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ABSTRACT 

Multivariate Analysis (MVA) is based on the Statistical principle of Multivariate Statistics which involves 

observation and analysis of more than one Statistical outcome variables at a time. Classification in Multivariate 

analysis deals with developing a statistical rule for allocating observation to one or more groups. A closely 

associated multivariate technique is discriminant analysis which predicts group membership for an observation. 

Fishers (1936) developed a technique (Fishers Linear Discriminant Function) that optimally discriminate only 

two groups. The challenges of developing a mathematical based procedure with some underlying distribution for 

multiple groups have remained a task to be accomplished as it only exist in theory but not in practice. Owing to 

these challenges, this work introduces and suggests a mathematical procedure that is based on combinatorial 

analysis which gave rise to All Possible Pair of functions and allocation rules for a multiple group case. The 

developed procedure was generalized and applied to both real and simulated data. The developed procedure gave 

a higher accuracy rate for the real and simulated data under various sample sizes when compared with other 

conventional methods. It is therefore recommended that the All Possible Pair procedure could be a better 

approach in situations of any multivariate data structure.  

Key Words: Discriminant, Function, Classification, combination, Accuracy Rate. 

 

1.0   Introduction 

Multivariate statistics concerns the different aims and background of each of the different forms of multivariate 

analysis and how they relate to each other. Multivariate analysis techniques, besides discriminant analysis also 

includes principal component analysis (Ekezie, 2013) and Canonical correlation (Onyeagu et al., 2014) When 

two or more measurements are available, which usually yields much more information than does one about the 

population being studied, the discriminant function proposed by Fisher (1936) affords a procedure for obtaining 

the best linear function for discriminating the population under study. A close look at the allocation rule 

associated with the Fisher’s Linear Discriminant (FLD) procedure provides reasons to infer that the FLD 

procedure is important, easy and simple when applied to just two groups. Fisher (1940) pointed out that although 

the proposed technique have been applied in widely differing field especially for the two group case, 

considerable work in theory remains to be done for the more than two group case. As Allwein et al (2000) 

pointed out, in practice, the choice of reduction method from Multi-Class to Binary (Two-Class) is problem-

dependent and not a trivial task since each reduction method has its own limitations. In classification generally, 

solutions to Multi-class (group) problems have been proposed by many researchers. Examples includes the Super 

Vector Machines (SVMs) (Vapnik, 1998), One-versus-the-rest method (Bottou, et al., 1994), Pairwise 

Comparison (Hastie & Tibshirani, 1998), Direct Graph Traversal (Platt, et al., 2000), Error Correcting Output 

Coding (Dietterich & Bakiri, 1995). Solving multi-group classification problems has been improved by 

overcoming the limit of conventional statistical methods supported by development of artificial intelligence 

methods yet a number of studies based on various methods are still ongoing in many academic fields (Kyung, et 

al., 2004). The multiple group problems, however, has very rarely been addressed and most of the methods 

proposed for two groups do not generalize and the performance of the methods that can be used with several 

group is not generally reliable (David, H., 1996). It is fair to say that there is probably no multi-class approach 

generally outperforms the others. For practical problems, the choice of approach will depend on constraints on 

hand such as required accuracy, the time available for development and training and the nature of the 

classification problem and data structure. The simple, efficient and accurate discriminant analysis provides a 
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good choice for practical multi-class classification problems. As multi-group classification problem is not 

confined to specific studies but it is rather faced by overall studies, verifying its general applicability is 

important. Efficient multi-group classification model would be one which to a significantly large extent correctly 

classifies objects into their group thereby producing a minimum error rate or a higher rate of correct 

classification. 

 The performance of the classification rule can be evaluated by obtaining the optimal error rate 

(proportion of objects wrongly classified by the allocation rule) associated with the allocation rule where the 

allocation rule itself is derived from the suggested model.  

Although practical evidences have shown that discriminant analysis is effective, it should be pointed out that a 

significant separation does not necessarily imply a good classification (Tao, et el., 2006). Owing to the demand 

for more theoretical work to be done due to lack of a reliable and dependable tool/procedure for multi-group 

classification in discriminant analysis (Fishers, 1940, David, 1996, Vark et al., 1982, Ramaswamy, et al., 2011, 

Kyung, et al., 2004, Xu et al., 2009, Daniela and Tibshirani, 2011), methods that exist have limitations ranging 

from bias, inconsistency, weak statistical based assumptions, cost and time inefficiency. 

This work is aimed at developing an efficient procedure for discrimination and classification when we have 

multiple groups. Compare the result of this work with the conventional method using their accuracy rate as a 

criterion.  

Several methods were reviewed, few of which includes; Linear Discriminant Analysis (Fukunaga, 1990), Two-

class linear discriminant analysis (Fishers, 1936), Pairwise Comparison  (Kwon et al., 1997), Nearest Neighbour 

classifier (Sandrine et al, 2000), Aggregate Classifiers (Breiman, 1996, 1998), Boosting (Freud and Schapire, 

1997), Multiple Group Logistic Model (Lesaffre and Albert, 1989). However, emphasis was much on Fishers 

Linear Discriminant procedure since it forms the basis of most of the part of this work.  

2.0   Methodology 

Assuming we have a set of observation with attributes represented by variables x1, x2, … , xk coming from m-

population (groups). Group I has n1 observations, group II has n2 observations and so on up to group m having 

nm observations where n1 + n2 + ⋯ + nm = N. Our interest is to classify a future (or new) observation whose 

origin is unknown with same attributes as x1, x2, … , xk to the correct group. We desire to do this with so much 

caution so as to minimize the cost of misclassification. Fisher’s procedure obtains a set of m-1 linear functions 

which represents the functional relationship between the discriminating attributes (or variables).  

3.0   The New Procedure  

In an attempt, to obtain such linear functions of the discriminating variables, we start by considering the concept 

of combinatorial analysis. The possible ways of arranging n objects in r ways (considering the order and without 

repetition) is given by  

(
n

r
) =

n!

r! (n − r)!
… … … … . (1) 

Applying (1) into our set up, where n would be replaced by m, the number of groups and r the possible pairs of 

group combination, thus 

(
m

r
) =

m!

r! (m − r)!
= λ … … … … . (2) 

λ is the number of functions arising from all possible pairs of combination with m-groups. λ would certainly be a 

non-negative integer. Given m-groups, evaluation of the number of all possible pairs would result to λ number of 

functions in the form of a linear functions arising from combining possible pairs of groups without repetition. 

Clearly, we would have a set Discriminant Functions (DF) representing every possible pairs of group 

combination thus 

DF1,2, DF1,3, … , DF1,m−1, DF1,m … … … … . (3) 

DF2,1, DF2,3, … , DF2,m−1, DF2,m … … … … . (4) 

⋮ 
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DFm,1, DFm,2, … , DFm,m−2, DFm,m−1 … … . . (5) 

Equations (3), (4) & (5) are now the discriminant functions arising from all possible pairs of group combination 

from m-groups(in general). 

From Fishers (1936), an allocation rule for classifying future observation is given as: allocate to group I if  

X >
X̅1 + X̅2

2
 (in univariate case) 

Otherwise Allocate to group II. 

And: 

Allocate to group I if  

αTX > D(in multivariate case) 

Otherwise allocate to group II 

Where  

Z = aTX = a1x1 + a2x2 + ⋯ + akxk … … … … . (6) 

D =
1

2
(X̅1 + X̅2)T𝐒−1(X̅1 − X̅2) … … … … … . . . . (7) 

Equation (7) can readily be obtained as above but with respect to available number of pairs of groups. 

It is worthy to note that D can only be computed for two groups at a time. Since our derivations are in pairs, it is 

also possible to obtain for each possible pair, a corresponding and appropriate D-value. Thus, for m-groups and 

𝜆  number of discriminant functions, we would have a set of D-values in the form; 

 

𝐷1,2, 𝐷1,3, … , 𝐷1,𝑚−1, 𝐷1,𝑚 … … … … … . (8) 

𝐷2,1, 𝐷2,3, … , 𝐷2,𝑚−1, 𝐷2,𝑚 … … … … . (9) 

⋮ 

𝐷𝑚,1, 𝐷𝑚,2, … , 𝐷𝑚,𝑚−2, 𝐷𝑚,𝑚−1 … … … … . (10) 

Equations (8), (9) & (10) are the D-values corresponding to discriminant functions of all possible pairs of group 

combination. 

Table 1: Summary of Discriminating values for all Groups 

Group I Group II Group III … Group M 

𝐷1,2 𝐷2,1 𝐷3,1 … 𝐷𝑚,1 

𝐷1,3 𝐷2,3 𝐷3,2 … 𝐷𝑚,2 

𝐷1,4 𝐷2,4 𝐷3,4 … 𝐷𝑚,3 

… … … … … 

𝐷1,𝑚−1 𝐷2,𝑚−1 𝐷3,𝑚−1  𝐷𝑚,𝑚−2 

𝐷1,𝑚 𝐷2,𝑚 𝐷3,𝑚 … 𝐷𝑚,𝑚−1 

 

 

Since the combinatorial analysis so far has given us 𝜆  number of discriminant functions and 𝜆  number of D-

values. It follows that 𝜆  number of rules would be required to conveniently allocate observations. Fishers 

procedure for allocation provides an only convenient way of combining just a pair (with regards to order) at a 

time for classification (i.e evaluation can only be done by comparing two groups at a time). Having stated this, 
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the 𝜆  number of rules that can allocate future observation derived on the basis of our initial combinatorial 

concept would be such that each possible pair would have a corresponding allocation rule. That is, for pairs of 

group 1&2, a rule would exist independently for its classification, for 1&3, another rule would also exist 

independently for its classification, also for 1&4 up to and including every available possible pairs of functions. 

Clearly put this way; 

For 𝐷𝐹1,2, a corresponding 𝐷1,2 would exist,  

For 𝐷𝐹1,3, a corresponding 𝐷1,3 would exist,  

For 𝐷𝐹𝑚−1,𝑚, a corresponding 𝐷𝑚−1,𝑚 would exist,  

up to 

For 𝐷𝐹𝑚,𝑚−1, a corresponding 𝐷𝑚,𝑚−1 would exist. 

The above evaluations would clearly give rise to a set of 𝜆  independent rules for every possible pairs. Thus, we 

can set up a rule as: 

Allocate to  

𝐺1 𝑖𝑓 𝐷𝐹1,2 > 𝐷1,2 … … … … . (11) 

else 

𝐺2 𝑖𝑓 𝐷𝐹1,3 > 𝐷1,3 … … … … . (12) 

else 

⋮ 

𝐺𝑚−1 𝑖𝑓 𝐷𝐹1,𝑚−1 > 𝐷1,𝑚−1 … … … … . (13) 

Otherwise 

𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒 𝑡𝑜 𝐺𝑚 … … … … . (14) 

(14), (15), (16), and (17) are set of rules existing when allocating any observation coming (or assumed) from 

group I. It therefore follows that, another set of rules would exist for allocating observations coming from group 

II. Thus we have; 

Allocate to 

𝐺1 𝑖𝑓 𝐷𝐹2,1 > 𝐷2,1 … … … … . (15) 

else 

𝐺2 𝑖𝑓 𝐷𝐹2,3 > 𝐷2,3 … … … … . (16) 

else 

⋮ 

𝐺𝑚−1 𝑖𝑓 𝐷𝐹2,𝑚−1 > 𝐷2,𝑚−1 … … … … . (17) 

Otherwise 

𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒 𝑡𝑜 𝐺𝑚 … … … … . (18) 

The above continues in the same way until the m
th

 group such that we would have a set of rules for classifying 

observations coming (or assumed) from the m
th

 group. Thus we would 

Allocate to 
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𝐺1 𝑖𝑓 𝐷𝐹𝑚,1 > 𝐷𝑚,1 … … … … . (19) 

else 

𝐺2 𝑖𝑓 𝐷𝐹𝑚,2 > 𝐷𝑚,2 … … … … . (20) 

else 

⋮ 

𝐺𝑚−1 𝑖𝑓 𝐷𝐹𝑚,𝑚−1 > 𝐷𝑚,𝑚−1 … … … … . (21) 

Otherwise 

𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒 𝑡𝑜 𝐺𝑚 … … … … . (22) 

 

Table 2: Summary of the Allocation Rules 

All Original G1 All Original G2 All Original G3 … All original Gm 

𝐺1 𝑖𝑓 𝐷𝐹1,2 > 𝐷1,2 𝐺1 𝑖𝑓 𝐷𝐹2,1 > 𝐷2,1 𝐺1 𝑖𝑓 D𝐹3,1 > 𝐷3,1 … 𝐺1 𝑖𝑓 𝐷𝐹𝑚,𝑚−1 > 𝐷𝑚,𝑚−1 

𝐺2 𝑖𝑓 𝐷𝐹1,3 > 𝐷1,3 𝐺2 𝑖𝑓 𝐷𝐹2,3 > 𝐷2,3 𝐺2 𝑖𝑓 𝐷𝐹3,2 > 𝐷3,2 … 𝐺2 𝑖𝑓 𝐷𝐹𝑚,𝑚−1 > 𝐷𝑚,𝑚−1 

𝐺3 𝑖𝑓 𝐷𝐹1,4 > 𝐷1,4 𝐺3 𝑖𝑓 𝐷𝐹2,4 > 𝐷2,4 𝐺3 𝑖𝑓 𝐷𝐹3,4 > 𝐷3,4 … 𝐺3 𝑖𝑓 𝐷𝐹𝑚,𝑚−1 > 𝐷𝑚,𝑚−1 

… … … … … 

𝐺𝑚−2 𝑖𝑓 𝐷𝐹1,𝑚−1 > 𝐷1,𝑚−1 𝐺𝑚−2 𝑖𝑓 𝐷𝐹2,𝑚−1

> 𝐷2,𝑚−1 

𝐺𝑚−2 𝑖𝑓 𝐷𝐹3,𝑚−1 > 𝐷3,𝑚−1  𝐺𝑚−2 𝑖𝑓 𝐷𝐹𝑚,𝑚−1 > 𝐷𝑚,𝑚−1 

𝐺𝑚−1 𝑖𝑓 𝐷𝐹1,𝑚 > 𝐷1,𝑚 𝐺𝑚−1 𝑖𝑓 𝐷𝐹1,𝑚 > 𝐷1,𝑚 𝐺𝑚−1 𝑖𝑓 𝐷𝐹1,𝑚 > 𝐷1,𝑚 … 𝐺𝑚−1 𝑖𝑓 𝐷𝐹1,𝑚 > 𝐷1,𝑚  

Otherwise Gm Otherwise Gm Otherwise Gm … Otherwise Gm 

 

4.0   Application 

The developed procedure can be applied in any field; however, data from the Agricultural field were used to 

evaluate the performance of the APPS procedure. Data of ten groups , represented by different yam varieties 

(Adaka, 99/Amo/95a, 99/Amo040,  99/Amo/03, 99/Amo/080, 99/Amo/056, 99/Amo/114, Ame, 99/Amo/060, 

99/Amo/064) were collected from National Root Crops Research Institute (NRCRI) Umudike. Each yam has 

four attributes (discriminating variables) represented as X1=Weight of Yam tuber, X2=Weight of standing yam 

tuber, X3=Tube Length and X4=Tube girth. It comprises of N=30 observed yam tuber with 3 of each variety. 

Data used is presented in Appendix. The basic assumptions of normality and equality of variance among the ten 

groups still holds. 

For the ten groups applied, the number of functions is obtained by combinatorial analysis 

 

(
𝑚

𝑟
) =

𝑚!

𝑟! (𝑚 − 𝑟)!
= (

10

2
) =

10!

2! (10 − 2)!
= 45 

This implies that we would have 45 discriminat functions and there corresponding discriminating values 

representing all possible pairs of group combinations. These functions were not included here due to space. 
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Table 3a: The Allocation Rules are given below 

All Original G1 All Original G2 All Original G3 All Original G4 All Original G5 

𝐺1 i𝑓 𝐷𝐹1,2 > 𝐷1,2 𝐷𝐹2,1 > 𝐷2,1 𝐷𝐹3,1 > 𝐷3,1 𝐷𝐹4,1 > 𝐷4,1 𝐷𝐹5,1 > 𝐷5,1 

𝐺2 𝑖𝑓 𝐷𝐹1,3 > 𝐷1,3 𝐷𝐹2,3 > 𝐷2,3 𝐷𝐹3,2 > 𝐷3,2 𝐷𝐹4,2 > 𝐷4,2 𝐷𝐹5,2 > 𝐷5,2 

𝐺3 𝑖𝑓 𝐷𝐹1,4 > 𝐷1,4 𝐷𝐹2,4 > 𝐷2,4 𝐷𝐹3,4 > 𝐷3,4 𝐷𝐹4,3 > 𝐷4,3 𝐷𝐹5,3 > 𝐷5,3 

𝐺4 𝑖𝑓 𝐷𝐹1,5 > 𝐷1,5 𝐷𝐹2,5 > 𝐷2,5 𝐷𝐹3,5 > 𝐷3,5 𝐷𝐹4,5 > 𝐷4,5 𝐷𝐹5,4 > 𝐷5,4 

𝐺5 𝑖𝑓 𝐷𝐹1,6 > 𝐷1,6 𝐷𝐹2,6 > 𝐷2,6 𝐷𝐹3,6 > 𝐷3,6 𝐷𝐹4,6 > 𝐷4,6 𝐷𝐹5,6 > 𝐷5,6 

𝐺6 𝑖𝑓 𝐷𝐹1,7 > 𝐷1,7 𝐷𝐹2,7 > 𝐷2,7 𝐷𝐹3,7 > 𝐷3,7 𝐷𝐹4,7 > 𝐷4,7 𝐷𝐹5,7 > 𝐷5,7 

𝐺7 𝑖𝑓 𝐷𝐹1,8 > 𝐷1,8 𝐷𝐹2,8 > 𝐷2,8 𝐷𝐹3,8 > 𝐷3,8 𝐷𝐹4,8 > 𝐷4,8 𝐷𝐹5,8 > 𝐷5,8 

𝐺8 𝑖𝑓 𝐷𝐹1,9 > 𝐷1,9 𝐷𝐹2,9 > 𝐷2,9 𝐷𝐹3,9 > 𝐷3,9 𝐷𝐹4,9 > 𝐷4,9 𝐷𝐹5,9 > 𝐷5,9 

𝐺9 𝑖𝑓 𝐷𝐹1,10 > 𝐷1,10 𝐷𝐹2,10 > 𝐷2,10 𝐷𝐹3,10 > 𝐷3,10 𝐷𝐹4,10 > 𝐷4,10 𝐷𝐹5,10 > 𝐷5,10 

Otherwise G10 Otherwise G10 Otherwise G10 Otherwise G10 Otherwise G10 

 

Table 3b: The Allocation Rules are given below Cont’d 

All Original G6 All Original G7 All Original G8 All Original G9 All Original G10 

𝐺1 𝑖𝑓 𝐷𝐹6,1 > 𝐷6,1 𝐷𝐹7,1 > 𝐷7,1 𝐷𝐹8,1 > 𝐷8,1 𝐷𝐹9,1 > 𝐷9,1 𝐷𝐹10,1 > 𝐷10,1 

𝐺2 𝑖𝑓 𝐷𝐹6,2 > 𝐷6,2 𝐷𝐹7,2 > 𝐷7,2 𝐷𝐹8,2 > 𝐷8,2 𝐷𝐹9,2 > 𝐷9,2 𝐷𝐹10,2 > 𝐷10,2 

𝐺3 𝑖𝑓 𝐷𝐹6,3 > 𝐷6,3 𝐷𝐹7,3 > 𝐷7,3 𝐷𝐹8,3 > 𝐷8,3 𝐷𝐹9,3 > 𝐷9,3 𝐷𝐹10,3 > 𝐷10,3 

𝐺4 𝑖𝑓 𝐷𝐹6,4 > 𝐷6,4 𝐷𝐹7,4 > 𝐷7,4 𝐷𝐹8,4 > 𝐷8,4 𝐷𝐹9,4 > 𝐷9,4 𝐷𝐹10,4 > 𝐷10,4 

𝐺5 𝑖𝑓 𝐷𝐹6,5 > 𝐷6,5 𝐷𝐹7,5 > 𝐷7,5 𝐷𝐹8,5 > 𝐷8,5 D𝐹9,5 > 𝐷9,5 DF10,5 > D10,5 

G6 if DF6,7 > D6,7 DF7,6 > D7,6 DF8,6 > D8,6 DF9,6 > D9,6 DF10,6 > D10,6 

G7 if DF6,8 > D6,8 DF7,8 > D7,8 DF8,7 > D8,7 DF9,7 > D9,7 DF10,7 > D10,7 

G8 if DF6,9 > D6,9 DF7,9 > D7,9 DF8,9 > D8,9 DF9,8 > D9,8 DF10,8 > D10,8 

G9 if DF6,10 > D6,10 DF7,10 > D7,10 DF8,10 > D8,10 DF9,10 > D9,10 DF10,9 > D10,9 

Otherwise G10 Otherwise G10 Otherwise G10 Otherwise G10 Otherwise G10 
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Table 4: The classification Table 

Predicted Group 

 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 

 G1 1 0 0 0 1 0 0 0 0 1 

G2 0 2 0 0 0 0 1 0 0 0 

G3 0 0 3 0 0 0 0 0 0 0 

G4 0 0 2 1 0 0 0 0 0 0 

G5 0 0 0 0 2 0 0 0 0 0 

G6 0 0 0 0 0 3 0 0 0 0 

G7 0 0 0 0 0 0 3 0 0 0 

G8 0 0 0 0 0 0 0 3 0 0 

G9 0 0 0 0 0 0 0 0 3 0 

G10 0 0 0 0 0 0 2 0 0 1 

 

Accuracy Rate (AR) =
1+2+3+1+2+3+3+3+3+1

30
=

22

30
= 0.733 ∗ 100 = 73.33%  

The Accuracy Rate (AR) calculated above from table 8, gave 73.33% correct classification. 

 

 

 

 

Table 5: Result from the Conventional Fishers Method 

Classification Results 

  

Group 

Predicted Group Membership 

Total   1 2 3 4 5 6 7 8 9 10 

Original Count 1 2 0 0 0 0 1 0 0 0 0 3 

2 0 3 0 0 0 0 0 0 0 0 3 

3 1 1 1 0 0 0 0 0 0 0 3 

4 1 0 0 1 0 0 0 0 0 1 3 

5 0 0 0 1 1 0 0 0 1 0 3 

6 0 0 0 0 0 3 0 0 0 0 3 

7 0 0 0 0 1 0 0 0 1 1 3 

8 0 0 0 0 0 0 0 3 0 0 3 

9 0 1 0 1 1 0 0 0 0 0 3 

10 0 0 1 0 0 0 0 0 0 2 3 

% 1 66.7 .0 .0 .0 .0 33.3 .0 .0 .0 .0 100.0 

2 .0 100.0 .0 .0 .0 .0 .0 .0 .0 .0 100.0 

3 33.3 33.3 33.3 .0 .0 .0 .0 .0 .0 .0 100.0 

4 33.3 .0 .0 33.3 .0 .0 .0 .0 .0 33.3 100.0 

5 .0 .0 .0 33.3 33.3 .0 .0 .0 33.3 .0 100.0 

6 .0 .0 .0 .0 .0 100.0 .0 .0 .0 .0 100.0 

7 .0 .0 .0 .0 33.3 .0 .0 .0 33.3 33.3 100.0 

8 .0 .0 .0 .0 .0 .0 .0 100.0 .0 .0 100.0 

9 .0 33.3 .0 33.3 33.3 .0 .0 .0 .0 .0 100.0 

10 .0 .0 33.3 .0 .0 .0 .0 .0 .0 66.7 100.0 

a. 53.3% of original grouped cases correctly classified. 
 
Interpretation: Table 9 above gave 53.3% correct classification.  
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5.0   Findings 

The new procedure developed as applied in the classification of ten groups of yam species, the result gave 

73.33% correct classification. Furthermore, when it was compared with the result of Fisher’s method which gave 

53.3% correct classification, it was found to be better. Having carefully considered and implemented the 

procedure suggested in this work, it could be observed that when available groups are many, it is better to 

consider and carry out evaluation in pairs. The “pairs” ensures that possible error resulting from combining the 

many groups simultaneously is avoided. It also ensures that every possible pairs are considered appropriately 

since statistically accepted allocation rule makes provision for accommodating only two groups at a time. 

6.0   Summary 

The procedure suggested and presented in this work undoubtedly has shown considerable and better performance 

when compared with its conventional Fishers procedure. The suggested procedure would be a dependable and 

alternative tool in situation where we have multiple groups and intends to discriminate and allocate. It would 

also assuredly overcome the problem of sample size because even with a small sample, its performance was 

fairly outstanding. The procedure is based on mathematical acceptable concepts and has in no way violated or 

deviated from known and important statistical principles. The procedure though may look cumbersome but 

carefully written computer programs would make the procedure more appreciable in terms of speed and 

accuracy.  

7.0   Conclusion 

When we have multiple groups, the conventional procedure only provides a method that exists in theory but 

contradictory in practice. It has been observed and hence suggested that with multiple groups, higher accuracy in 

discrimination and allocation of observation can be enhanced by adopting the procedure suggested in this work. 

Application of this procedure is not only limited to the Agricultural settings but to every area where 

discrimination and allocation is desired. 

 

8.0 References 

Allwein, E. L., Schapire, R. E. & Singer, Y. (2000). ‘Reducing Multiclass to Binary: A Unifying  Approach for 

Margin Classifiers’. JMLR 1:113–141. 

Anderson, J. A. (1972) Separate Sample Logistic Discrimination. Biometrika, 59, 19-35. 

Breiman, L. (1996) Bagging Predictors. Machine Learning, 24:123{140, 1996. 

Breiman, L. (1998) Arcing classifiers. Annals of Statistics, 26:801{824, 1998. 

David, H. (1996). Error-Rate Estimation in Multiple-Group Linear Discriminant  Analysis. Technometrics, 4(38), 

389-399 

Daniela, M. & Tibshirani, R. (2011) Penalized Classification using Fishers’ Linear  Discriminant. Journal 

of the American Royal Statistical Society, Series B  (Statistical  Methodology) Vol. 73, No. 5 

(November, 2011) pp. 753-772 

Dietterich, T. G. &  Bakiri, G. (1995). ‘Solving Multiclass Learning Problems via Error- Correcting Output 

Codes’. Journal of Artificial Intelligence Research 2:263–286. 

Ekezie, D. D.(2013). Principal Component Analysis, an Aid to Interpretation of Data. A Case  Study of Oil 

Palm (Elaeis guineensis jacq). Journal of Emerging Trends in Engineering  and  Applied Sciences, 

4(2), 237-241. 

 

Fisher, R. A. (1936). The Use of Multiple Measurements in Taxonomic Problems. Ann.  Eugenics, 7 (1936): 

179-188 

Fisher, R. A. (1940). The Precision of Discriminant Functions. Ann. Eugenics, 10, (1940): 422- 429  

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.10, 2015 

 

123 

Freund, Y. & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and  an application 

to boosting. Journal of computer and system sciences, 55:119-139, 1997. 

Fukunaga, F. (1990). Introduction to statistical pattern recognition. Academic Press. 

Hastie, T. & Tibshirani, R. (1998). ‘Classification by Pairwise Coupling’. In M. I. Jordan, M. J.  Kearns, & S. 

A. Solla (eds.), Advances in Neural Information Processing  Systems, vol.  10.The MIT Press.   

Kwon, Y. S., Han, I. G. & Lee, K. C. (1997). Ordinal Pairwise Partitioning approach to  Neural  Networks 

Training in Bond Rating. Intelligent Systems in Accounting Finance and  Management, Vol. 6, pp. 23-40, 

1997. 

Kyung, S. L., Sung, W. C. & Dong, W. L.(2004). A Study on Solving Multi-Group  Classification 

Problems. Proceedings of ICAD2004, The Third International Conference  on Axiomatic Design, Seoul-

June 21-24, 2004. 

Lesaffre, E. & Albert, A. (1989). Multiple-Group Logistic Regression Diagnostics. Journal  of  the Royal 

Statistical Society, Series C (Applied Statistics), Vol. 38, No. 3 (1989), pp.  425-440 

Onyeagu, S. I., Osuji, G. A. and Onyia, O. M. (2014). Comparison of Canonical Correlation  Analysis and 

the Generalized Canonical Correlation Analysis using the Lognormal and  Cauchy Distributed Data. 

Journal of Mathematical Theory and Modelling, 5(4), 177-185 

Ramaswamy, S., Tamayo, P., Rifkin, R., Mukherjee, S., Yeang, C., Angelo, M., Ladd,  M.,  Lander, E. 

and Golub, T. (2011) Multiclass Cancer diagnosis using Tumor gene  expression  signature. Proc. Natn. 

Acad. Sci. USA, 98, 15149-15154 

Tao, L., Shenghou, Z. & Mitsunori,O. (2006). Using Discriminant Analysis for Multi-class Classification: An 

Experimental Investigation. Knowledge and Information Systems,  Vol. 10, Issue 4, (November, 2006) pp. 

453-472 

Platt, J. C., Cristianini, N. & Taylor, S. J. (2000). ‘Large Margin DAGs for Multiclass  Classification’. In S. 

Solla, T. Leen, & K. R. Muller (eds.), Advances in Neural  Information  Processing Systems, vol. 12. 

MIT Press.  

Sandrine, D., Jane, F., & Terence, P. S. (2000). Comparison of Discrimination Methods for the  Classification 

of Tumors Using Gene Expression Data. Technical Report #576,  Department  of Statistics, 

University of California, Berkely, June, 2000. 

Vark, G. N. & Sman, P. G. M. (1982). New Discrimination and Classification Techniques in Anthropological 

Practice. Zietschrift fur Morphologie und  Anthropologie, Bd. 73, H. 1 (January 1982), pp. 21-36 

Vapnik, V. N. (1998). Statistical Learning Theory. Wiley, New York. 

Xu, P., Brock, G. & Parrish, R. (2009). Modified Linear Discriminant Analysis approaches for  Classification 

of high-dimensional microarray data. Computnl. Statist. Data Anal.; 53, 1674-1687 

 

http://www.iiste.org/


The IISTE is a pioneer in the Open-Access hosting service and academic event management.  

The aim of the firm is Accelerating Global Knowledge Sharing. 

 

More information about the firm can be found on the homepage:  

http://www.iiste.org 

 

CALL FOR JOURNAL PAPERS 

There are more than 30 peer-reviewed academic journals hosted under the hosting platform.   

Prospective authors of journals can find the submission instruction on the following 

page: http://www.iiste.org/journals/  All the journals articles are available online to the 

readers all over the world without financial, legal, or technical barriers other than those 

inseparable from gaining access to the internet itself.  Paper version of the journals is also 

available upon request of readers and authors.  

 

MORE RESOURCES 

Book publication information: http://www.iiste.org/book/ 

Academic conference: http://www.iiste.org/conference/upcoming-conferences-call-for-paper/  

 

IISTE Knowledge Sharing Partners 

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open 

Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek 

EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library , NewJour, Google Scholar 

 

 

http://www.iiste.org/
http://www.iiste.org/journals/
http://www.iiste.org/book/
http://www.iiste.org/conference/upcoming-conferences-call-for-paper/

