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Abstract 

This paper presents direct methods for obtaining the explicit general solution to a linear 

sequential fractional differential equation (LSFDE), involving Jumarie’s modification of 

Riemann–Liouville derivative, with constant coefficients. The general solution to a 

homogenous LSFDE with constant coefficients is obtained by using the roots of the 

characteristic polynomial of the corresponding homogeneous equation. For the 

non-homogeneous case, two methods, undetermined coefficients and variation of parameter, 

are investigated to find the particular solution. The method of undetermined coefficients is 

independent of the integral transforms while the method of variation of parameter is not. 

Moreover, several examples are illustrative for demonstrating the advantage of our approach. 

Keywords: Fractional differential equations, Riemann–Liouville derivative, Caputo derivative, 

undetermined coefficients, variation of parameter. 

 
1. Introduction 

Fractional Calculus is a field of applied mathematics that deals with derivatives and integrals 

of any arbitrary real or complex order. The History of fractional derivatives were planted over 

300 years ago. Since that time the fractional calculus has drawn the attention of many great 

mathematicians (pure and applied) of their times, such as N. H. Abel, M. Caputo, L. Euler, J. 

Fourier, A.K. Grunwald, J. Hadamard, G. H. Hardy, O. Heaviside, H. J. Holmgren, P. S. 

Laplace, G. W. Leibniz, A. V. Letnikov, J. Liouville, B. Riemann, M. Riesz, and H. Weyl 

(Sabatier et al, 2007). But during this last decades fractional calculus have been applied in 

widespread fields of science and engineering (Machado et al, 2011). 

Fractional differential equations arise in many complex systems in nature and society with 

many dynamics, such as charge transport in amorphous semiconductors, the spread of 

contaminants in underground water, relaxation in viscoelastic materials like polymers, the 

diffusion of pollution in the atmosphere, and many more (Podlubny, 1999; Kilbas et al, 2006). 

However, the problem of studying fractional differential equations has been dealt with by 

numerous authors throughout history, particularly in recent years(Mophou,2010; Rajeev and 

Kushwaha,2013, Khudair  2013, Khudair and Mahdi 2016. Eidelman and Kochubei, 2004; 

Xue et al, 2008; Guo et al,2012; Molliq et al, 2009 ). A wide description of the existence and 

uniqueness of solutions of initial value problem for fractional order differential equations 

together with its applications can be found in the literature (Samko, et al, 1993; Delbosco, 

1996; Podlubny, 1999, Dielhelm,2002). 
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   It is well known that the fractional derivative, in the sense of Riemann_Liouville 

definition of fractional derivative , of a constant is not zero. This encourage Caputo to 

introduce Caputo derivative such that the fractional derivative of a constant is zero (Podlubny, 

1999; Kilbas et al, 2006). With Caputo definition, a fractional derivative would be defined for 

differentiable functions only. In order to deal with non-differentiable functions, Jumarie have 

recently proposed a modification of the Riemann_Liouville definition (Jumarie, 1993, 2006, 

2007, 2009, 2010). This fractional derivative provides a Taylor's series of fractional order for 

non differentiable functions. He, et al, (He, et al, 2012) introduce the geometrical explanation 

of fractional complex transform and derivative chain rule for fractional calculus in the sense 

of Jumarie’s modification of Riemann–Liouville derivative. Motivated and inspired by the 

on-going research in this field, we will consider the following non-homogeneous linear 

fractional differential equation with constant coefficient  

n (n 1) (n 2)

x 1 x 2 x n 1 x n( a a a a )y(x) f (x)     

                             (1) 

where 
1

q
  is constant rational number, 

ka , k 1,2, ,n are real constant , 

n

x x x x

n times

D D D   



  and 
xD  denotes Jumarie’s fractional derivation, which is a modified 

Riemann–Liouville derivative (Samko, et al, 1993; Podlubny, 1999, Kilbas et al, 2006) 

defined as 

x

x
0

1 d
D f (x) (x ) (f ( ) f (0))d

(1 ) dx

     
   ,   0 1                       (2) 

and 

n
( n)

x n

d
D f (x) (D f (x))

dx

  ,    n n 1, n 1                                 (3) 

Eq.(1) is called fractional linear differential equation with constant coefficients of order 

(n,q) , or more briefly, a fractional differential equation of order (n,q) (Podlubny, 1999). If 

1  , then Eq.(1) become n
th

 order ordinary differential equations.  

This paper is organised as follows. Sections 2 presents Jumarie’s Modification of 

Riemann–Liouville Derivative and their main properties. In section 3, we develop a direct 

method for solving the homogeneous LSFDE with constant coefficients, using the roots of the 

characteristic polynomial and Mittag-Leffler functions. In section 4, the method of 

undetermined coefficients will be used to find the particular solution to non-homogeneous 

LSFDE with constant coefficients. In section 5, the method of variation of parameter will be 

used to find the particular solution to non-homogeneous LSFDE with constant coefficients, 

while in section 6, several examples are given to illustrative the advantage of our approach. 
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2. Jumarie’s Modification of Riemann–Liouville Derivative  

The first definition of fractional derivative which has been proposed in the literature is the 

so-called Riemann–Liouville definition which reads as follows 

Definition 2.1 (Riemann_Liouville) Let f (x) : R R  be a continuous function then the 

fractional 

derivative of order is defined by 

 

x
1

x
0

1
D f (x) (x ) f ( )d

( )

    
    , 0                                   (4) 

and 

x

x
0

1 d
D f (x) (x ) f ( )d

(1 ) dx

    
   ,  0 1                              (5) 

and 

n
( n)

x n

d
D f (x) (D f (x))

dx

  ,    n n 1, n 1                                 (6) 

 

Definition 2.2 (Jumarie’s modification of Riemann–Liouville derivative):  Let 

f (x) : R R  be a continuous function then the fractional derivative of order is defined by  

 

x
1

x
0

1
D f (x) (x ) (f ( ) f (0))d

( )

     
   , 0                              (7) 

and 

x

x
0

1 d
D f (x) (x ) (f ( ) f (0))d

(1 ) dx

     
   , 0 1                        (8) 

and 

n
( n)

x n

d
D f (x) (D f (x))

dx

  ,    n n 1, n 1                                 (9) 

 

Remark the main difference between  definition (2.1) and definition (2.2). The second one 

involves the constant  f (0)  while the first one does not. Also, the fractional 

Riemann–Liouville derivative of a constant is not zero while the fractional Jumarie derivative 

of a constant is zero. In the rest of the paper , 
xD will be used to refer to Jumarie’s 

modification of Riemann–Liouville derivative. 
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Definition 2.3 (Principle of Derivative increasing orders) : The functional derivative of 

fractional 
xD expressed in terms of 

xD  and 
xD  is definded by the equality 

max( , ) min( , )

x x xD f (x) D (D f (x))     . 

Proposition 2.4: Assume that the continuous function f (x) : R R  has a fractional 

derivative of order k for any positive integer k  and  0 1   , then the following equality 

holds (Jumarie,2009), 

k
( k)

k 0

h
f (x h) f (x), 0 1

( k 1)






    
  

                                   (10) 

where ( k)f (x)  is the fractional Jumarie derivative of order k of f (x) . Formally, Eq.(10) 

can be written 
xf (x h) E (h D )f (x), 0 1 

     , where 
k

k 0

u
E (u)

( k 1)








  

 . 

Corollary 2.5:The following equalities hold (Jumarie,2009), which are 

1D x ( 1) ( 1 )x , 0                                                (11) 

or, what amounts to the same ( we set n   ) 

n 1 nD x ( 1) ( 1 n )x , 0 1                                            (12) 

x x xD (u(x)v(x)) D u(x) v(x) u(x)D v(x)                                     (13) 

x x

df (u)
D (f (u(x))) D u(x)

du

                                               (14) 

x u x

du(x)
D (f (u(x))) D f (u)D ( )

dx

                                            (15) 

Lemma 2.6: The following various formulae are hold (Jumarie,2009) 

1. 
d x x

ln ( ), x E (ln x), xc 0
x c



                                     (16) 

2. yln (x ) y ln x

                                                     (17)              

3. xE (x y ) (E (y ))  

                                                 (18) 

4. 
1 1 1

(ln (uv)) (ln (u)) (ln (v))  
                                          (19) 

5. E ( (x y) ) E ( x ) E ( y )  

                                            (20) 
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6. 
xD E ( x ) E ( x )  

                                                   (21) 

7. E (ix) cos x isin x                                                 (22) 

8. E (x) cosh x sinh x                                                 (23) 

9.
x xD cos x sin x , D sin x cos x     

                                    (24) 

10. 
x xD cosh x sinh x , D sinh x cosh x     

                              (25) 

11. 1

xD E ( x) x E ( x)  

                                              (26) 

 

 

3. General Solution of homogeneous Linear Fractional Differential Equation with 

constant Coefficients : 

Consider the following linear homogeneous linear fractional differential equation with 

constant coefficients of order (n,q)  

n (n 1) (n 2)

x 1 x 2 x n 1 x n( a a a a )y(x) 0     

                              (27) 

where 
1

q
  is constant rational number, 

ka , k 1,2, ,n are real constant , 

n

x x x x

n times

D D D   



 . 

Rewrite Eq.(28) in the form  

xP( )y(x) 0                                                          (28) 

where 
xP( ) is a linear fractional differential operator. 

Lemma(3.1): k kE ( x ) E ( x ), k 0,1, ,n  

      where 
k

k 0

u
E (u)

( k 1)








  

 is the 

Mittag-Leffler function. 

Proof:  
n

n times

E ( x ) D D D E ( x )     

 



    

(n 1) times

D D D E ( x )   
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2

(n 2) times

D D D E ( x )   



 

  
 

nE ( x )

   . 

By using Lemma (3.1), one can have 

xP( )E ( x ) P( )E ( x )  

                                                (29) 

where n n 1 n 2

1 2 nP( ) a a a           

If   is any root of the algebraic equation P( ) 0  , then Eq.(20) imply 

xP( )E ( x ) 0 

    

which means simply that y(x) E ( x )

   is a solution of Eq.(28). the equation 

P( ) 0                                                               (30) 

is called the auxiliary equation associated with Eq.(27) or Eq.(28). 

   The auxiliary equation for Eq.(27) is of degree n .   

Theorem 3.2:  

1. if P( ) 0  has r  real distance roots say 
1 2 rm ,m , ,m , for 1 r n  then its 

corresponding solution of Eq.(27) is 

1 1 2 2 r ry(x) c E (m x ) c E (m x ) c E (m x )  

      . 

2. if P( ) 0  has r  repeated roots say 
1 2 rm m m   , for 1 r n  then its 

corresponding solution of Eq.(27) is 

2 (n 1)

1 1 2 1 3 1 r 1y(x) c E (m x ) c x E (m x ) c x E (m x ) c x E (m x )       

        . 

3. if P( ) 0  has complex roots say im e      , then its corresponding solution 

of Eq.(27) is 

k k
k k

1 2

k 0 k 0

cos(k ) sin(k )
y(x) c x c x

( k 1) ( k 1)

 
 

 

   
 

     
  . 

Proof (1): Let P( ) 0   has r  real distance roots say 
1 2 rm ,m , ,m , then one  
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can write 
1 2 rP( ) Q( )( m )( m ) ( m )       where Q( ) is a polynomial of degree 

n r  satisfy 
kQ(m ) 0 for k 1,2, , r . 

Note that,    

x k k x k k k( m )E (m x ) E (m x ) m E (m x ) 0    

       for k 1,2, , r  

so, 
x kP( )E (m x ) 0 

   for k 1,2, , r . 

x x 1 1 2 2 r rP( )y(x) P( )(c E (m x ) c E (m x ) c E (m x ))    

       

1 x 1 2 x 2 r x rc P( )E (m x ) c P( )E (m x ) c P( )E (m x )     

       

 0 .  

Proof (2): Let P( ) 0  has r  repeated roots say 
1 2 rm m m   , for 1 r n   

then one can write r

1P( ) Q( )( m )     where Q( ) is a polynomial of degree n r  

satisfy 
1Q(m ) 0 . 

Note that,    

x 1 1( m )E (m x ) 0 

   

2

x 1 1 x 1 x 1 1 1( m ) x E (m x ) ( m )( (x E (m x )) m x E (m x ))        

       

x 1 1 1 1 1 1( m )[x m E (m x ) ( 1)E (m x ) m x E (m x )]     

        

x 1 1( m )[ ( 1)E (m x )] 

     

x 1 1 1( 1)[ E (m x ) m E (m x )]  

      

1 1 1 1( 1)[m E (m x ) m E (m x )] 

      

0  

Also, 

3 2 2 2 2

x 1 1 x 1 x 1 1 1( m ) x E (m x ) ( m ) ( (x E (m x )) m x E (m x ))        
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2 2 2

x 1 1 1 1 1 1

(2 1)
( m ) [x m E (m x ) x E (m x ) m x E (m x )]

( 1)

      

  

 
   

 

2

x 1 1

(2 1)
( m ) [ x E (m x )]

( 1)

  



 
 

 
 

x 1 1

(2 1)
( m )x E (m x )

( 1)

  



 
 
 

 

0  

and so on, one can have, 

k (k 1) (k 1) (k 1) (k 1)

x 1 1 x 1 x 1 1 1( m ) x E (m x ) ( m ) ( (x E (m x )) m x E (m x ))            

       

(k 1) (k 1) (k 2) (k 1)

x 1 1 1 1 1 1

((k 1) 1)
( m ) [x m E (m x ) x E (m x ) m x E (m x )]

((k 2) 1)

          

  

  
   

  

(k 1) (k 2)

x 1 1

((k 1) 1)
( m ) [ x E (m x )]

((k 2) 1)

    



  
 

  
 

(k 2)

x 1 1

((k 1) 1)
( m )x E (m x )

((k 2) 1)

   



  
 
  

 

0  for k 1,2, , r    

so, 
(k 1)

x kP( )x E (m x ) 0   

   for k 1,2, , r . 

2 (n 1)

x x 1 1 2 1 3 1 r 1P( )y(x) P( )(c E (m x ) c x E (m x ) c x E (m x ) c x E (m x ))         

         

2

1 x 1 2 x 1 3 x 1

(n 1)

r x 1

c P( )E (m x ) c P( )(x E (m x )) c P( )(x E (m x ))

c P( )(x E (m x )) 0

       

  

   



   

 
 

Proof (3): Let P( ) 0  has complex roots say im i e      , then one can write 

2 2 2 2P( ) Q( )(( ) ) Q( )( 2 cos( ) )              where Q( ) is a polynomial of 

degree n 2  satisfy Q( i) 0   . 

Note that,    

k k
2 2 k 2 k

x x x

k 0 k 0

cos(k ) cos(k )
( 2 cos( ) ) x x

( k 1) ( k 1)

 
    

 

   
     

     
   

k k
k 2 k

x

k 0 k 0

cos(k ) cos(k )
2 cos( ) x x

( k 1) ( k 1)
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k k k
(k 2) (k 1) 2 k

k 2 k 1 k 0

cos(k ) cos(k ) cos(k )
x 2 cos( ) x x

((k 2) 1) ((k 1) 1) ( k 1)

  
    

  

     
    

        
  

j 2 j 1 j
j j 2 j

j 0 k 1 j 0

cos(( j 2) ) cos(( j 1) ) cos( j )
x 2 cos( ) x x

( j 1) ( j 1) ( j 1)

   
  

  

       
    

        
    

 

j
2 j

j 0

[cos(( j 2) ) 2cos( )cos(( j 1) ) cos( j )]
x

( j 1)






        
 

  
  

j 2
2 j

j 0

[cos(2 )cos( j ) sin( j )sin(2 ) 2cos ( )cos( j ) 2cos( )sin( j )sin( ) cos( j )]
x

( j 1)






              
 

  


j 2
2 j

j 0

[cos(2 ) 2cos ( ) 1]cos( j )
x 0

( j 1)






     
  

  
 . 

In similar manner, one can have 

k
2 2 k

x x

k 0

sin(k )
( 2 cos( ) ) x 0

( k 1)


  



 
    

  
  

So, 
k k

2 2 k k

x x 1 2

k 0 k 0

cos(k ) sin(k )
( 2 cos( ) )(c x c x ) 0

( k 1) ( k 1)

 
   

 

   
     

     
   

and 

k k
k k

x 1 2

k 0 k 0

cos(k ) sin(k )
P( )(c x c x ) 0

( k 1) ( k 1)

 
  

 

   
 

     
  . 

Theorem: Let  1 2 ny (x), y (x), , y (x)  be a set of solutions of the linear homogeneous 

fractional differential equation with constant coefficients of order (n,q)  then 

1 2 ny (x), y (x), , y (x)  are linearly independent if and only if 

1 2 nW((y (x), y (x), , y (x)) 0 , where 

1 2 n

x 1 x 2 x n

2 2 2

1 2 n x 1 x 2 x n

(n 1) (n 1) (n 1)

x 1 x 2 x n

y (x) y (x) y (x)

y (x) y (x) y (x)

W((y (x), y (x), , y (x)) y (x) y (x) y (x)

y (x) y (x) y (x)

  

  

     

  

The above determinant is called  -wronskian determinant. 
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Proof:  

Let 
1 1 2 2 n nc y (x) c y (x) c y (x) 0                                

By successivedifferentiation, we have  

1 x 1 2 x 2 n x nc y (x) c y (x) c y (x) 0       

2 2 2

1 x 1 2 x 2 n x nc y (x) c y (x) c y (x) 0       

3 3 3

1 x 1 2 x 2 n x nc y (x) c y (x) c y (x) 0     
 

(n 1) (n 1) (n 1)

1 x 1 2 x 2 n x nc y (x) c y (x) c y (x) 0          

In order to find the constants, 
1 2 nc ,c , ,c , one can solve the following linear system 

1 2 n

1

x 1 x 2 x n

22 2 2

x 1 x 2 x n

n(n 1) (n 1) (n 1)

x 1 x 2 x n

y (x) y (x) y (x)
c 0

y (x) y (x) y (x)
c 0

y (x) y (x) y (x)

c 0
y (x) y (x) y (x)

  

  

     

 
    
    
     
    
    

   
 

      (31) 

 

The above system has zero solution, 
1 2 nc c c 0    ,if and only if 

1 2 nW((y (x), y (x), , y (x)) 0 . That is, 
1 2 ny (x), y (x), , y (x)  are linearly independent if 

and only if 
1 2 nW((y (x), y (x), , y (x)) 0 . 

 

4. General Solution of nonhomogeneous Linear Fractional Differential Equation with 
constant Coefficients by using undetermined coefficients 

The general solution of Eq.(1) is 
c py(x) y (x) y (x),   where 

cy (x) is the general solution 

of the homogenous equation Eq.(27) and 
py (x) is any particular solution of the Eq.(1). In this 

section, the method of undetermined coefficients will be used to find a particular solution of 

the Eq.(1). 

We will summarized the method in the following steps: 

1. Write Eq.(1) in form of linear fractional differential operator 
xP( )y(x) f (x)  .                                                    

2. Suppose that the right member f (x)  of Eq.(1) is itself a particular solution of some 

homogeneous linear fractional differential equation with constant coefficients, 
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xQ ( ) f ( x ) 0                                                       (32) 

   whose auxiliary equation has the roots
1 2 sm ,m , ,m  where s  is the degree of    

   the polynomial Q( ) . 

3. Find the general solution of the following homogeneous linear fractional differential 

equation with constant coefficients of degree (n s,q) , 

 
x xQ( )P( )y(x) 0   ,                                              (33) 

Hence the general solution of Eq.(33) contains the 
cy (x)  of Eq.(1) and so is of the form 

c qy(x) y (x) y (x),   But also any particular solution of Eq.(1) must satisfy Eq.(33). Now, if 

x c qP( )(y (x) y (x)) f (x)   , then 
x qP( )(y (x)) f (x)  because 

x cP( )(y (x)) 0  . Then 

deleting the 
cy (x)  from the general solution of Eq.(33) leaves a function 

qy (x)  that for 

some numerical value of its coefficients must satisfy Eq.(1). The determination of those 

numerical coefficient may be accomplished as in the following examples. 

It must be kept in mind that the undetermined coefficients method is applicable when, and 

only when, the right member of the equation is axe ,cos(ax),  cosh(ax),

a b

bsin(ax),sinh(ax),x ,E (ax),E (ax )
or any combination of these functions. 

5. General Solution of nonhomogeneous Linear Fractional Differential Equation with 
constant variation of parameters 

The general solution of Eq.(1) is 
c py(x) y (x) y (x),   where 

cy (x) is the general solution 

of the homogenous equation Eq.(27) and 
py (x) is any particular solution of the Eq.(1). In this 

section, the method of variation of parameters will be used to find a particular solution of the 

Eq.(1).We will summarized the method in the following steps: 

1. Find the general solution of the homogenous equation Eq.(27),  

c 1 1 2 2 n ny (x) c y (x) c y (x) c y (x)                                        (34) 

2. Replace each 
kc ,k 1,2, ,n  by unknown functions 

kv (x),k 1,2, ,n , so that the 

particular solution is 
p 1 1 2 2 n ny (x) v (x)y (x) v (x)y (x) v (x)y (x)     . 

3. Compute 
kv (x) ,k 1,2, ,n  from 
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k
x k

W (x)
v (x) , k 1,2, ,n

W(x)

   ,  

Or, 

k
k x

W (x)
v (x) , k 1,2, ,n

W(x)

   

x
1 k k

k
0

W ( ) W (0)1
v (x) (x ) ( ), k 1,2, ,n

( ) W( ) W(0)

 
   
    

where W(x)  is the  -wronskian determinant and 
iW (x)  is the  -wronskian determinant 

with the k
th

 column replaced by (0,0, ,f (x)) . So that, the particular solution to the 

non-homogeneous equation Eq.(1) can be written as  

n x
1 k k

p k
0

k 1

W ( ) W (0)1
y (x) [ (x ) ( )]y (x)

( ) W( ) W(0)






  

  
  , 

 

6. Illustrated Examples:                                             

 

Example 1 : we consider the homogeneous fractional differential equation 

 
1

2( 2)y(x) 0     

Clearly, the auxiliary equation is 2p(m) m m 2 0     and its roots are m 1, 2  . then the 

general solution is seen to be 

1 1

2 2
1 1 2 1

2 2

y(x) c E (x ) c E ( 2x )     

Example 2 : we consider the homogeneous fractional differential equation 

 
4 2 1

3 3 3( 7 18 20 8)y(x) 0,      Clearly, the auxiliary equation is 

4 3 2p(m) m 7m 18m 20m 8 0       and its roots are 
1m 1,2,2,2 . then the general 

solution is seen to be 

 

1 1 1 1 2 1

3 3 3 3 3 3
1 1 2 1 3 1 4 1

3 3 3 3

y(x) c E (x ) c E (2x ) c x E (2x ) c x E (2x )     . 

Example 3 : we consider the homogeneous fractional differential equation 

 
3 1

2 2( 3 9 13)y(x) 0      
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Clearly, the auxiliary equation is 3 2p(m) m 3m 9m 13 0      and its roots are 

m 1,2 3i  . then the general solution is seen to be 

k k

1 12 2

1

k k2
1 1 2 3

k 0 k 02

3 3
13 cos k tan 13 sin k tan

2 2
y(x) c E ( x ) c x c x

( k 1) ( k 1)

   
   

    

 
 

 

      
      
         

     
   

Example 4 : we consider the nonhomogeneous fractional differential equation 

 
1

x2( 2)y(x) e    

Clearly, the auxiliary equation is p(m) m 2 0    and its root is m 2 . then 

  
1

4 42
c 1 1 1

2

1
y (x) c E (2x ) c e 4e 1 erfc 2

2

 
     

 

t t t  

 The particular solution by using undetermined coefficients, first we find 
1

2
xQ( ) such that 

1

x2
xQ( )e 0 , 

Clearly, 
2

x2
x( 1)e 0  and the auxiliary equation is 2Q(m) m 1 0     

and its root is m 1, 1  . then 

1 1

2 2
q 1 1 2 1

2 2

y (x) c E (x ) c E ( x )   . One can see that each solution 

in 
qy (x) not exist in 

cy (x) so that the particular solution has the form 

1 1

2 2
p 1 1 2 1

2 2

y (x) c E (x ) c E ( x )   . Now, substitute 
py (x)  in given equation to find the 

numerical value for 
1 2c ,c  , as follows 

1 1 1

x2 2 2
1 1 2 1

2 2

( 2) c E (x ) c E ( x ) e
 

    
 

  

1 1 1 1 1 1

x2 2 2 2 2 2
1 1 2 1 1 1 2 1

2 2 2 2

c E (x ) c E ( x ) 2c E (x ) 2c E ( x ) e       

1 1 1 1

x2 2 2 2
1 1 2 1 1 1 2 1

2 2 2 2

c E (x ) c E ( x ) 2c E (x ) 2c E ( x ) e       

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.6, No.2, 2016 

 

148 

1 1

x2 2
1 1 2 1

2 2

c E (x ) 3c E ( x ) e     

k k

k k2 2

1 2

k 0 k 0 k 0

x ( 1) x x
c 3c

k k (k 1)
( 1) ( 1)
2 2

  

  


  

 
   

    

k

k k2
1 2

k 0 k 0

[c ( 1) 3c ]x x

k (k 1)
( 1)
2

 

 

 
 

 
 

   

For k  is even in the left member of above equation, we have 

1 2c 3c 1     

For k  is odd in the left member of above equation, we have 

1 2c 3c 0   

So, one can have 1 2

1 1
c ,c

2 6

 
   and the particular solution is 

1 1

2 2
p 1 1

2 2

1 1
y (x) E (x ) E ( x )

2 6

 
   . and the general solution is 

1 1 1

2 2 2
1 1 1 1

2 2 2

1 1
y(x) c E (2x ) E (x ) E ( x )

2 6


     

        4

1

1 1
y(x) e 1 erf 2 e 1 erf e 1 erf

2 6
      t t tc t t t  

    4

1

2 1
y(x) e 1 erf 2 e e erf

3 3
   t t tc t t  

The particular solution by using variation of parameters,  

 

Replace 
1c  by unknown functions 

1v (x) , so that the particular solution is 
p 1y (x) v (x)  . 

 

1 x

12
x 1 1

2
1

2

W (x) e 1
v (x)

W(x) 1 erf
E (2x )

  
 x

,  

 
 

x
1

1
0

erf1
v (x) (x ) d ,

1 1 erf( )
2


  




x

x
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x

1
0

erf
v (x) d

( 1 erf


  

   


x )
 

So, the particular solution is  

  
 

  
x

4 4

p
0

erf1
y (x) e 4e 1 erfc 2 d

2 ( 1 erf

 
      
     


t t t

x )
,  

and the general solution is  

  
 

  
x

4 4

1
0

erf1
y(x) e 4e 1 erfc 2 c d

2 ( 1 erf

                 
 


t t t

x )
 

Example 5 : we consider the homogeneous fractional differential equation 

 
1

2( 2)y(x) cos(x)     

Clearly, the auxiliary equation is 2p(m) m m 2 0     and its roots are m 1, 2  . then  

1 1

2 2
c 1 1 2 1

2 2

y (x) c E (x ) c E ( 2x )    . 

The particular solution by using undetermined coefficients, first we find 
1

2
xQ( ) such that 

1

2
xQ( )cos(x) 0 , 

Clearly, 
4

2
x( 1)cos x 0  and the auxiliary equation is 4Q(m) m 1 0    and its root is 

i 3 i

4 4
1 1 1 1

m , e ,e
2 2 2 2

 

   . then 

k k k

k2 2 2
q 1 2 3 4

k 0 k 0 k 0 k 0

k k 3k 3k
cos( ) sin( ) cos( ) sin( )

4 4 4 4y (x) c x c x c x c x
k k k k

( 1) ( 1) ( 1) ( 1)
2 2 2 2

   


   

   

   

       
    One can 

see that each solution in 
qy (x) not exist in 

cy (x) so that the particular solution has the form 

k k k

k2 2 2
p 1 2 3 4

k 0 k 0 k 0 k 0

k k 3k 3k
cos( ) sin( ) cos( ) sin( )

4 4 4 4y (x) c x c x c x c x
k k k k

( 1) ( 1) ( 1) ( 1)
2 2 2 2

   


   

   

   

       
    Now, 

substitute 
py (x)  in given equation to find the numerical value for 

1 2c ,c  , as follows 
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1 k k k

k2 2 2 2
1 2 3 4

k 0 k 0 k 0 k 0

k k 3k 3k
cos( ) sin( ) cos( ) sin( )

4 4 4 4( 2) c x c x c x c x cos(x)
k k k k

( 1) ( 1) ( 1) ( 1)
2 2 2 2

   


   

    
 

      
        
 

   

1 k1 2 3 4
2 2

k 0

k k 3k 3k
[c cos( ) c sin( ) c cos( ) c sin( )]

4 4 4 4 ( 2)x cos(x)
k

( 1)
2





   
  

  

 
  

1 k1 2 3 4
2 2

k 0

k k 3k 3k
[c cos( ) c sin( ) c cos( ) c sin( )]

4 4 4 4 ( 2)x cos(x)
k

( 1)
2





   
  

  

 
  

k1 2 3 4 1
2

k 2

k 11 2 3 4
2

k 1

k1 2 3 4
2

k 0

k k 3k 3k
[c cos( ) c sin( ) c cos( ) c sin( )]

4 4 4 4 x
k 2

( 1)
2

k k 3k 3k
[c cos( ) c sin( ) c cos( ) c sin( )]

4 4 4 4 x
k 1

( 1)
2

k k 3k 3k
[c cos( ) c sin( ) c cos( ) c sin( )]

4 4 4 42 x co
k

( 1)
2

 











   
  




 

   
  




 

   
  



 





 s(x)

j1 2 3 4
2

j 0

j1 2 3 4
2

j 0

1 2 3 4

( j 2) ( j 2) 3( j 2) 3( j 2)
[c cos( ) c sin( ) c cos( ) c sin( )]

4 4 4 4 x
j

( 1)
2

( j 1) ( j 1) 3( j 1) 3( j 1)
[c cos( ) c sin( ) c cos( ) c sin( )]

4 4 4 4 x
j

( 1)
2

j j 3j
[c cos( ) c sin( ) c cos( ) c sin(

4 4 42









       
  



 

       
  



 

  
  





j

2

j 0

3j
)]

4 x cos(x)
j

( 1)
2
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j1 2
2

j 0

j3 4

j 0

( j 2) ( j 1) j ( j 2) ( j 1) j
[c {cos( ) cos( ) 2cos( )} c {sin( ) sin( ) 2sin( )}]

4 4 4 4 4 4 x
j

( 1)
2

3( j 2) 3( j 1) 3j 3( j 2) 3( j 1) 3j
[c {cos( ) cos( ) 2cos( )}} c {sin( ) sin( ) 2sin( )}]

4 4 4 4 4 4 x
j

( 1)
2









         
    



 

         
     

 



 2

2 j
j

j 0

x
( 1)

(2 j 1)





 
 



 So, we have the following linear system 

1 2 3 4

1 1 1 1
1 2 1 2 1 2 1 2 1

2 2 2 2

       
                

       
c c c c  

1 2 3 42 2 0   c c c c  

1 2 3 4

1 1 1 1
1 2 1 2 1 2 1 2 0

2 2 2 2

       
               

       
c c c c  

1 2 3 42 2 0   c c c c  

The solution of the above system is  

1 2 3 4

1 1 1 1 1 1 1 1
2, 2, 2 , 2

6 12 6 12 12 6 6 12
          c c c c  

Therefore , the particular solution is 

k k

2 2
p

k 0 k 0

k k
cos( ) sin( )

1 1 1 14 4y (x) 2 x 2 x
k k6 12 6 12

( 1) ( 1)
2 2

 

 

 

   
        
      

   

k k

2 2

k 0 k 0

3k 3k
cos( ) sin( )

1 1 1 14 42 x 2 x
k k12 6 6 12

( 1) ( 1)
2 2

 

 

 

   
       
      

   

and the general solution is  

      4 4

1 2

1
y(x) c e e 1 erfc c e 4e 1 erfc 2

2

 
       

 

x x x xx x  

k k k

2 2 2

k 0 k 0 k 0

k k 3k
cos( ) sin( ) cos( )

1 1 1 1 1 14 4 42 x 2 x 2 x
k k k6 12 6 12 12 6

( 1) ( 1) ( 1)
2 2 2
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k

2

k 0

3k
sin( )

1 1 42 x
k6 12

( 1)
2







 
  
   

  

 

The particular solution by using variation of parameters, Replace 
1c and

2c  by unknown 

functions 
1v (x) and 

2v (x) respectively  , so that the particular solution is 

1 1

2 2
p 1 1 2 1

2 2

y (x) v (x)E (x ) v (x)E ( 2x )    . 

 

   

1

2
1

2

1

2
11

22
x 1 11 1

22 2
11 1

22 2

1 1

2 2
1 1

2 2

0 E ( 2x )

cos(x) 2E ( 2x )
coscos(x)

v (x)
3 e e 1 erfc3E (x )E (x ) E ( 2x )

E (x ) 2E ( 2x )



 

  
 

 

x x

x

x
,  

 

  

1

2
1

2

1

2
11

22
x 2 11 1

4 422 2
11 1

22 2

1 1

2 2
1 1

2 2

E (x ) 0

E (x ) cos(x)
coscos(x)

v (x)
1

3 e 4e 1 erfc 23E ( 2x )E (x ) E ( 2x )
2

E (x ) 2E ( 2x )


  

 
     

 

 

x x

x

x

 

 
  

1

0

cos( ) 2e e erfc1
v (x) d

3 e 2 erfc

 



    
   
 

     
 


x

x
 

   
  

4 4 4

2
4

0

2cos 2e e 4 e 4erfc 21
v (x) d

3 e 2 4 4erfc 2

  



     
 

    

x

x
 

So, the particular solution is  
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p

0

cos( ) 2e e erfc1
y (x) e e 1 erfc d

3 e 2 erfc

 



    
      
 

     
 


x

x x x
x

 

  
   

  

4 4 4

4 4

4
0

2cos 2e e 4 e 4erfc 21 1
e 4e 1 erfc 2 d

2 3 e 2 4 4erfc 2

  



      
    

      

x

x x x
x

  

and the general solution is  

   
 
  

  
   

  

1

0

4 4 4

4 4

2
4

0

cos( ) 2e e erfc1
y(x) e e 1 erfc c d

3 e 2 erfc

2cos 2e e 4 e 4erfc 21 1
e 4e 1 erfc 2 c d

2 3 e 2 4 4erfc 2

 



  



     
        
  

       
  

                       
 





x

x x

x

x x

x
x

x
x

 

6. Conclusion:                                             

Depending on the roots of the characteristic polynomial of the corresponding homogeneous 

equation, The general solution to a homogenous LSFDE with constant coefficients is obtained 

in theorem (3.2). For the non-homogeneous case, two methods, undetermined coefficients and 

variation of parameter, are investigated to find the particular solution. The method of 

undetermined coefficients is independent of the integral transforms but it is applicable when, 

and only when, the right member of the Eq.(1) is axe ,  cos(ax),  cosh(ax),  sin(ax),  

sinh(ax),  
ax ,  E (ax),

 
b

bE (ax ) or any combination of these functions. while the method of 

variation of parameter depend on the integral transforms and it is applicable when the right 

member of the Eq.(1) is any function. 
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