 𝑟𝑘(𝑯
∗(𝑀(𝒜))). Accordingly, 𝑀(𝒜𝐺) has a minimal (finite type) CW-complex and we concern 

to study its structure by using the well known structure of its higher homotopy group due Papadima and Suciu in 

(2002, [16]).  

The hypersolvable class of arrangements was intoduced firstly by Jambu and Papadima in (1998, [8]) and 
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(2002, [9]), as a generalization of the supersolvable (fiber-type) class. They defined a vertical deformation 

method which deformed the hypersolvable arrangement 𝒜  with 𝑠 -singular blocks into supersolvable 

arrangement �̃� = �̃�1 by one-parameter family of arrangements {�̃�𝑡}𝑡∈ℂ in ℂ𝑟 × ℂ𝑠 = ℂℓ, with preserving 

the lattice intersection pattern up to codimension two, ℓ2(𝒜) = {𝐵 ⊆ 𝒜│ |𝐵| ≤ 3}  ≈ ℓ2(�̃�) and they proved 

𝒜  and �̃�  have isomorphic fundamental groups. The class of hypersolvable arrangements contains 

supersolvable class of arrangements and the generic class of arrangements and many others. For a supersolvable 

arrangement (fiber-type) all the higher homotopy groups of 𝑀(𝒜)  are vanished (1985, [6]). The first 

computation of non trivial higher homotopy groups of 𝑀(𝒜) of a generic arrangement was made by Hattori 

(1975, [7]). Papadima and Suciu in (2002, [12]), generalized Hattori's result to a hypersolvable arrangement and 

compute the first non vanishing higher homotopy group of 𝑀(𝒜). They showed that the first non vanishing 

higher homotopy group of 𝑀(𝒜) has dimension; 

𝑝(𝑀(𝒜)) = sup {𝑘|𝑃(𝑯∗(𝑀(𝒜)), 𝑠) ≡𝑚𝑜𝑑 𝑘 𝑃 (𝑯
∗ (𝑀(�̃�)) , 𝑠)} 

where 𝑃(𝑯∗(𝑀(𝒜)), 𝑠) and 𝑃 (𝑯∗ (𝑀(�̃�)) , 𝑠) are the Poincaré polynomials of the cohomological rings 

𝑀(𝒜)  and 𝑀(�̃�)  respectively. Ali in [1], showed a conjecture of 𝑝(𝑀(𝒜))  as;               

𝑝(𝑀(𝒜)) = 𝑚𝑎𝑥{𝑘||𝑁𝐵𝐶𝑘(𝒜)|=|𝑆𝑘(Π)|}, where 𝑁𝐵𝐶𝑘(𝒜) be the set of all 𝑘-NBC bases of 𝒜 via the 

hypersolvable ordering and 𝑆𝑘(Π) is the set of all 𝑘-sections of a hypersolvable partition Π. 

In section (1), some basic facts that we needed in this work was stated. Section (2), is devoted to compute the 

dimension 𝑝(𝑀(𝒜𝐺)) of the first non vanishing higher homotopy group of 𝑀(𝒜𝐺) for any hypersolvable 

graphic arrangement by using the properties of the hypersolvable partition on the graph 𝐺 due [5]. Finally, the 

structure of the cohomological ring that given in section (3), 𝑯∗(𝑀(𝒜𝐺)) had been used to construct the 

second skeleton of the minimal CW complex of 𝑀(𝒜𝐺) in section (4) and to study the 𝑝(𝑀(𝒜𝐺))
𝑡ℎ

 skeleton 

of minimal CW complex of 𝑀(𝒜𝐺) in section (5). 

We mentioned that, the structure of the higher homotopy groups of 𝑀(𝒜𝐺) is due to [12] and the technique 

of constructing the skeletons of Minimal CW complex of 𝑀(𝒜𝐺) is due to [16], so it is to be expected these 

constructions without proof and for evedance see [12, 16].   

 

1. Basic Facts: 

This section briefly sketch the notion of a hypersolvable partition of a graph 𝐺 due ([5], 2012), in order to 

use its structure to embedding the cohomological group of the complement of a graphic arrangement as a 

submodule of the partition tensor module. For this motivation, we will review some of the standard facts on the 

notions O-S algebra, NBC module, Partition module.  

1.1. Definition: [5] 

Let 𝐺 = (𝑉, Ԑ) be a connected simple graph with a finite set of vertices, i.e. 𝑉 = {𝜐1, … , 𝜐𝑚}. A pair of 

partitions, Π𝐺 = (Π𝑉 , ΠԐ)  is said to be a hypersolvable partition of 𝐺  and denoted by Hp Π𝐺 , if           

Π𝑉 = (Π1
𝑉 , … , Π𝑚‒1

𝑉 ) and ΠԐ = (Π1
Ԑ, … , Πℓ

Ԑ) are partitions of 𝑉 and Ԑ respectively, such that the following 

properties are satisfied: 

HP1: Π1
𝑉 = {𝜐1, 𝜐2} and Π1

Ԑ = {𝑒1}, such that 𝑒1 = [𝜐1, 𝜐2], i.e. Π1
Ԑ is a singleton. 

HP2: For each  2 ≤  𝑗 ≤  𝑚‒1, the block Π𝑗
𝑉 is a singleton. 

HP3: For each  2 ≤  𝑘 ≤  ℓ, the block Π𝑘
Ԑ  satisfying the following properties: 

𝐇𝐏𝟑𝒊: For each 𝑒𝑖1 , 𝑒𝑖2  ∈  Π1
Ԑ  ∪ … ∪ Π𝑘

Ԑ, there is no edge 𝑒 ∈ Π𝑘+1
Ԑ  ∪ … ∪ Πℓ

Ԑ such that {𝑒𝑖1 , 𝑒𝑖2 , 𝑒 } forms a 

set of edges of a triangle. 
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𝐇𝐏𝟑𝒊𝒊: There exists a positive integer 1 < 𝑚𝑘 ≤ 𝑚‒1, such that 𝑉𝑘 = Π1
𝑉  ∪ … ∪ Π𝑚𝑘

𝑉  is a subset of 𝑉 that 

contains all the end points of the edges in Π1
Ԑ  ∪ … ∪ Π𝑘

Ԑ , i.e 𝐺𝑘 = (𝑉𝑘 , Π1
Ԑ  ∪ … ∪ Π𝑘

Ԑ)  forms a 

subgraph of 𝐺. Then, either; 

1. Π𝑘
Ԑ = {𝑒} such that 𝑉𝑘 = 𝑉𝑘−1, 

or; 

2. Π𝑘
Ԑ = {𝑒𝑖1 , … , 𝑒𝑖𝑑𝑘

} , such that 𝑉𝑘  \𝑉𝑘‒1 = Π𝑚𝑘−1+1
𝑉 = Π𝑚𝑘

𝑉 = {𝜐}  and for 1 ≤  𝑗 ≤ 𝑑𝑘 , 𝑒𝑖𝑗 =

[𝜐𝑖𝑗 , 𝜐], for some 𝜐𝑖𝑗 ∈ Π1
𝑉  ∪ … ∪ Π𝑚𝑘−1

𝑉 , where {𝜐𝑖1 , … , 𝜐𝑖𝑑𝑘
} ⊆ 𝑉𝑘−1 = Π1  ∪ … ∪ Π𝑚𝑘−1 induces 

a complete subgraph of 𝐺. 

ℓ(𝐺) = ℓ = |ΠԐ|  is called the length of. For 1 ≤  𝑘 ≤  ℓ , let 𝑑𝑘 =  │Π𝑘
Ԑ│ and the vector              

𝑑 = (𝑑1, … , 𝑑ℓ) is called the exponent vector of Π. Define the rank of  Π𝑘
Ԑ  as; 𝑟𝑘 Π𝑘

Ԑ = │𝑉𝑘│ − 1 and 

𝑟𝑘(𝐺) = 𝑟𝑘 Πℓ
Ԑ = 𝑚 − 1. We will call the block Π𝑘

Ԑ  singular block, if │𝑉𝑘−1│ = │𝑉𝑘│ and non-singular 

otherwise, i.e. Π𝑘
Ԑ  is non-singular if │𝑉𝑘\𝑉𝑘−1│ = 1.  

A hypersolvable partition Π is said to be supersolvable if, and only if, ΠԐ has no singular block. 

We will call a hypersolvable partition Π𝐺, generic if ℓ ≥ 𝑚, the exponent vector  𝑑 = (1,… ,1) and every 

𝑘-eadges of Ԑ cannot be an 𝑘-cycle, 3 < 𝑘 ≤ 𝑚 − 1.  

It is worth pointing out that; 

1. For 1 ≤  𝑘 ≤  ℓ, the positive integer 𝑚𝑘 needs not to be equal to 𝑘 − 1 in general. 

2. ℓ ≥  𝑚 ‒  1 = 𝑟𝑘(𝐺). 

3. ℓ = 𝑚 ‒  1 if, and only if, Π is supersolvable. 

4. Π2
Ԑ cannot be a singular block, since │𝑉2│ = 3. 

5. For 3 ≤ 𝑘 ≤ ℓ, if Π𝑘
Ԑ  is a singular block, then Π𝑘

Ԑ  is a singleton. 

 

1.2. Theorem: [5] 

Let 𝐺 be a connected graph. Then 𝐺 is hypersolvable if, and only if, 𝐺 has a hypersolvable partition. A 

connected hypersolvable graph 𝐺 is supersolvable if, and only if, 𝐺 has a supersolvable partition. 

1.3. Lemma: (The complete property of  𝚷𝐤
Ԑ ) [5] 

Let 𝐺 be a connected hypersolvable graph with a hypersolvable partition Π𝐺 = (Π𝑉 , ΠԐ). For 2 ≤ 𝑘 ≤ ℓ, if 

𝑒1, 𝑒2 ∈ Π𝑘
Ԑ, then there exists a unique 𝑒 ∈ Π1

Ԑ⋃…⋃Π𝑘−1
Ԑ  such that {𝑒1, 𝑒2, 𝑒} forms a triangle.. 

1.4. Definition: [5] 

Let 𝐺  be a hypersolvable graph with hypersolvable partition. Define a hypersolvable order on 

𝐺 associated to an Hp Π𝐺 = (Π𝑉 , ΠԐ) and denoted by ⊴, as follows: 

1. Put an arbitrary order on the vertices of  Π1
𝑉. 

2. If 𝜐𝑖 ∈ Π𝑖
𝑉 and 𝜐𝑗 ∈ Π𝑗

𝑉 such that; 𝑖 < 𝑗, put 𝜐𝑖 ⊴ 𝜐𝑗. 

3. If 𝑒 ∈ Π𝑖
Ԑ and 𝑒ʹ ∈ Π𝑗

Ԑ such that; 𝑖 < 𝑗, put 𝑒 ⊴ 𝑒ʹ. 

4. If 𝑒, 𝑒′, 𝑒′′ ∈ Π𝑘
Ԑ , set𝑒𝑖1 ⊴ 𝑒𝑖2 ⊴ 𝑒𝑖3  ⟺ 𝑒𝑖1,𝑖2 ⊴ 𝑒𝑖1,𝑖3 ⊴ 𝑒𝑖2,𝑖3 , where, {𝑒𝑖1 , 𝑒𝑖2 , 𝑒𝑖3} = {𝑒, 𝑒′, 𝑒′′}. 

1.5. Theorem: [15] 

A graph 𝐺 = (𝑉, Ԑ) is supersolvable if, and only if, there exists an ordering 𝜐1, 𝜐2, … , 𝜐𝑚 of its vertices 

such that if 1 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 𝑚, such that [𝜐𝑖 , 𝜐𝑘] ∈ Ԑ and [𝜐𝑗 , 𝜐𝑘] ∈ Ԑ, then [𝜐𝑖 , 𝜐𝑗] ∈ Ԑ. Equivalently, in the 

restriction of 𝐺 to the vertices 𝜐1, … , 𝜐𝑖  the neighborhood of 𝜐𝑖 is a clique. 

1.6. Proposition: [5] 

Let  𝐺 = (𝑉, Ԑ)  be a supersolvable graph with a supersolvable partition Π𝐺 = (Π𝑉 , ΠԐ) . Via a 

supersolvable ordering ⊴ on 𝐺, if [𝜐𝑖 , 𝜐𝑘] ∈ Ԑ and [𝜐𝑗 , 𝜐𝑘] ∈ Ԑ, then [𝜐𝑖 , 𝜐𝑗] ∈ Ԑ, where 1 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 𝑚. 
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1.7. Definition: [11] 

By a hyperplane 𝐻 in a finite dimensional vector space 𝑉 ≅ 𝐾𝑚 over a field 𝐾 = ℝ or ℂ, we mean an 

affine subspace of dimension (dim𝑉 − 1 = 𝑚 − 1)  and an arrangement 𝒜  is a finite collection of 

hyperplanes 𝐻 in 𝑉. The variety of 𝒜 is 𝑁(𝒜) = ⋃ 𝐻𝐻∈𝒜  and its complement is 𝑀(𝒜) = 𝑉\⋃ 𝐻𝐻∈𝒜 . 

The intersection lattice is defined to be, 𝐿 = 𝐿(𝒜) = {𝑋|𝑋 = ⋂ 𝐻𝐻∈𝐵  and 𝐵 ⊆ 𝒜} that ordered by reverse 

the inclusion, (i.e.  𝑋 ≤   𝑌 ⟺  𝑌 ⊆  𝑋, for 𝑋, 𝑌 ∈ 𝐿(𝒜)), and ranked by 𝑟𝑘(𝑋) = 𝑐𝑜𝑑𝑖𝑚(𝑋) = dim(𝑉) −

dim(𝑋), for 𝑋 ∈ 𝐿(𝒜). 

An arrangement 𝒜𝐺  is said to be graphic arrangement if, there is a graph 𝐺 = (𝑉, Ԑ) such that the 

defining polynomial of 𝒜𝐺  is, 𝑄(𝒜𝐺) = ∏ (𝑥𝑖 − 𝑥𝑗)[𝑖,𝑗]∈Ԑ .  

 We mention that; 

1. 𝑟𝑘(𝒜𝐺) = 𝑟𝑘(𝐺) = |𝑉| − 1. 

2. If 𝐾 = (𝑉𝐾 , Ԑ𝐾) ⊆ 𝐺, then 𝑟𝑘(𝒜𝐾) = 2 = |𝑣| − 1 if, and only if, either |Ԑ𝐾| = 2 or 𝐾 is a triangle of 𝐺. 

3. Poincare polynomial of 𝒜𝐺 ,  𝑃(𝒜𝐺 , 𝑡) = 𝜒(𝐺,−𝑡), where 𝜒(𝐺,−𝑡) is the chromatic function of 𝐺. Thus, 

for 1 ≤ 𝑗 ≤ ℓ, if 𝑏𝑗 is a 𝒋𝒕𝒉 Betti number of the Poincare polynomial 𝑃(𝒜, 𝑡), then 𝑏𝑗 = The number of 

colorings of  𝑗 vertices of  𝐺 with 𝑡 colors.  

1.8. Proposition: [12] 

A graph 𝐺 is hypersolvable if, and only if, the graphic arrangement 𝒜𝐺  is hypersolvable. 

1.9. Proposition: [5] 

 A graph 𝐺  is supersolvable if, and only if, the graphic arrangement 𝒜𝐺  is supersolvable. A graph 

𝐺 = (𝑉, Ԑ) is a generic graph if, and only if, its graphic arrangement 𝒜𝐺  is generic.  

 

The important points to note here are that, if 𝐺 = (𝑉, Ԑ)  is a hypersolvable graph, then 𝒜𝐺  has a 

hypersolvable partition Π′ = (Π1, … , Πℓ) induced from the hypersolvable partition Π𝐺 = (Π𝑉 , Πℇ) , as for 

1 ≤ 𝑘 ≤ ℓ,  𝐻𝑖𝑗 ∈ Π𝑘 if, and only if, [𝑖, 𝑗] ∈ Π𝑘
ℇ. Π′ is called the induced partition of Π𝐺. 

1.10. Definition: [2] 

Let Π = (Π1, … , Πℓ) be a partition of an ℓ-arrangement 𝒜. 

1. A section 𝑆 of  𝛱 is a subarrangement of 𝒜 satisfied for each 1 ≤ 𝑘 ≤ ℓ, either 𝑆 ∩ Π𝑘 is empty or a 

singleton. By 𝑆(Π) we denote the set of all sections of Π and the set 𝑆𝑘(Π) denotes the set of all sections 

𝑆 of  Π with |𝑆| = 𝑘, we call such sections of  Π, 𝑘-sections of Π. We will agree that the empty section 

∅ℓ is a 0-sections of Π. 

2. The integer ℓ is called the length of  Π and denoted by ℓ(Π). 

3. 𝑟𝑘(Π𝑘) = 𝑟𝑘(⋂ 𝐻𝐻∈Π1∪…∪Π𝑘
).  

4. Π is called independent if for every choice of hyperplanes 𝐻𝑘 ∈ Π𝑘  for  1 ≤ 𝑘 ≤ ℓ, the resulting ℓ 

hyperplanes are independent, i.e. 𝑟𝑘(𝐻1 ∩ …∩ 𝐻ℓ) = ℓ. 

5. Let 𝑋 ∈ 𝐿. Let Π = (Π1, … , Πℓ) be a partition of 𝒜. Then the induced partition Π𝑋 is a partition of 𝒜𝑋, 

its blocks are the nonempty subsets Π𝑘 ∩ 𝒜𝑋, 1 ≤ 𝑘 ≤ ℓ. 

6. 𝜋 is called nice, if Π is independent and if 𝑋 ∈ 𝐿\{𝑉}, then the induced partition Π𝑋 contains a block, 

which is a singleton. 

7. 𝒜 is called nice arrangement if, it has a nice partition              Π = (Π1, … , Πℓ). The vector of 

integers  𝑑 = (𝑑1, . . , 𝑑ℓ) is said to be the exponent vector of 𝒜, if 𝑑𝑘 = |𝜋𝑘|, 1 ≤ 𝑘 ≤ ℓ. 

1.11. Definition: [2] 

1. A subarrangement 𝐶 of 𝒜 is said to be a circuit, if it is a minimal dependent subarrangement of 𝒜, i.e. 

𝐶\{𝐻} is linearly independent, for any 𝐻 ∈ 𝐶, i.e. 𝑟𝑘(𝐶) = │𝐶│ − 1. 
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2. Via a total ordering ⊴  on the hyperplanes of 𝒜, the corresponding broken circuit of a circuit 𝐶 is 

�̅� = 𝐶\{𝐻}, where 𝐻 is the smallest hyperplane in 𝐶. If |�̅�| = 𝑘, then �̅� is said to be 𝒌-broken circuit. 

The set of all 𝑘-broken circuits of 𝒜 will be denoted by 𝐵𝐶𝑘(𝒜) and 𝐵𝐶(𝒜) = ⋃ 𝐵𝐶𝑘(𝒜)
ℓ
𝑘=2 . 

3. We call 𝐵 ⊆ 𝒜, an NBC base of 𝒜, if it contains no broken circuit. Note that, such a set must be 

independent and we will write 𝒌-𝑵𝑩𝑪 base for 𝐵 if │𝐵│ = 𝑘 and we will agree that ∅ℓ is the 0-𝑁𝐵𝐶 

of 𝒜. By  𝑁𝐵𝐶𝑘(𝒜) we denote the set of all 𝑘-𝑁𝐵𝐶 bases of 𝒜 and 𝑁𝐵𝐶(𝒜) = ⋃ 𝑁𝐵𝐶𝑘(𝒜) 
ℓ
𝑘=0 . 

4. If   𝑋 ∈ 𝐿(𝒜). Then the NBC base 𝐵 ⊆ 𝒜𝑋, (i.e. ⋂ 𝐻𝐻∈𝐵 = 𝑋) is said to be an 𝑁𝐵𝐶 base of 𝑋. 

5. If 𝒜 is a factored arrangement with a factorization 𝜋. Due a total ordering ⊴ on the hyperplanes of 𝒜, 

define, 𝑝
⊴
(𝒜) = 𝑀𝑎𝑥{𝑘| 𝑁𝐵𝐶𝑘(𝒜) =  𝑆𝑘 (𝜋)}. We remarked that,  1 ≤ 𝑝⊴(𝒜) ≤ ℓ.   

In view of definitions (1.10.) and (1.11), we remarked the following:  

1. If 𝑑 = (𝑑1, . . , 𝑑ℓ) be the exponent vector of a nice partition Π, it is known that;  

𝑃 (𝒜 , 𝑡) = ∏ (1 + 𝑑𝑘𝑡)
ℓ
𝑘=1  = 1 + (𝑑1+. . + 𝑑ℓ)𝑡 + (∑ ∑ 𝑑𝑖1𝑑𝑖2  

ℓ
𝑖2= 𝑖1+1 

ℓ−1
𝑖1=1

)𝑡2 +⋯+ 𝑑1 …𝑑ℓ 𝑡
ℓ. 

2. Independent of our choice of an ordering ⊴ on the hyperplanes of 𝒜, It is known that, the 𝑘𝑡ℎ Betti 

number of the Poincare polynomial 𝑃(𝒜, 𝑡) = 𝑏𝑘(𝒜) = |𝑁𝐵𝐶𝑘(𝒜)|. According to [1], for a hypersolvable 

arrangement 𝒜;  

𝑏𝑘(𝒜) = |𝑁𝐵𝐶𝑘(𝒜)| ≤ ∑ ∑ …∑ 𝑑𝑖1𝑑𝑖2 …𝑑𝑖𝑘 = |𝑆𝑘(Π)|
ℓ
𝑖𝑘= 𝑖𝑘−1+1

ℓ−𝑘+1
𝑖2= 𝑖1+1

ℓ−𝑘
𝑖1=1

, for 1 ≤ 𝑘 ≤ ℓ.                

1.12. Definition: [11] 

Let 𝐾 be any commutative ring and Let ⊴ be an arbitrary total order that defined on the hyperplanes of an 

ℓ-arrangement 𝒜. The Orlik-Solomon algebra (or for  simplicity O-S algebra) 𝐴∗(𝒜) is defined to be the 

quotient of  the exterior 𝐾-algebra 𝐸∗ = ⋀ (⊕𝐻∈𝒜 𝐾𝑒𝐻)𝑘≥0 , by the homogeneous ideal 𝐼∗(𝒜) is generated by 

the relations, ∑ (−1)𝑘−1𝑘
𝑗=1 𝑒𝐻𝑖1

…𝑒𝐻𝑖�̂� …𝑒𝐻𝑖𝑘
, for all 1 ≤ 𝑖1 < ⋯ < 𝑖𝑘 ≤ 𝑛  such that {𝐻𝑖1 , … 𝐻𝑖𝑘}  is 

dependent subarrangement of 𝒜, i.e. (𝑟𝑘(𝐻𝑖1 , …𝐻𝑖𝑘) < 𝑘) and the circumflex   ̂ means 𝑒𝐻𝑖𝑗
 is deleted. Define 

a 𝐾 -linear mapping 𝜕∗
𝐸: 𝐸∗ → 𝐸∗  as; 𝜕0

𝐸(𝑒∅ℓ) = 0 , 𝜕1
𝐸(𝑒𝐻) = 1 , for all 𝐻 ∈ 𝒜  and for 2 ≤ 𝑘 ≤ ℓ , 

𝜕𝑘
𝐸(𝑒𝐶) = ∑ (−1)𝑘−1𝑘

𝑗=1 𝑒𝐻𝑖1 …𝑒𝐻𝑖�̂� …𝑒𝐻𝑖𝑘
, 𝐶 = {𝐻𝑖1 , …𝐻𝑖𝑘}. 𝜕∗

𝐸 is a differentiation on 𝐸∗ and the chain complex 

(𝐸∗, 𝜕∗
𝐸): ⋯

𝜕𝑘+1
𝐸

→  𝐸𝑘
𝜕𝑘
𝐸

→ 𝐸𝑘−1
𝜕𝑘−1
𝐸

→  ⋯
𝜕2
𝐸

→ 𝐸1
𝜕1
𝐸

→ 𝐸0
𝜕0
𝐸

→ 0, is called the exterior complex. 

1.13. Theorem: [11] 

The complex (𝑨∗(𝒜), 𝜕∗
𝐴) inherits a structure as acyclic chain complex from the exterior complex (𝐸∗, 𝜕∗

𝐸), 

where 𝜕∗
𝐴 = 𝜓

∗
∘ 𝜕∗

𝐸  and 𝜓
∗
: 𝐸∗ → 𝑨∗(𝒜)  is the canonical chain map. The acyclic chain complex 

(𝑨∗(𝒜), 𝜕∗
𝐴) is called the O-S complex.  

1.14. Definition: [11] 

Let 𝐾  be any commutative ring. The broken circuit module 𝑵𝑩𝑪∗(𝒜)  of the exterior 𝐾 -algebra  

𝐸∗ = ⋀ (⊕𝐻∈𝒜 𝐾𝑒𝐻)𝑘≥0 , is defined as; 𝑵𝑩𝑪0(𝒜) = 𝐾  and for 1 ≤ 𝑘 ≤ ℓ , 𝑵𝑩𝑪𝑘(𝒜)  be the free  

𝐾-module of 𝐸𝑘 with NBC (no broken circuit) monomials basis {𝑒𝐶|𝐶 ∈ 𝑁𝐵𝐶𝑘(𝒜)} ⊆ 𝐸𝑘, i.e.; 

𝑵𝑩𝑪𝑘(𝒜) =⊕𝐶∈𝑁𝐵𝐶𝑘(𝒜)
𝐾𝑒𝐶 and 𝑵𝑩𝑪∗(𝒜) =⊕𝑘=0

ℓ 𝑵𝑩𝑪𝑘(𝒜). 

1.15.  Theorem: [11] 

The broken circuit  subcomplex (𝑵𝑩𝑪∗(𝒜), 𝜕∗
𝑁𝐵𝐶) inherits a structure as acyclic chain complex from the 

exterior complex (𝐸∗, 𝜕∗
𝐸) , where 𝜕∗

𝑁𝐵𝐶 = 𝜕∗
𝐸 ∘ 𝑖∗  and 𝑖∗: 𝐸∗ → 𝑵𝑩𝑪∗(𝒜)  is the inclusion chain map. 
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Moreover, the restriction of the canonical chain map 𝜓
∗
: 𝐸∗ → 𝑨∗(𝒜) of the broken circuit module 𝑵𝑩𝑪∗(𝒜), 

is a chain isomorphism, defined as; for 1 ≤ 𝑘 ≤ ℓ,  𝜓
𝑘
(𝑒𝐶) = 𝑒𝐶 + 𝐼𝑘(𝒜) = 𝑎𝐶,           𝐶 ∈ 𝑁𝐵𝐶𝑘(𝒜). 

Thus, the O-S algebra has the following structure as a free 𝐾-submodule of the exterior algebra: 𝑨∗(𝒜) =

⊕𝑘=0
ℓ (⊕𝐶∈𝑁𝐵𝐶𝑘(𝒜)

𝐾𝑎𝐶 ). 

1.16. Definition: [11] 

Let Π = (Π1 , … , Πℓ) be a partition on an ℓ-arrangement 𝒜  and let 𝐾  be any commutative ring. A 

partition 𝐾-module is defined to be (Π)∗ = (Π1 )∗⊗…⊗ (Πℓ)∗, where for 1 ≤ 𝑘 ≤ ℓ, (Π𝑘)∗ is the free 

𝐾-module with basis 1 and the elements of Π𝑘. For each 𝐵 = {𝐻𝑖1 , …𝐻𝑖𝑘} ∈ 𝑆𝑘 (Π), i.e. 𝐻𝑖𝑚 ∈ Π𝑖𝑚 , 1 ≤ 𝑖1 <

⋯ < 𝑖𝑘 ≤ ℓ and 1 ≤ 𝑚 ≤ 𝑘, define;𝑞
𝐵
= 𝑥1 ⊗…⊗ 𝑥ℓ ∈ (Π)∗ as; 

𝑥𝑗 = {
𝐻𝑗 𝑖𝑓 𝑗 = 𝑖𝑚 for some 1 ≤ 𝑚 ≤ 𝑘

1 𝑖𝑓 𝑗 ≠ 𝑖𝑚 for all 1 ≤ 𝑚 ≤ 𝑘
 

We agree that each of 𝑞
∅ℓ
= 1⊗…⊗ 1  and 𝑞

𝐵
 is homogeneous of degree 𝑘 . We denoting the  

𝑘th -homogeneous part of  (Π)∗  by (Π)𝑘 . Therefore, (Π)∗ =⊕𝑘=0
ℓ (Π)𝑘 =⊕𝑘=0

ℓ (⊕𝐵∈𝑆𝑘(Π)
𝐾𝑞

𝐵
 )  and 

{𝑞𝐵|𝐵 ∈ 𝑆𝑘(Π)} forms a basis to the free 𝐾-module (Π)∗. Furthermore, {𝑞{𝐻}|𝐻 ∈ Π𝑘 } forms a basis to the 

free  𝐾 -module (Π𝑘 )∗ , 1 ≤ 𝑘 ≤ ℓ . Define a 𝐾 -linear mapping 𝜕∗
Π: (Π)∗ → (Π)∗  as; 𝜕0

Π (𝑞{ }) = 0 ,    

𝜕1
Π(𝑞

𝐻
) = 1 , for all 𝐻 ∈ 𝒜  and for 2 ≤ 𝑘 ≤ ℓ ,  𝜕𝑘

Π(𝑞
𝐵
) = ∑ (−1)𝑘−1𝑘

𝑗=1 𝑞
�̂�𝑗

, where 𝐵 = {𝐻𝑖1 , …𝐻𝑖𝑘} ∈

𝑆𝑘(Π), 𝑞𝐵 = 𝑥1⨂…⨂𝑥ℓ as given in (1.8), and 𝑞
�̂�𝑗
= 𝑥1⨂…⨂𝐻𝑖�̂�⨂…⨂𝑥ℓ by means of 𝐻𝑖�̂� = 1. 𝜕∗

𝜋
 is a 

differentiation on (Π)∗ and the chain complex ((Π)∗, 𝜕∗
𝜋) is called the partition complex; 

0 → (Π)ℓ
𝜕ℓ
Π

→ (Π)ℓ−1
𝜕ℓ−1
Π

→  ⋯
𝜕2
Π

→ (Π)1
𝜕1
Π

→ (Π)0
𝜕0
Π

→ 0. 

1.17.  Definition: [11] 

For 1 ≤ 𝑘 ≤ ℓ, define the a map �̃�
𝑘
: {𝑞

𝐵
|𝐵 ∈ 𝑆𝑘(Π)} → 𝑨∗(𝒜) , as 𝜑

𝑘
(𝑞
𝐵
) = 𝑎𝐵 = 𝑒𝐵 + 𝐼𝑘(𝒜) , 

𝐵 ∈ 𝑆𝑘(Π). Let 𝜑
𝑘
: (Π)𝑘 → 𝑨𝑘(𝒜) be the unique 𝐾-linear map that extend this assignment. Accordingly, 

there is a unique 𝐾-chain mapping 𝜑
∗
: (Π)∗ → 𝑨∗(𝒜) between acyclic chain complexes. 

1.18. Theorem: [11] 

The chain map 𝜑
∗
: (Π)∗ → 𝑨∗(𝒜) is a 𝐾-isomorphism between chain complexes if and only if the 

partition 𝜋 is a Nice.  

The theorems (1.16.) and (1.19), afford a 𝐾-isomorphism,  𝜒∗ = 𝜓∗
−1 ∘ 𝜑∗: (Π)∗ → 𝑵𝑩𝑪∗(𝒜) between the 

partition complex and broken circuit complex.  

1.19. Theorem: [11]  

Let 𝒜 be a complex ℓ-arrangement and let  𝑨∗(𝒜) be its Orlik-Solomon algebra over the integer ring ℤ. 

The map 𝑒𝐻 ↦ (1/2𝜋√−1)𝜔𝐻  induces an isomorphism 𝜔∗: 𝑨∗(𝒜) → 𝐻
∗(𝑀(𝒜), ℤ) of graded ℤ-algebras, 

where 𝜔𝐻 = 𝑑𝛼𝐻/𝛼𝐻  is the deferential 1-form for 𝐻 ∈ 𝒜 and 𝐻 = ker (𝛼𝐻). 

1.20. Theorem: [3]  

For any commutative ring 𝐾
 

and for 𝑘 ≥ 0; 

𝐻𝑘(𝑀(𝒜), 𝐾) ≅ 𝐻𝑘(𝑀(𝒜), ℤ)⨂𝑇𝑜𝑟(𝐻𝑘+1(𝑀(𝒜), ℤ), 𝐾), 

where  𝑇𝑜𝑟(𝐻𝑘+1(𝑀(𝒜), ℤ), 𝐾) = ker (𝑖𝑘+1, 1𝐾) from a free presentation; 
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0 → 𝑅𝑘+1
𝑖𝑘+1

→  𝐹𝑘+1 → 𝐻𝑘+1(𝑀(𝒜), ℤ) → 0; 

 of 𝐻𝑘+1(𝑀(𝒜), ℤ) as generators 𝐹𝑘+1 and relations 𝑅𝑘+1. 

 

2. An algorithm to compute the dimension of the first non vanishing higher homotopy group of the 

complement of hypersolvable graphic arrangement 

The advantage of studying the hypersolvable class of graphs lies in the fact it includes enormous 

applications, including the class of supersolvable (triangulated or rigid circuit) graphs, the class of graphs with 

no triangles and many others.   

In view of definition (1.1.) and definition (1.4.), an algorithm to reorder the vertices and the edges of 𝐺 by 

an order that preserve the hypersolvable structure of 𝐺 was stated.  So, we will used this algorithm to compute 

𝑝(𝑀(𝒜𝐺)), the dimension of the first non vanishing higher homotopy group of 𝑀(𝒜𝐺) for any hypersolvable 

graphic arrangement that not supersolvable as follows:      

2.1. Construction: 

Let 𝐺 be a hypersolvable graph with hypersolvable partition Π𝐺 = (Π𝑉 , ΠԐ) and a hypersolvable ordering 

⊴. Assume, ΠԐ  has 𝑠  singular blocks say, Π𝑙1
𝜀 , … , Π𝑙𝑠

𝜀 , 2 < 𝑙1 ≤ ⋯ ≤ 𝑙𝑠 ≤ ℓ. Due  definition (1.1.) and 

definition (1.5.), we will reordering the vertices and the edges of 𝐺 by the hypersolvable order that preserve Π𝐺 

structure. Since 𝐺 is not supersolvable, hence it has a 𝑘-circuit (cycle) with no chord, 𝑘 ≥ 4. Every  𝑘- circuit, 

forms a 𝑘-Polygon, 𝑘 ≥ 4 and there is no mention about how many such circuit are there of 𝐺.  

2.2. Theorem: 

Suppose we have the conclusions of construction (2.1.). If; 

𝐷 = {𝐶 ⊆ 𝐺|𝐶 is a 𝑗 − circuit with no chord, 𝑗 ≥ 4}; 

then 𝑠 = |𝐷|. In fact, 𝑝(𝑀(𝒜𝐺)) = 𝑐 − 2, where; 

𝑐(𝐺) = 𝑐 = 𝑀𝑖𝑛{|𝐶|| 𝐶 ∈ 𝐷}. 

Proof: First, we will prove 𝑠 = |𝐷|. So we need to verify that, the edges of a 𝑗-circuit with no chord, 𝑗 ≥ 4, 

must be distributed among 𝑗 different blocks of  ΠԐ.   

By contrary, assume there exists a 𝑗-circuit 𝐶 with no chord and a block Π𝑖
Ԑ of ΠԐ contains two edges of  

𝐶 say 𝑒1 and 𝑒2. From the complete property of Π𝑖
Ԑ (lemma (1.3.)), there exists an edge 𝑒 ∈ Π1

Ԑ ∪ …∪ Π𝑖−1
Ԑ , 

such that {𝑒1, 𝑒2, 𝑒} is a triangle. This contradicts our assumption that 𝐶 is a 𝑗-circuit with no chord. So, 

inductively the edges of 𝐶 must be contained in 𝑗 different blocks of ΠԐ and via the hypersolvable ordering 

the maximal edge 𝑒′ satisfied that there is no vertex added to 𝑉𝑗−1 , (i.e. 𝑉𝑗 = 𝑉𝑗−1 ). Thus, the block that 

contains 𝑒′ must be a singleton. Therefore, 𝑠 = |𝐷|. 

Secondly, if 𝑐(𝐺) = 𝑐 = 𝑀𝑖𝑛{|𝐶|| 𝐶 ∈ 𝐷} , we prove 𝑝(𝑀(𝒜𝐺)) = 𝑐 − 2 . Recall Ali conjecture of 

𝑝(𝑀(𝒜𝐺))  from [1] as, 𝑝(𝑀(𝒜𝐺)) = {𝑘||𝑁𝐵𝐶𝑘(𝒜𝐺)|= |𝑆𝑘(Π
′)|}, where 𝑁𝐵𝐶𝑘(𝒜𝐺)  be the set of all 

𝑘-NBC bases of the hypersolvable grphic arrangement 𝒜𝐺  via the hypersolvable ordering and 𝑆𝑘(Π) is the set 

of all 𝑘-sections of the induced hypersolvable partition Π′ due Π𝐺. According our first part proof, 𝒜𝐶  is a 

𝑐 -circuit of 𝒜𝐺  and  𝒜𝐶/{𝐻𝑖1𝑖2  } ∈ 𝑆𝑐−1(Π′)  is its broken circuit. Thus, |𝑁𝐵𝐶𝑐−1(𝒜𝐺)| ≠ |𝑆𝑐−1(Π
′)| . 

Therefore, (𝑀(𝒜𝐺)) = {𝑘||𝑁𝐵𝐶𝑘(𝒜𝐺)| = |𝑆𝑘(Π
′)|} = 𝑐 − 2 . ∎ 

2.3. Deformation method: 

Suppose we have the conclusion of construction (2.1.). It is worth pointing out that, any hypersolvable graph 

can be deformed into a supersolvable graph either by adding edges or by deleting edges of every 𝑘- Polygon 

with no chord. So, we can easily use the hypersolvable partition ΠԐ and its exponent vector 𝑑 = (𝑑1, … , 𝑑ℓ) to 
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complete the graph 𝐺 either by just adding edges to deform 𝐺 into a complete graph 𝐵𝑚 or by adding vertices 

and edges to deform 𝐺 into a complete graph 𝐵ℓ by a simple comparing with; 

𝜋𝜀(𝐵𝑚) = ({[𝑣1, 𝑣2]}, {[𝑣1, 𝑣3], [𝑣2, 𝑣3]}, … , {[𝑣1, 𝑣𝑚], … , [𝑣𝑚−1, 𝑣𝑚]}); 

 that has exponent vector 𝑑𝐵𝑚 = (1,2, … ,𝑚 − 1), or; 

𝜋𝜀(𝐵ℓ) = ({[𝑣1, 𝑣2]}, {[𝑣1, 𝑣3], [𝑣2, 𝑣3]}, … , {[𝑣1, 𝑣ℓ], … , [𝑣ℓ−1, 𝑣ℓ]}); 

that has exponent vector 𝑑𝐵ℓ = (1,2, … , ℓ − 1).  

For case (1): if 𝑑𝑣𝑘 is the number of the edges of ΠԐ that contain 𝑣𝑘 as a vertex, then we will add (𝑚 −

1) − 𝑑𝑣𝑘  edges, for 1 < 𝑘 ≤ 𝑚 in order to connect 𝑣𝑘  with the other  (𝑚 − 1) − 𝑑𝑣𝑘  vertices of 𝑉  to 

produce a complete graph 𝐵𝑚.   

For case (2), we will add ℓ − 𝑚  vertices and  𝑘 − 𝑑𝑘 edges to the block Π𝑘
𝜀 , for 2 < 𝑘 ≤ ℓ in order to 

deform 𝐺 into 𝐵ℓ.   

However, we can deform 𝐺 into a hypersolvable graph 𝐺1 by deleting every non-singular block of  ΠԐ, i.e. 

we will delete the 𝑠 edges that related to the 𝑠 singular blocks of ΠԐ. But by using this procedure, the 

resulting deformed arrangement  𝐺1 is either supersolvable or hypersolvable which is not supersolvable. So we 

need to iterate the process until we require our deformed supersolvable graph 𝐺𝑏  where 𝑏 presents the 

repetition number of the process.  Via this deformation method, there is no vertex will be deleted. On the other 

hand, every 𝑘-cycle of 𝐺 with no chord will be broken, for 𝑘 ≥ 4. 

  

In the following we emphasis a special kind of graphs:  

2.4. Construction: 

Let 𝐺 = (𝑉, 𝜀)  be a hypersolvable graph with hypersolvable partition Π𝐺 = (Π𝑉 , ΠԐ) and a hypersolvable 

ordering ⊴. Assume, ΠԐ has just one singular block and it is the last one, i.e. 𝑟𝑘(Π𝑚
𝜀 ) = |𝑉| = 𝑚.  Since 𝐺 

is not supersolvable, hence it has a 𝑘- circuit (cycle) with no chord,  𝑘 ≥ 4. In this case, there is just one 𝑚- 

circuit say; 

𝐶 = ({𝑣𝑖1 , … , 𝑣𝑖2), {[𝑣𝑖1 , 𝑣𝑖2], [𝑣𝑖2 , 𝑣𝑖3], … , [𝑣𝑖𝑚−1 , 𝑣𝑖𝑚], [𝑣𝑖1 , 𝑣𝑖𝑚]; 

with no chord and the edge [𝑣𝑖1 , 𝑣𝑖𝑚] of Π𝑚
𝜀  is the maximal one of the 𝑘 -circuit 𝐶  via ⊴ . Due the 

deformation method (2.3.), 𝐺 can be deformed into a supersolvable graph by deleting the edge [𝑣𝑖1 , 𝑣𝑖𝑚] of the 

block Π𝑚
𝜀 . Put,  𝐺1 = (𝑉1 = 𝑉, 𝜀1 = 𝜀 − Π𝑚

𝜀 ) to be the deformed supersolvable graph. Definitely, 𝐺1 is a 

supersolvable graph. 

2.5. Corollary: 

Suppose we have the conclusions of construction (2.4.). Then 𝑝(𝑀(𝒜𝐺)) = 𝑚 − 2. 

Proof: This is a direct result of theorem (2.2.). ∎ 

 

2.6. Example: 

Every 𝑚 -geniric graph 𝐺 = (𝑉, 𝜀)  is a graph with just one singular block is the block Π𝑚
𝜀  and 

𝑝(𝑀(𝒜𝐺)) = 𝑚 − 2. For example, the graph in figure (1.) is a 5-geniric graph with 𝑝(𝑀(𝒜𝐺)) = 3 and 

figure (2.) shows its supersolvable deformed graph by deleting the last edge; 

                     

Figure 1. A 5-geniric graph    Figure 2. A defomed graph of 5-geniric graph  
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2.7. Construction: 

Let 𝐺 = (𝑉, 𝜀)  be a hypersolvable graph with hypersolvable partition Π𝐺 = (Π𝑉 , ΠԐ) and a hypersolvable 

ordering ⊴. Assume, ΠԐ  has just one singular block and it is Π𝑚−1
𝜀 , i.e. 𝑟𝑘(Π𝑚−1

𝜀 ) = |𝑉| − 1 = 𝑚 − 1.  

Thus, 𝐺 has a 𝑘- circuit (cycle) with no chord,  𝑘 ≥ 4. Actually, 𝐺 has just one 𝑘- circuit say; 

𝐶 = ({𝑣𝑖1 , … , 𝑣𝑖2}, {[𝑣𝑖1 , 𝑣𝑖2], [𝑣𝑖2 , 𝑣𝑖3], … , [𝑣𝑖𝑘−1 , 𝑣𝑖𝑘], [𝑣𝑖1 , 𝑣𝑖𝑘]; 

with no chord and the edge [𝑣𝑖1 , 𝑣𝑖𝑘] of Π𝑚−1
𝜀  is the maximal one of the 𝑘-circuit 𝐶 via ⊴. For this case, we 

cannot guess that 𝐺 can be deformed into a supersolvable graph by deleting just one edges and example (2.9.) 

demonstrate this goal. 

2.8. Corollary: 

Suppose we have the conclusions of construction (2.7.). Then 𝑝(𝑀(𝒜𝐺)) = 𝑘 − 2. 

Proof: This is a direct result of theorem (2.2.). ∎ 

2.9. Example: 

Let 𝐺 and 𝐺′ be the graphs shown in figure (3.) and figure (4.) respectively. then each one of them has  

𝑝(𝑀(𝒜𝐺)) = 2.  

           

Figure 3. The graph 𝐺         Figure 4. The graph 𝐺′ 

Each one of them can be deformed easly by deleting edges into a supersolvabe graphs as shown in figure (5.) and 

figure (6.) respectively: 

        

Figure 5. A deformed graph of 𝐺   Figure 6. A deformed graph of 𝐺′ 

 

2.10. Example: 

Let 𝐺, 𝐺′ and 𝐺′′ be the graphs shown in the figures (2.10.1.), (2.10.2.) and (2.10.3.) respectvely. The 

graph 𝐺 has  𝑝(𝑀(𝒜𝐺)) = 2 with 𝑠 = 15 singular blocks of ΠԐ, the graph 𝐺′ has 𝑝(𝑀(𝒜𝐺′)) = 3 with 

𝑠 = 31 singular block of ΠԐ
′
 and the graph 𝐺′′ has 𝑝(𝑀(𝒜𝐺′′)) = 3 with 𝑠 = 27 singular blocks of ΠԐ

′′
. 

Deduce that, in spit of, each one of the graphs 𝐺, 𝐺′ and 𝐺′′ has no triangle, they are not generic. 

        

Figure 7. The graph 𝐺    Figure 8. The graph 𝐺′    Figure 9. The graph 𝐺′′ 
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It is clear that, to deform any one of the graphs above by just deleting edges will be more complecated and it 

cannot be by applying the method for just one step.  

 

3. The cohomological ring of a hypersolvable graphic arrangement 

 

In this section we restricted, a construction of the cohomological ring of the complement of any 

hypersolvable arrangement discribed in [3], on the complement of any hypersolvable graphic arrangement  by 

using the hypersolvable partition of a graph structure, as follows:  

  

3.1. Theorem: 

Let 𝐺 be a supersolvable graph with a supersolvable partition Π𝐺 = (Π𝑉 , ΠԐ) and a hypersolvable ordering 

⊴ and let Π′  be its induced supersolvable partition on 𝒜𝐺 . Then 𝑁𝐵𝐶(𝒜𝐺) = 𝑆(Π′) and for 1 ≤ 𝑘 ≤

𝑟𝑘(𝐺) = ℓ − 1; 

𝑏𝑘(𝑯
∗(𝑀(𝒜𝐺))) = ∑ ∑ …∑ 𝑑𝑖1𝑑𝑖2 …𝑑𝑖𝑘

ℓ−1
𝑖𝑘=𝑖𝑘−1+1

ℓ−𝑘
𝑖2=𝑖1+1

ℓ−𝑘−1
𝑖1=1

. 

and the cohomological ring 𝑯∗(𝑀(𝒜𝐺)) can be determined by the following commutative diagram: 

 

 

 

 

 

 

 

 

 

 

 

Proof: This is a direct result of theorem ((2.4.), [3]) and theorem (1.19.), where the 𝐾 -chain map 

𝒥∗: 𝑵𝑩𝑪∗(𝒜𝐺) → (Π′)∗ is the unique 𝐾-isomorphism that extends the one to one correspondence between the 

bases of 𝑵𝑩𝑪∗(𝒜𝐺) and  (Π′)∗; 

𝒥∗: {𝑒𝐵|𝐵 ∈ 𝑁𝐵𝐶(𝒜𝐺) = 𝑆(Π′)} → {𝑞𝐵|𝐵 ∈ 𝑆(Π′)}, 

that defined as,  𝒥∗(𝑒𝐵) = 𝑞𝐵, 𝐵 ∈ 𝑆(Π′).  ∎ 

 

3.2. Theorem: 

Let 𝐺  be a hypersolvable graph with a hypersolvable partition Π𝐺 = (Π𝑉 , ΠԐ)  and a hypersolvable 

ordering ⊴ such that 𝑟𝑘(𝒜𝐺) = 𝑚 − 1 < ℓ, i.e. 𝐺 is not supersolvable. Then, due theorem (2.2.); 

2 ≤ 𝑝(𝒜𝐺) = 𝑐 − 2 ≤ 𝑚 − 2; 

and  for 1 ≤ 𝑘 ≤ 𝑐 − 2; 

𝑁𝐵𝐶𝑘(𝒜𝐺) = 𝑆𝑘(Π′), 𝑁𝐵𝐶𝑐−1(𝒜𝐺) = 𝑆𝑐−1(Π′)\𝑆𝑐−1(Π′)⋂𝐵𝐶𝑐−1(𝒜𝐺);  

and for 𝑐 ≤ 𝑘 ≤ 𝑚 − 1, 𝑁𝐵𝐶𝑘(𝒜𝐺) ⊂ 𝑆𝑘(Π′). The cohomological group 𝑯∗(𝑀(𝒜𝐺)) can be determined by 

the following commutative diagrams: 

  

0 →  𝑯ℓ−1(𝑀(𝒜𝐺))
𝜕ℓ−1
𝐻    
→     𝑯ℓ−2(𝑀(𝒜𝐺))

𝜕ℓ−2
𝐻

→  ⋯
  𝜕2
𝐻   
→    𝑯1(𝑀(𝒜𝐺))   

  𝜕1
𝐻   
→    𝑯1(𝑀(𝒜𝐺))  

  𝜕0 
𝐻   
→   0 

0 → 𝑨ℓ−1(𝒜𝐺)   
   𝜕ℓ−1
𝐴    

→     𝑨ℓ−2(𝒜𝐺)   
𝜕ℓ−2
𝐴

→  ⋯
  𝜕2
𝐴   
→      𝑨1(𝒜𝐺)  

  𝜕1
𝐴   
→    𝑨0(𝒜𝐺)  

  𝜕0 
𝐴    
→   0 

𝜓ℓ−1
−1 ↓                   𝜓ℓ−2

−1 ↓                                 𝜓1
−1 ↓                 𝜓0

−1 ↓ 

  0 → 𝑵𝑩𝑪ℓ−1(𝒜𝐺)
𝜕ℓ−1
𝑁

→  𝑵𝑩𝑪ℓ−2(𝒜𝐺)
𝜕ℓ−2
𝑁

→  ⋯
𝜕2
𝑁

→ 𝑵𝑩𝑪1(𝒜𝐺)
𝜕1
𝑁

→ 𝑵𝑩𝑪0(𝒜𝐺)
𝜕0
𝑁

→ 0 

     𝒥ℓ−1 ↓                  𝒥ℓ−2 ↓                                  𝒥1 ↓                     𝒥0 ↓      

0 →    (Π′)ℓ−1     
   𝜕ℓ−1
𝜋  

→        (Π′)ℓ−2    
𝜕ℓ−2
𝜋

→   ⋯ 
  𝜕2
𝜋   
→       (Π′)1    

  𝜕1
𝜋  
→       (Π′)0  

  𝜕0
𝜋   
→  0 

𝜔ℓ−1
−1 ↓                     𝜔ℓ−2

−1 ↓                                  𝜔1
−1 ↓                   𝜔0

−1 ↓                                
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and; 

 

 

 

 

 

 

 

 

 

 

 

 

Proof: According theorem ((2.5), [3]) and theorem (2.2.), our claim is proved, where the 𝐾-chain map 

𝒻∗: 𝑵𝑩𝑪∗(𝒜𝐺) → (Π′)∗  is the unique 𝐾 -injective chain map that extends the one to one mapping that 

embedding the NBC basis of 𝑵𝑩𝑪∗(𝒜𝐺) of the basis of (Π′)∗; 

𝒻∗: {𝑒𝐵|𝐵 ∈ 𝑁𝐵𝐶(𝒜𝐺) ⊆ 𝑆(Π′)} → {𝑞𝐵|𝐵 ∈ 𝑆(Π′)}, 

that defined as,  𝒻∗(𝑒𝐵) = 𝑞𝐵, 𝐵 ∈ 𝑁𝐵𝐶(𝒜𝐺). Recall the definition of 𝑝(𝒜𝐺) = 𝑐 − 2  of theorem (2.2.). In 

fact, for 1 ≤ 𝑘 ≤ 𝑐 − 2, since 𝑁𝐵𝐶𝑘(𝒜𝐺) = 𝑆𝑘(Π′), hence, 𝒻𝑘 = 𝒥𝑘: 𝑵𝑩𝑪𝑘(𝒜𝐺) → (Π′)𝑘 is an isomorphism. 

Moreover, for 𝑐 − 1 ≤ 𝑘 ≤ 𝑚 − 1, the  homomorphism 𝒻𝑘 = 𝒥𝑘: 𝑵𝑩𝑪𝑘(𝒜𝐺) → (Π′)𝑘 is a monomorphism 

since   𝑁𝐵𝐶𝑘(𝒜𝐺) ⊂ 𝑆𝑘(Π′). ∎ 

3.3. Corollary: 

Let 𝐺 be a hypersolvable graph with hypersolvable partition, Π𝐺 = (Π𝑉 , ΠԐ)  such that 𝑚 ≥ 4 and it has 

an exponent vector 𝑑 = (1,… ,1), i.e. 𝐺 has no triangle. Then we have the following: 

1. If |Ԑ| = ℓ = 𝑚 − 1, then 𝐺 is supersolvable and the cohomological ring has a structure as shown in 

theorem (3.1.) and for 1 ≤ 𝑗 ≤ 𝑚 − 1, 𝑏𝑗(𝑯
∗(𝑀(𝒜𝐺))) = (

𝑚−1
𝑗
). 

  

𝑯𝑐−1(𝑀(𝒜𝐺))  
   𝜕𝑐−1
𝐻    

→      𝑯𝑐−2(𝑀(𝒜𝐺))   
𝜕𝑐−2
𝐻

→  ⋯
  𝜕2
𝐻   
→      𝑯1(𝑀(𝒜𝐺))  

  𝜕1
𝐻   
→    𝑯1(𝑀(𝒜𝐺))  

  𝜕0 
𝐻   
→  0 

𝜔𝑐−1
−1 ↓                 𝜔𝑐−2

−1 ↓                               𝜔1
−1 ↓                 𝜔0

−1 ↓                                   

𝑨𝑐−1(𝒜𝐺)   
   𝜕𝑐−1
𝐴   

→      𝑨𝑐−2(𝒜𝐺)   
𝜕𝑐−2
𝐴

→  ⋯
  𝜕2
𝐴   
→      𝑨1(𝒜𝐺)  

  𝜕1
𝐴   
→    𝑨0(𝒜𝐺)  

  𝜕0 
𝐴    
→   0 

𝑵𝑩𝑪𝑐−1(𝒜𝐺)
𝜕𝑐−1
𝑁

→  𝑵𝑩𝑪𝑐−2(𝒜𝐺)
𝜕𝑐−2
𝑁

→  ⋯
𝜕2
𝑁

→ 𝑵𝑩𝑪1(𝒜𝐺)
𝜕1
𝑁

→ 𝑵𝑩𝑪0(𝒜𝐺)
𝜕0
𝑁

→ 0 

      𝒻𝑐−1 ↓                𝒥𝑚−2 ↓                                    𝒥1 ↓                   𝒥0 ↓                                 

     (Π′)𝑐−1   
 𝜕𝑐−1
𝜋  
→       (Π′)𝑐−2     

𝜕𝑐−2
𝜋

→   ⋯
  𝜕2
𝜋   
→       (Π′)1     

  𝜕1
𝜋  
→       (Π′)0   

  𝜕0
𝜋   
→  0                  

𝜓𝑐−1
−1 ↓                 𝜓𝑐−2

−1 ↓                                𝜓1
−1 ↓                𝜓0

−1 ↓                                     

 

 

0→  𝑯𝑚−1(𝑀(𝒜𝐺))  
   𝜕𝑚−1
𝐻    

→      ⋯
  𝜕𝑐+1
𝐻    
→        𝑯𝑐(𝑀(𝒜𝐺))  

  𝜕𝑐 
𝐻   
→   

𝜔𝑚−1
−1 ↓                                𝜔𝑐

−1 ↓                  

0 → 𝑨𝑚−1(𝒜𝐺)   
   𝜕𝑚−1
𝐴   

→       ⋯
  𝜕𝑐+1
𝐴    
→        𝑨𝑐(𝒜𝐺)  

  𝜕𝑐 
𝐴   
→   

  𝜓𝑚−1
−1 ↓                                 𝜓𝑐

−1 ↓                 

    0 → 𝑵𝑩𝑪𝑚−1(𝒜𝐺)
  𝜕𝑚−1
𝑁

→     ⋯ 
   𝜕𝑐+1
𝑁

→   𝑵𝑩𝑪𝑐(𝒜𝐺)
  𝜕𝑐
𝑁 
→   

𝒻𝑚−1 ↓                                    𝒻𝑐 ↓                 

0 → (Π′)ℓ
𝜕ℓ
𝜋 
→ …

𝜕𝑚+1
𝜋  
→   (Π′)𝑚

  𝜕𝑚
𝜋   
→    (Π′)𝑚−1    

 𝜕𝑚−1
𝜋   
→      ⋯

  𝜕𝑐+1
𝜋    
→        (Π′)𝑐   

  𝜕𝑐
𝜋   
→   
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2. If 𝑐(𝐺) = ℓ = 𝑚 , then 𝐺  is generic have just one 𝑚 -cycle and for 1 ≤ 𝑗 < 𝑚 − 1 ,          

𝑏𝑗(𝑯
∗(𝑀(𝒜𝐺))) = |𝑁𝐵𝐶𝑗(𝒜𝐺)| = (

𝑚
𝑗
)  and 𝑏𝑚−1(𝑯

∗(𝑀(𝒜𝐺))) = 𝑚 − 1 . Due theorem (3.2.), the 

cohomological ring 𝑯∗(𝑀(𝒜𝐺)) can be determined as the following commutative diagram; 

 

 

 

 

 

 

 

 

 

 

 

3. If 𝑐(𝐺) ≤ 𝑚 − 1 < ℓ , then 𝐺  is neither supersolvable nor generic and for 1 ≤ 𝑗 ≤ 𝑐(𝐺) − 2 , 

𝑏𝑗(𝑯
∗(𝑀(𝒜𝐺))) = |𝑁𝐵𝐶𝑗(𝒜𝐺)| = (

𝑚
𝑗
)  and 𝑏𝑐−1 (𝑯

∗(𝑀(𝒜𝐺))) = (
𝑚
𝑐−1
) − |𝐵𝐶𝑐−1(𝒜𝐺)| = (

𝑚
𝑐−1
) − |𝑂| , 

where 𝑂 = {𝐶 ⊆ 𝐺|𝐶 is a 𝑐 − circuit with no chord}  and the cohomological ring 𝑯∗(𝑀(𝒜𝐺))  can be 

determined as shown in theorem (3.2.). 

Proof: Due theorem (2.2.4) in [5] and theorem (2.2.), corollary claim is down. ∎ 

 

4. The second skeleton of the minimal CW complex for a hypersolvable graphic arrangements 

This section contains an algorithm to comput the second skeleton of the complement of a hypersolvable 

graphic arrangement by using a fashoin of its fundamental group as iterated semi direct product that presented in 

[4] by Cohen and Suciu. This algorithm technique has previously been introduced by Switzer in [16]. So we will 

agree this algorithm without proof and see [4, 12, 16] as evidences. In [3], Al-Taai and the author was firstly 

used this technique in order to give a topological interpretation for vanishing of higher homotopy groups of the 

complement of a hypersolvable arrangement when we deformed it by Jambu's and Papadima's deformation 

method, so for general case we refer the reader to [3].  

We start by reviewing the definitions and basic facts that we needed for the algorithm:    

4.1. Definition: [12] 

 A topological space 𝑋 with the following properties: 

1. 𝑋 is homotopy equivalent to a connected, finite type CW complex; 

2. The homology groups 𝐻∗(𝑋) are torsion free, and; 

3. The cup product ∪:⋀𝐻1(𝑋) → 𝐻∗(𝑋)  is surjective; 

is said to be 𝑝-minimal, for some non-negative integer 𝑝, if it has the homotopy type of a CW complex 𝑲 such 

that the number of k -cells in 𝑲  is 𝑏𝑘(𝑋) = 𝑟𝑘(𝐻
∗(𝑋)), for all 𝑘 ≤ 𝑝 . We called 𝑋  minimal if it is 

𝑝-minimal, for all 𝑝. 

 

 

 

    0 →  𝑯𝑚−1(𝑀(𝒜𝐺))  
   𝜕𝑚−1

𝐻    
→       𝑯𝑚−2(𝑀(𝒜𝐺))   

𝜕𝑚−2
𝐻

→   ⋯
  𝜕2
𝐻   
→      𝑯1(𝑀(𝒜𝐺))  

  𝜕1
𝐻   
→    𝑯1(𝑀(𝒜𝐺))  

  𝜕0 
𝐻   
→  0 

     0 → 𝑨𝑚−1(𝒜𝐺)   
   𝜕𝑚−1
𝐴   

→       𝑨𝑚−2(𝒜𝐺)   
𝜕𝑚−2
𝐴

→   ⋯
  𝜕2
𝐴   
→      𝑨1(𝒜𝐺)  

  𝜕1
𝐴   
→    𝑨0(𝒜𝐺)  

  𝜕0 
𝐴    
→   0 

       0 → 𝑵𝑩𝑪𝑚−1(𝒜𝐺)
𝜕𝑚−1
𝑁

→   𝑵𝑩𝑪𝑚−2(𝒜𝐺)
𝜕𝑚−2
𝑁

→   ⋯
𝜕2
𝑁

→ 𝑵𝑩𝑪1(𝒜𝐺)
𝜕1
𝑁

→ 𝑵𝑩𝑪0(𝒜𝐺)
𝜕0
𝑁

→ 0 

  𝒻𝑚−1 ↓                   𝒥𝑚−2 ↓                                  𝒥1 ↓               𝒥0 ↓                         

0 → (Π′)𝑚
 𝜕𝑚
𝜋  
→      (Π′)𝑚−1   

 𝜕𝑚−1
𝜋  
→       (Π′)𝑚−2    

𝜕𝑚−2
𝜋

→    ⋯
  𝜕2
𝜋   
→      (Π′)1     

  𝜕1
𝜋  
→       (Π′)0     

  𝜕0
𝜋   
→  0  

  𝜔𝑚−1
−1 ↓                   𝜔𝑚−2

−1 ↓                               𝜔1
−1 ↓           𝜔0

−1 ↓                             

     𝜓𝑚−1
−1 ↓                   𝜓𝑚−2

−1 ↓                               𝜓1
−1 ↓            𝜓0

−1 ↓                            
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4.2. Definition: [4]  

Assume each of 𝐺1, … , 𝐺ℓ be a group, and for 1 ≤ 𝑖 < 𝑗 < ℓ, the action 𝛼𝑗
𝑖: 𝐺𝑖 → 𝐴𝑢𝑡(𝐺𝑗) satisfying the 

compatibility conditions, 𝛼𝑘
𝑗
(𝑔𝑗
𝛼𝑘
𝑖 (𝑔𝑖)) = (𝛼𝑘

𝑗(𝑔𝑖))
−1𝛼𝑘

𝑖 (𝑔𝑗)𝛼𝑘
𝑗(𝑔𝑖), for 𝑖 < 𝑗 < 𝑘. Then, we define the iterated semi 

direct product of 𝐺1, … , 𝐺ℓ  with respect to the actions 𝛼𝑗
𝑖 to be the group; 

𝐺 = 𝐺ℓ ∝𝛼ℓ 𝐺ℓ−1 ∝𝛼ℓ−1 … ∝𝛼2 𝐺1, 

 where for each 1 ≤ 𝑘 ≤ ℓ, the partial iteration 𝐺𝑘 = 𝐺𝑘 ∝𝛼𝑘 𝐺
𝑘−1 is defined by the homomorphism    

𝛼𝑘: 𝐺
𝑘−1 → 𝐴𝑢𝑡(𝐺𝑘) with a restriction to 𝐺𝑘; 𝛼𝑘/𝐺𝑝

: 𝐺𝑝 → 𝐴𝑢𝑡(𝐺𝑘), 1 ≤ 𝑝 < 𝑘 ≤ ℓ. 

4.3. Definition: [11]  

Let 𝒜 be a complex central essential 𝑟-arrangement with complement 𝑀(𝒜) ⊆ ℂ𝑟 . Define a stratification 

ℑ of ℂ𝑟  as follows:  

1. For each 𝑋 ∈ 𝐿(𝒜), determine the arrangement 𝒜𝑋 = {𝐻 ∩ 𝑋| 𝐻 ∈ 𝒜\𝒜𝑋 and 𝐻 ∩ 𝑋 ≠ ∅} of 𝑋, where 

𝒜𝑋 = {𝐻 ∈ 𝒜|𝑋 ⊆ 𝐻} ⊆ 𝒜, and; 

2. Dfine 𝑀𝑋 to be the complement of 𝒜𝑋 of  𝑋. 

Notice that the family {𝑀𝑋}𝑋∈𝐿(𝒜) forms a stratification of ℂ𝑟  with top dimensional stratum 𝑀(𝒜) and each 

strata is a convex relatively open sets of 𝑋.  

We emphasize that, Switzer in [16] showed that, for any topological space 𝑋, one can construct a CW 

complex 𝑌 (as showed in the following construction), and a weak homotopy equivalence 𝑓: 𝑋 → 𝑌 and this 

construction is unique up to homotopy.  

4.4. Construction: 

Let 𝐺 be a supersolvable graph with a supersolvable graphic ℓ = (𝑚 − 1)-arrangement 𝒜𝐺 . Then 𝒜𝐺  

has a maximal chain of modular elements say; 

ℂℓ = 𝑋0 < ⋯ < 𝑋ℓ = {(0, … ,0); 

which induces a supersolvable composition series; 

{𝐻} = 𝒜𝑋1 ⊂ ⋯ ⊂ 𝒜𝑋ℓ
= 𝒜𝐺… (4.4.1.) 

𝒜𝐺  is a fiber type arrangement and the composition series (4.4.1.) creates a tower of fibrations; 

𝑀(𝒜𝐺) = 𝑀(𝒜𝑋ℓ
)
𝑝ℓ−1
→  𝑀(𝒜𝑋ℓ−1

)
𝑝ℓ−1
→  …

𝑝1
→𝑀(𝒜𝑋1

) = 𝑀(𝐻) = ℂ\{0}; 

with fiber 𝐹𝑘  of 𝑝𝑘  homeomorphic to ℂ  with 𝑑𝑘  points removed and the fundamental group of the 

complement 𝜋 = 𝜋1(𝑀(𝒜𝐺)) asserts a fashion of iterated semi direct product of finitely generated groups 

𝜋 = 𝐹𝑑ℓ ∝𝛼ℓ 𝐹𝑑ℓ−1 ∝𝛼ℓ−1 … ∝𝛼2 𝐹𝑑1 , where 𝐹𝑑𝑘 = 〈𝑔1,𝑘, … , 𝑔𝑑𝑘,𝑘〉  is free on 𝑑𝑘  generators. This creates a 

nice partition Π = (Π1, … , Πℓ) as follows; 

1. Put Π1 = 𝒜𝑋1  and we will choose 𝐻 ∈ 𝒜𝑋1  to be the minimal hyperplane via the fundamental group order 

that generats 𝐹𝑑1 , and; 

2. For  2 ≤ 𝑘 ≤ ℓ, put  Π𝑘 = 𝒜𝑋𝑘
\𝒜𝑋𝑘−1

 and oder the hyperplanes of Π𝑘 via the topological ordering that 

induced from the structure of 𝐹𝑑𝑘  as free group with 𝑔1,𝑘 , … , 𝑔𝑑𝑘,𝑘  generators  and preserve the 

fundamental group structure as; 

𝜋 = ⟨𝑔𝑖,𝑘;
1 ≤ 𝑖 ≤ 𝑑𝑘
1 ≤ 𝑘 ≤ ℓ

|𝛼𝑘
𝑗,𝑝
(𝑔𝑖,𝑘) = 𝑔𝑗,𝑝

−1𝑔𝑖,𝑘𝑔𝑗,𝑝;
1 ≤ 𝑗 ≤ 𝑑𝑝
1 ≤ 𝑝 < 𝑘

 ⟩       (4.4.2.) 

where each 𝛼𝑘
𝑗,𝑝
= 𝛼𝑘(𝑔𝑗,𝑝) ∈ 𝐴𝑢𝑡(𝐹𝑑𝑘). 

We will construct the second skeleton of a (finite type) minimal CW-complex structure of 𝑀(𝒜𝐺) as a 𝐾(𝜋, 1) 

space that given in ([21], section 6.44, p. 95) induced from the presentation (4.4.2.) above as follows: 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.6, No.5, 2016 

 

125 

S1. Partitioned ℂℓ by the stratification defined in definition (4.3.). 

S2. Choose any point in 𝑀(𝒜𝐺), say 𝑒0 and put 𝑀(𝒜𝐺) 
0 = {𝑒0} to be the 0

th
-skeleton of 𝑀(𝒜𝐺). 

S3. For each 𝐻 ∈ 𝒜𝐺, fixed a 1-cell 𝑒𝐻
1  and an attaching mapping 𝜑𝐻

1 : 𝜕𝑒𝐻
1 → {𝑒0} attached the boundaries of 

𝑒𝐻
1  with 𝑒0 . Take, 𝑀(𝒜𝐺) 

1 = ⋁ 𝑆1𝐻∈𝒜 = ⋁ (⋁ 𝑆𝑔𝑖,𝑘
1𝑑𝑘

𝑖=1 )ℓ
𝑘=1  to be the 1

st
- skeleton of 𝑀(𝒜𝐺) . 

Geometricly, for each 𝐻 ∈ 𝒜𝐺  we go around the stratum 𝑀𝐻  and return into 𝑒0  by 𝑒𝐻
1 . Clearly; 

𝜋0(𝑀(𝒜𝐺), 𝑒
0) ≅ 𝜋0(𝑀(𝒜𝐺)

1, 𝑒0) ≅ 0, since 𝑀(𝒜𝐺)
1

 
is path connected.  

S4. The following short exact sequence represents the presentation (4.4.2); 

0 → 〈𝑟𝛾; 1 ≤ 𝛾 ≤ 𝑏2(𝒜𝐺)〉
𝛽
→ 〈𝑔𝑖,𝑘;

1 ≤ 𝑖 ≤ 𝑑𝑘
1 ≤ 𝑘 ≤ ℓ

〉
𝛼
→ 𝜋1(𝑀(𝒜𝐺), 𝑒

0) → 0. 

 For each relation  𝑟𝛾, choose a map 𝜑𝛾
2: (𝑆1, 𝑒0) → (𝑀(𝒜𝐺)

1, 𝑒0) by meaning of 𝛽(𝑟𝛾). Attach  2-cells 

𝑒𝛾
2 of 𝑀(𝒜𝐺)

1 by the maps 𝜑𝛾
2 to create the second skeleton of 𝑀(𝒜𝐺) as the following disjoint union; 

𝑀(𝒜𝐺) 
2 = 𝑀(𝒜𝐺) 

1∐ 𝑒𝛾
2

𝑏2(𝑀(𝒜𝐺))

𝛾=1

𝜑𝛾
2

= 𝑀(𝒜𝐺) 
1∐ 𝑆𝛾

2
𝑏2(𝑀(𝒜𝐺))

𝛾=1

𝜑𝛾
2

  

Put 𝑓𝛾
2: (𝐷2, 𝑆1, 𝑠0) → (𝑀(𝒜𝐺)

1, 𝜑𝛾
2(𝑆1), 𝑒0) be the characteristic map of 𝑒𝛾

2, for 1 ≤ 𝛾 ≤ 𝑏2(𝒜𝐺). Thus,  

𝜋1(𝑀(𝒜𝐺), 𝑒
0) ≅ 𝜋1(𝑀(𝒜𝐺)

2, 𝑒0) and; 

𝑀(𝒜𝐺)
2/𝑀(𝒜𝐺)

1 = ⋁ 𝑆𝛾
2𝑏2(𝑀(𝒜𝐺))

𝛾=1 . 

4.5. Construction: 

Let 𝐺  be a hypersolvable graph with a hypersolvable graphic (𝑚 − 1) -arrangement 𝒜𝐺  that not 

supersolvable, recall Jambu's and Papadima's 1-parameter family {�̃�𝑡}𝑡∈ℂ  of deformed supersolvable 

arrangements that introduced firstly in [12]. We follow a computation algorithm  given in [9] of �̃� = �̃�1 for 

𝒜𝐺 . The arrangement �̃� is a supersolvable arrangements and it has with 𝒜𝐺  the same Lattice intersection 

pattern to codimension two ℓ2(𝒜𝐺) = {𝐵 ⊆ 𝒜𝐺||𝐵| ≤ 3}  and isomorphic fundematal groups, i.e. 𝜋 =

𝜋1(𝑀(𝒜𝐺)) ≅ 𝜋1(𝑀(�̃�))  ≅ 𝜋1(𝑀(�̃�)
2, �̃�0), where 𝑀(�̃�)2 is the 2

nd
 skeleton due [3]. Thus; 

𝜋 ≅ 𝜋1(𝑀(�̃�)) = 𝐹𝑑ℓ ∝𝛼ℓ 𝐹𝑑ℓ−1 ∝𝛼ℓ−1 … ∝𝛼2 𝐹𝑑1; 

derived a hypersolvable partition Π = (Π1, … , Πℓ) by using the one to one coorespondance between 𝒜𝐺  and 

�̃�. Due this one to one coorespondance reordered the hyperplanes of 𝒜𝐺  via the ordering we defined on the 

hyperplanes of �̃� as in construction (4.4.) that induced from the structure of the fundamental group. We will 

construct the second skeleton of 𝑀(𝒜𝐺) exactly as designed in construction (4.4.), the items (S1-S4).  

4.6. Remark: 

The advantage of studying the second skeleton of a hypersolvable graphic arrangement 𝒜𝐺   lies in the fact 

that, if 𝑋 ∈ 𝐿(𝒜𝐺) and 𝑟𝑘(𝑋) = 2 , then either |𝒜𝑋| = 2 or 3. In fact, for 1 ≤ 𝑝 < 𝑘 ≤ ℓ, the colinear 

relations 𝑟𝛾, for 1 ≤ 𝛾 ≤ 𝑏2(𝒜𝐺), among the hyperplanes of 𝒜 are associated to the triangles of 𝜀. So, there 

are just two kinds of relations as follows:   

1. If 𝑋 = {𝐻𝑗,𝑝, 𝐻𝑖,𝑘}, then, the action 𝛼𝑘
𝑗,𝑝
(𝑔𝑖,𝑘) = 𝑔𝑖,𝑘 is trivial and the relation will be a usual commutator 

relation, i.e. 𝑔𝑖,𝑘
−1𝑔𝑗,𝑝

−1𝑔𝑖,𝑘𝑔𝑗,𝑝 = 0, i.e. we have a torus relation as the following figure:  
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Figure 10. A trivial action . 𝑔𝑖,𝑘
−1𝑔𝑗,𝑝

−1𝑔𝑖,𝑘𝑔𝑗,𝑝 = 0 

 

For example, if 𝑄(𝒜𝐺  ) = (𝑥1 − 𝑥2)(𝑥2 − 𝑥3)(𝑥3 − 𝑥4), be the defining polynomial of an arrangement 𝒜𝐺  

, then 𝒜𝐺  is supersolvable graphic arrangement with fundamental group of its complement  is; 

𝜋1(𝑀(𝒜), 𝑒
0) = 〈𝑔1, 𝑔2, 𝑔3|

𝑔2 = 𝑔1
−1𝑔2𝑔1

𝑔3 = 𝑔1
−1𝑔3𝑔1

𝑔3 = 𝑔2
−1𝑔3𝑔2

〉. 

Then, it has second skeleton as; 

 

Figure 11. A second skeleton of 𝒜𝐺  , 𝑄(𝒜𝐺  ) = (𝑥1 − 𝑥2)(𝑥2 − 𝑥3)(𝑥3 − 𝑥4) 

2. If 𝑋 = {𝐻1,𝑝, 𝐻2,𝑘 , 𝐻3,𝑘}, we have the following relations and attaching mapping via those relations; 

 

 

 

Figure 12. a. Part one of the action, 𝑔1,𝑝𝑔2,𝑘𝑔3,𝑘 = 𝑔3,𝑘𝑔1,𝑝𝑔2,𝑘   

 

Figure 12. b. Part two of the action, 𝑔2,𝑘𝑔3,𝑘𝑔1,𝑝 = 𝑔3,𝑘𝑔1,𝑝𝑔2,𝑘 
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     Figure 12. c. The second skeleton represented the action 𝑔1,𝑝𝑔2,𝑘𝑔3,𝑘 = 𝑔3,𝑘𝑔1,𝑝𝑔2,𝑘 = 𝑔2,𝑘𝑔3,𝑘𝑔1,𝑝       

The second skeleton given in figure (4.6.5.), is the Minimal CW complex for the supersolvable graphic 

arrangement 𝒜𝐺  that related to a graph given in figure (4.6.6.) has defining polynomial,           𝑄(𝒜𝐺) =

(𝑥1 − 𝑥2)(𝑥1 − 𝑥3)(𝑥2 − 𝑥3), and its complement is homotopic to (𝑆1⋁𝑆1) × 𝑆1. 

 

Figure 13. 

We mentioned here that, due [13], the relation in figure (4.4.7) is selfed contained in figure (4.5.6.), so there are 

no attaching cell related to this relation that correspondence to a broken circuit of 𝒜𝐺  via fandamental group 

order. 

 

Figure 14. Part three of the action, 𝑔1,𝑝𝑔2,𝑘𝑔3,𝑘 = 𝑔2,𝑘𝑔1,𝑝𝑔3,𝑘     

By following the fundamental group structure of the complement of any graphic arrangement and the type of 

the actions among the different blocks of Π that we discussed above, the second skeleton has a regular 

construction. We leave it to the reader to construct the second skeleton for the section (2) examples as we shown 

in the following example:   

    

5.2. Example: 

Let 𝒜𝐺  be a generic graphic ℓ-arrangement. Then; 

𝑄(𝒜𝐺) = (𝑥1 − 𝑥2)(𝑥2 − 𝑥3)(𝑥3 − 𝑥4)… (𝑥ℓ−1 − 𝑥ℓ)(𝑥ℓ − 𝑥1), 

Be its defining polynomial. The fundamental group of its complement 𝑀(𝒜𝐺) has a structure as; 

𝜋1(𝑀(𝒜𝐺), 𝑒
0) = 〈𝑔1, 𝑔2, . . , 𝑔ℓ| 𝑔𝑘 = 𝑔𝑝

−1𝑔𝑘𝑔𝑝, 1 ≤ 𝑝 < 𝑘 ≤ ℓ〉. 
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Due to [9], the deformed arrangement �̃� of ℂℓ+1 has a defining polynomial; 

𝑄(�̃�) = (𝑥1 − 𝑥2)(𝑥2 − 𝑥3)(𝑥3 − 𝑥4)… (𝑥ℓ−2 − 𝑥ℓ−1)(𝑥ℓ−1 − 𝑥1 + 𝑥ℓ+1). 

And by applying construction (4.5.), we will construct the second skeleton of 𝑀(𝒜𝐺) as follows: 

S1. Partitioned ℂℓ by the stratification defined in definition (4.3.). 

S2. Choose any point in 𝑀(𝒜𝐺), say 𝑒0 and put 𝑀(𝒜𝐺) 
0 = {𝑒0} to be the 0

th
-skeleton of 𝑀(𝒜𝐺). 

S3. For each 𝐻 ∈ 𝒜𝐺, fixed a 1-cell 𝑒𝐻
1  and an attaching mapping 𝜑𝐻

1 : 𝜕𝑒𝐻
1 → {𝑒0} attached the boundaries of 

𝑒𝐻
1  with 𝑒0. Take, 𝑀(𝒜𝐺) 

1 = ⋁ 𝑆1𝐻∈𝒜 = ⋁ (⋁ 𝑆𝑔𝑖,𝑘
1𝑑𝑘

𝑖=1 )ℓ
𝑘=1  to be the 1

st
- skeleton of 𝑀(𝒜𝐺).  

S4. The following short exact sequence represents the presentation (4.4.2); 

0 → 〈𝑔𝑘 = 𝑔𝑝
−1𝑔𝑘𝑔𝑝, 1 ≤ 𝑝 < 𝑘 ≤ ℓ〉

𝛽
→ 〈𝑔1, 𝑔2, . . , 𝑔ℓ〉

𝛼
→ 𝜋1(𝑀(𝒜𝐺), 𝑒

0) → 0. 

 For each relation 𝑔𝑘 = 𝑔𝑝
−1𝑔𝑘𝑔𝑝, 1 ≤ 𝑝 < 𝑘 ≤ ℓ, choose a map 𝜑𝑝,𝑘

2 : (𝑆1, 𝑒0) → (𝑀(𝒜𝐺)
1, 𝑒0) as shown 

in figure (4.6.1.). the number of the 2-cells 𝑒𝑝,𝑘
2  of 𝑀(𝒜𝐺)

1 that attached by maps 𝜑𝑝,𝑘
2  to create the 

second skeleton of 𝑀(𝒜𝐺), is (
ℓ
2
) and the second skeleton will be; 

𝑀(𝒜𝐺) 
2 = 𝑀(𝒜𝐺) 

1
∐ ∐ 𝑒𝑝,𝑘

2
ℓ

𝑘=𝑝+1

ℓ−1

𝑝=1

𝜑𝑝,𝑘
2

= 𝑀(𝒜𝐺) 
1
∐ ∐ 𝑆𝑝,𝑘

2
ℓ

𝑘=𝑝+1

ℓ−1

𝑝=1

𝜑𝑝,𝑘
2

  

Thus, 𝜋1(𝑀(𝒜𝐺), 𝑒
0) ≅ 𝜋1(𝑀(𝒜𝐺)

2, 𝑒0) ≅ ℤℓ. Actually, 𝑀(𝒜𝐺)
2/𝑀(𝒜𝐺)

1 = ⋁ ⋁ 𝑆𝑝,𝑘
2ℓ

𝑘=𝑝+1
ℓ−1
𝑝=1 . 

 

5. The 𝒑𝒕𝒉 skeleton of the minimal CW complex for a hypersolvable graphic arrangements 

This section is devoted to introduce an algorithm to compute the higher skeletons of theminimal CW 

complex of the  complement of a hypersolvable graphic arrangement by using a computation of a presentation 

of first non-vanishing higher homotopy group introduced in [12] by Papadima and Suciu.   

5.1. Construction:  

For a supersolvable graphic ℓ = (𝑚 − 1) -arrangement 𝒜𝐺 , recall construction (4.4.) for the second 

skeleton of 𝑀(𝒜𝐺). We will complete the Minimal CW complex for 𝑀(𝒜𝐺) by using induction to attach 

higher cells due Switzer prosedure [16], as follows; 

For 𝟐 ≤ 𝒌 ≤ 𝓵, if; 

0 → 〈𝑟𝛾
𝑘; 1 ≤ 𝛾 ≤ 𝑏𝑘+1(𝒜𝐺)〉

𝛽
→ 〈𝑔𝜗

𝑘; 1 ≤ 𝜗 ≤ 𝑚𝑘)〉
𝛼
→ 𝜋𝑘(𝑀(𝒜𝐺), 𝑒

0) ≅ 0 → 0. 

be the presentation short exact sequence of the 𝑘𝑡ℎ-higher homotopy group 𝜋𝑘(𝑀(𝒜𝐺), 𝑒
0) such that the set of 

generatores {𝑔𝜗
𝑘}
𝜗=1

𝑚𝑘
 generats 𝜋𝑘(𝑀(𝒜𝐺)

𝑘 , 𝑒0) ≇ 0, where  𝑚𝑘 represent the number of higher 𝑘-holes of 

𝑀(𝒜𝐺)
𝑘  and for 1 ≤ 𝛾 ≤ 𝑏𝑘+1(𝒜𝐺) , let 𝜑𝛾

𝑘+1: (𝑆𝑘, 𝑠0) → (𝑀(𝒜𝐺)
𝑘, 𝑒0)  be the attachin mapping 

representing the relation 𝛽(𝑟𝛾
𝑘) and attach (𝑘 + 1)-cell 𝑒𝛾

𝑘+1 by means of 𝜑𝛾
𝑘+1. But,  𝜋𝑘(𝑀(𝒜𝐺), 𝑒

0) ≅ 0, 

so 𝛽: 〈𝑟𝛾
𝑘; 1 ≤ 𝛾 ≤ 𝑏𝑘+1(𝒜𝐺)〉 → 〈𝑔𝜗

𝑘; 1 ≤ 𝜗 ≤ 𝑚𝑘)〉  is an isomorphism. Thus, 

𝑚𝑘 = 𝑏𝑘+1(𝒜𝐺)=∑ ∑ …∑ 𝑑𝑖1𝑑𝑖2 …𝑑𝑖𝑘
ℓ
𝑖𝑘+1= 𝑖𝑘+1

ℓ−𝑘
𝑖2= 𝑖1+1

ℓ−𝑘+1
𝑖1=1

. Put; 

           𝑀(𝒜𝐺) 
𝑘+1 = 𝑀(𝒜𝐺) 

𝑘∐ 𝑒𝛾
𝑘+1

𝑏𝑘+1(𝑀(𝒜𝐺))

𝛾=1

𝜑𝛾
𝑘+1

= 𝑀(𝒜) 𝑘∐ 𝑆𝛾
𝑘+1

𝑏𝑘+1(𝑀(𝒜𝐺))

𝛾=1

𝜑𝛾
𝑘+1

 

In the long exact homotopy sequence;  

… → 𝜋𝑘+1(𝑀(𝒜𝐺)
𝑘+1, 𝑀(𝒜𝐺)

𝑘, 𝑒0)
𝑑𝑘+1
→   𝜋𝑘(𝑀(𝒜𝐺)

𝑘 , 𝑒0) →   𝜋𝑘(𝑀(𝒜𝐺)
𝑘+1, 𝑒0) → ⋯; 
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we have 𝑑𝑘+1  is an epimorphism. Therefore, 𝜋𝑘(𝑀(𝒜𝐺)
𝑘+1, 𝑒0)  is trivial and 𝜋𝑖(𝑀(𝒜𝐺)

𝑘+1, 𝑒0) ≅

𝜋𝑖(𝑀(𝒜𝐺)
𝑘, 𝑒0) for 0 ≤ 𝑖 < 𝑘. 

𝜋𝑘(𝑀(𝒜𝐺), 𝑒
0) = 𝜋𝑘(𝑀(𝒜𝐺)

𝑘+1, 𝑒0) = {
𝜋1(𝑀(𝒜𝐺)

2, 𝑒0); 𝑖𝑓 𝑘 = 1
0; 𝑖𝑓 𝑘 ≠ 1

 

Finally, take the minimal CW complex for 𝑀(𝒜𝐺), ∐ 𝑀(𝒜𝐺)
𝑘ℓ

𝑘=0  with the weak toplogty.  

5.2.  Construction:  

For the second skeleton of the minimal CW complex of a hypersolvable graphic (𝑚 − 1)-arrangement that 

is not supersolvable, recall construction (4.5.). It is known that, 𝑀(𝒜𝐺) is a 𝑝-minimal CW complex, where, 

𝑝 = 𝑝(𝒜𝐺) = 𝑚𝑎𝑥{𝑘|𝑏𝑘(𝒜𝐺) = ∑ ∑ …∑ 𝑑𝑖1𝑑𝑖2 …𝑑𝑖𝑘
ℓ
𝑖𝑘=𝑖𝑘−1+1

ℓ−𝑘+1
𝑖2=𝑖1+1

ℓ−𝑘
𝑖1=1

}. 

From theorem (2.2.), 𝑝 = 𝑐 − 2. Accordingly, our aim will achived by three parts.  

First, embed 𝒜𝐺  of ℂℓ  by the arrangement, 𝒜𝐺⨁ℂ
ℓ−𝑟 = {𝐻⨁ℂℓ−𝑟| 𝐻 ∈ 𝒜𝐺}, which its complement 

𝑀(𝒜𝐺⨁ℂ
ℓ−𝑟) is a subspace of the complement 𝑀(�̃�) of Jambue's-Papadima's deformed arrangement of 𝒜𝐺 .  

Deduce that, 𝑀(𝒜𝐺) ≅ 𝑀(𝒜𝐺) × {(0, … ,0)} is a strong deformation retract of  𝑀(𝒜⨁ℂℓ−𝑟). It is to be 

expected that (𝑀(�̃�),𝑀(𝒜𝐺)) is a topological pair, since, 𝑀(𝒜𝐺) ≃ 𝑀(𝒜𝐺⨁ℂ
ℓ−𝑟) ⊆ 𝑀(�̃�). 

Secondly, recall the exact homotopy sequence of higher homotopy groups of the topological pair 

(𝑀(�̃�),𝑀(𝒜𝐺)) from ([16], p. 38); 

⋯ → 𝜋𝑘(𝑀(𝒜𝐺), 𝑒
0)

𝑖𝑘
→𝜋𝑘(𝑀(�̃�), 𝑒

0)
𝑞𝑘
→𝜋𝑘(𝑀(�̃�),𝑀(𝒜𝐺), 𝑒

0)
𝑑𝑘
→  𝜋𝑘−1(𝑀(𝒜𝐺), 𝑒

0)
𝑖𝑘−1
→  …

𝑑1
→ 𝜋0(𝑀(𝒜𝐺), 𝑒

0) 
𝑖0
→𝜋0(𝑀(�̃�), 𝑒

0)
𝑞0
→𝜋0(𝑀(�̃�),𝑀(𝒜𝐺), 𝑒

0)
𝑑0
→0  

where 𝑒0 can be chosen to be any point of 𝑀(𝒜𝐺) × {(0, … ,0)}. Papadima and Suciu in [16], proved that 

𝑀(𝒜𝐺) and 𝑀(�̃�) have the same (𝑐 − 2)𝑡ℎ-skeletons, (i.e. 𝜋𝑘(𝑀(�̃�),𝑀(𝒜𝐺), 𝑒
0) = 0 , for 0 ≤ 𝑘 ≤ 𝑐 − 2)  

and they have isomorphic 𝑘𝑡ℎ-higher homotopy groups, 𝜋𝑘(𝑀(𝒜𝐺), 𝑒
0) and 𝜋𝑘(𝑀(�̃�), 𝑒

0), for 0 ≤ 𝑘 ≤ 𝑐 −

3 < 𝑟. Recall construction (5.1.) as a minimal CW complex of 𝑀(�̃�) and recall construction (4.5.) as a 

minimal 2
nd

 skeleton of 𝑀(𝒜𝐺). For 0 ≤ 𝑘 ≤ 𝑐 − 3, the isomorphisms,          𝑖𝑘: 𝜋𝑘(𝑀(𝒜𝐺), 𝑒
0) →

𝜋𝑘(𝑀(�̃�), 𝑒
0)  and 𝑞𝑘: 𝜋𝑘(𝑀(�̃�), 𝑒

0) → 𝜋𝑘(𝑀(�̃�),𝑀(𝒜𝐺), 𝑒
0)  induced cellular homotopy equivalences 

between (𝑐 − 2)𝑡ℎ-skeletons of 𝑀(𝒜𝐺) and 𝑀(�̃�), 𝑖𝑘: 𝑀(𝒜𝐺)
𝑘 → 𝑀(�̃�)𝑘  and 𝑞𝑘: 𝑀(�̃�)

𝑘 → 𝑀(𝒜𝐺)
𝑘. 

Thirdly, complete the 𝑐 − 2-minimal CW complex for 𝑀(𝒜𝐺) by using induction to attach higher cells 

due Switzer prosedure [16], as follows:  

For 𝟐 < 𝒌 ≤ 𝒄 − 𝟑,   

The homotopy equivalence 𝑞𝑘: 𝑀(�̃�)
𝑘 → 𝑀(𝒜𝐺)

𝑘, iduced an isomorphism; 

𝑞𝑘: 𝜋𝑘(𝑀(�̃�)
𝑘 , 𝑒0) → 𝜋𝑘(𝑀(𝒜𝐺)

𝑘, 𝑒0). 

Due construction (5.1.), we have; 

 0 → 〈𝑟𝛾
𝑘; 1 ≤ 𝛾 ≤ 𝑏𝑘+1(𝒜𝐺)〉

𝛽
→ 〈𝑔𝜗

𝑘; 1 ≤ 𝜗 ≤ 𝑚𝑘)〉
𝛼
→ 𝜋𝑘(𝑀(�̃�), 𝑒

0) ≅ 0 → 0 

    𝑞𝑘 ↓↑  𝑖𝑘 

 𝜋𝑘(𝑀(𝒜𝐺), 𝑒
0) 

Thus, the set  {𝑞𝑘(𝑔𝜗
𝑘)}

𝜗=1

𝑚𝑘(�̃�)
 generates the homotopy group 𝜋𝑘(𝑀(𝒜𝐺)

𝑘 , 𝑒0) and for 1 ≤ 𝛾 ≤ 𝑏𝑘+1(𝒜𝐺), if 

𝜑𝛾
𝑘+1: (𝑆𝑘, 𝑠0) → (𝑀(�̃�)

𝑘, 𝑒0)  be the attaching mapping that representing 𝛽(𝑟𝛾
𝑘) of 𝜋𝑘(𝑀(�̃�)

𝑘 , 𝑒0), put 

𝑞𝑘𝜑𝛾
𝑘: (𝑆𝑘, 𝑠0) → (𝑀(𝒜𝐺)

𝑘 , 𝑒0)  to be the attaching mapping that represents the relation 𝑞𝑘𝛽(𝑟𝛾
𝑘)  of 

𝜋𝑘(𝑀(𝒜𝐺)
𝑘 , 𝑒0). Attach (𝑘 + 1)-cells 𝑒𝛾

𝑘+1 by means of 𝑞𝑘𝜑𝛾
𝑘+1, for 1 ≤ 𝛾 ≤ 𝑏𝑘+1(𝒜).  Put; 

𝑀(𝒜𝐺) 
𝑘+1 = 𝑀(𝒜𝐺) 

𝑘∐ 𝑒𝛾
𝑘+1𝑏𝑘+1(𝑀(𝒜))

𝛾=1

𝑝𝑘𝜑𝛾
𝑘+1

= 𝑀(𝒜𝐺) 
𝑘∐ 𝑆𝛾

𝑘+1𝑏𝑘+1(𝑀(𝒜))

𝑝𝑘𝜑𝛾
𝑘+1 . 

For 𝒌 = 𝒄 − 𝟐: 
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It is known that, 𝜋𝑐−2(𝑀(𝒜𝐺)
𝑐−1, 𝑒0) = 𝜋𝑐−2(𝑀(𝒜𝐺), 𝑒

0) ≇ 0, i.e. it is not trivial and [12] includes a 

presentation of it as a ℤ𝜋-module, say; 

0 → 〈𝑟𝛾
𝑐−2; 1 ≤ 𝛾 ≤ 𝑏𝑐−1(𝒜𝐺)〉

𝛽
→ 〈𝑔𝜗

𝑐−2; 1 ≤ 𝜗 ≤ 𝑚𝑐−2)〉
𝛼
→ 𝜋𝑐−2(𝑀(�̃�), 𝑒

0) → 0. 

 

From the following portion;  

𝜋𝑐−1(𝑀(𝒜𝐺)
𝑐−1, 𝑀(𝒜𝐺)

𝑐−2, 𝑒0)
𝑑𝑐−1
→   𝜋𝑐−2(𝑀(𝒜𝐺)

𝑐−2, 𝑒0)
𝑖𝑐−2
′

→  𝜋𝑐−2(𝑀(𝒜𝐺), 𝑒
0) ≇ 0 

 𝑖𝑐−2 ↓↑  𝑞𝑐−2 

 𝜋𝑐−2(𝑀(�̃�)
𝑐−2, 𝑒0) 

 

the induced homomorphism, 𝑞𝑐−2: 𝜋𝑐−2(𝑀(�̃�)
𝑐−2, 𝑒0) → 𝜋𝑐−2(𝑀(𝒜𝐺)

𝑐−2, 𝑒0)  is an isomorphism and  

𝑖𝑐−2
′ : 𝜋𝑐−2(𝑀(𝒜𝐺)

𝑐−2, 𝑒0) → 𝜋𝑐−2(𝑀(𝒜𝐺), 𝑒
0) is an epimorphism, since they have the same set of generatores 

{𝑔𝜗
𝑐−2}

𝜗=1
𝑚𝑐−2 , where 𝑚𝑐−2 = ∑ ∑ …∑ 𝑑𝑖1𝑑𝑖2 …𝑑𝑖𝑘

ℓ
𝑖𝑘=𝑖𝑘−1+1

ℓ−𝑐+2
𝑖2=𝑖1+1

ℓ−𝑐+1
𝑖1=1

= 𝑏𝑐−1(�̃�)  represent the number of 

higher (𝑐 − 2)-holes of 𝑀(�̃�)𝑐−2 and for 1 ≤ 𝛾 ≤ 𝑏𝑐−1(𝒜𝐺), let 𝜑𝛾
𝑐−1: (𝑆𝑐−1, 𝑠0) → (𝑀(𝒜𝐺)

𝑐−2, 𝑒0) be the 

attachin mapping representing the relation 𝛽(𝑟𝛾
𝑐−2) and attach (𝑐 − 1)-cell 𝑒𝛾

𝑐−1 by means of 𝜑𝛾
𝑐−1. It is 

worth pointing out that the the number of attaching (𝑐 − 1)-cells is not enough to kill of all the higher (𝑐 −

2)-holes. Put; 

𝑀(𝒜𝐺) 
𝑐−1 = 𝑀(𝒜𝐺) 

𝑐−2∐ 𝑒𝛾
𝑐−1

𝑏𝑐−1(𝑀(𝒜𝐺))

𝛾=1

𝜑𝛾
𝑐−1

= 𝑀(𝒜𝐺) 
𝑐−2∐ 𝑆𝛾

𝑐−1
𝑏𝑐−1(𝑀(𝒜𝐺))

𝛾=1

𝜑𝛾
𝑐−1

 

with the weak toplogty. Therefore, for 0 ≤ 𝑘 ≤ 𝑐 − 2. 

𝜋𝑘(𝑀(𝒜𝐺), 𝑒
0) = 𝜋𝑘(𝑀(𝒜𝐺)

𝑘+1, 𝑒0) = {
𝜋1(𝑀(𝒜𝐺)

2, 𝑒0); 𝑖𝑓 𝑘 = 1
0;

𝜋𝑐−2(𝑀(𝒜𝐺)
𝑐−1, 𝑒0);

𝑖𝑓 𝑘 = 0 𝑜𝑟 1 ≤ 𝑘 ≤ 𝑐 − 3
𝑖𝑓 𝑘 = 𝑐 − 2

 

5.3. Example: 

Recall example (4.7.) of a generic graphic ℓ-arrangement 𝒜𝐺  and its deformed arrangement �̃� of ℂℓ+1. 

One can deduce that, �̃� has the same lattice with the Boolen arrangement with ℓ + 1 hyperplanes.  By 

applying construction (5.2.), 𝑝(𝑀(𝒜𝐺)) = ℓ-skeleton of 𝑀(𝒜𝐺) can be considered and suppose 𝑀(𝒜𝐺)
ℓ−1 

be its ℓ − 1-skeleton. Recall the portion;  

𝜋ℓ(𝑀(𝒜𝐺)
ℓ, 𝑀(𝒜𝐺)

ℓ−1, 𝑒0)
𝑑ℓ
→ 𝜋ℓ−1(𝑀(𝒜𝐺)

ℓ−1, 𝑒0)
𝑖ℓ−1
′

→  𝜋ℓ−1(𝑀(𝒜𝐺), 𝑒
0) ≇ 0 

 𝑖ℓ−1 ↓↑  𝑞ℓ−1 

 𝜋ℓ−1(𝑀(�̃�)
ℓ−1, 𝑒0) 

 

The induced homomorphism, 𝑞ℓ−1: 𝜋ℓ−1(𝑀(�̃�)
ℓ−1, 𝑒0) → 𝜋ℓ−1(𝑀(𝒜𝐺)

ℓ−1, 𝑒0) is an isomorphism and  

𝑖ℓ−1
′ : 𝜋ℓ−1(𝑀(𝒜𝐺)

ℓ−1, 𝑒0) → 𝜋ℓ−1(𝑀(𝒜𝐺), 𝑒
0)  is an epimorphism. Thus, 𝜋ℓ−1(𝑀(�̃�)

ℓ−1, 𝑒0)  and 

𝜋ℓ−1(𝑀(𝒜𝐺)
ℓ−1, 𝑒0) have the same set of generatores say {𝑔𝜗

ℓ−1}
𝜗=1

𝑚ℓ−1
, where                      

𝑚ℓ−1 = (
ℓ + 1
ℓ
) = ℓ + 1 = 𝑏ℓ(�̃�) represent the number of higher (ℓ − 1)-holes of 𝑀(�̃�)ℓ−1 and 𝑏ℓ(𝒜𝐺) =

ℓ − 1, represents the number of attaching (ℓ)-cells which is not enough to kill of all the higher (ℓ − 1)-holes.  
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6. Conclusions: 

In this paper; 

1. The author compute the dimension of the first non vanishing higher homotopy group of the complement for 

any hypersolvable graphic arrangement that not supersolvable, and related to a hypersolvable graph. It is equal 

to the dimension of the smallest cycle of the graph with no chord. 

2. An algorithm to deform a hypersolvable graph that not supersolvable into a supersolvable graph was stated.  

3. A construction of the cohomological ring of the complement for any hypersolvable graphic arrangemen was 

considered.  

4. A construction to compute the minimal CW complex of of the complement for any hypersolvable graphic 

arrangement was described. 
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