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Introduction: Let E be a real Banach space and let 𝐽 denote the normalized duality mapping 

from 𝐸 to 𝐸∗ and defined by   

 𝐽(𝑥) = {𝑓 ∈ 𝐸∗: ⟨𝑥, 𝑓⟩ = ‖𝑥‖‖𝑓‖, ‖𝑥‖ = ‖𝑓‖};  for all 𝑥 ∈  𝐸, 

Where 𝐸∗denotes the dual space of E and ⟨ . , . ⟩ denotes the generalization duality pair. 

It is well known that if 𝐸∗ is strictly convex then J is single–valued.  In the sequel, we shall 

denote the single–valued duality mapping by j.  Let 𝐾 be a nonempty closed convex subset of 

Banach space E and T: K → 𝐾 be a self-mapping of 𝐾. 

Definition 1.1 [1] (i) A mapping T with domain D(T) and range R(T) in a Banach space is 

called pseudocontrative mapping, if for all x, y ∈  D(T), there exists 𝑗(𝑥 − 𝑦)  ∈  𝐽(𝑥 − 𝑦) 

such that 

⟨ 𝑇𝑥 − 𝑇𝑦, 𝑗(𝑥 − 𝑦) ⟩ ≤ ‖𝑥 − 𝑦‖2        (1) 

(ii) A mapping T with domain D(T) and range R(T) in E is called a hemicontrative  mapping 

if 

F (T)≠  ∅ and for all x ∈ D(T) 𝑥∗ ∈ F (T) such that, 

⟨ 𝑇𝑥 − 𝑥∗ , 𝑗(𝑥 − 𝑥∗ ) ⟩ ≤ ‖𝑥 − 𝑥∗ ‖2 

(iii) A mapping T: K→ 𝐾 is called L-Lipschitizan there exists L>0 such that 

‖𝑇𝑥 − 𝑇𝑦‖ ≤ 𝐿‖𝑥 − 𝑦‖  For all x, y ∈ K 
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Definition 1.2 [3] If  {∝𝑛}n=0
∞  and   are sequences of real numbers in [0,1].  For arbitrary 𝑥0 ∈ E, Let 

  {𝑥𝑛}n=0
∞  be the Noor iteration and defined by, 

    𝑥𝑛+1=(1 −∝𝑛)𝑥𝑛 +∝𝑛 𝑇𝑞𝑛 

   𝑞𝑛 = (1 − 𝛽𝑛)𝑥𝑛 + 𝛽𝑛𝑇𝑟𝑛 

   𝑟𝑛 = (1 − 𝛽𝑛)𝑥𝑛 + 𝛽𝑛𝑇𝑟𝑛 

Where  {∝𝑛}n=0
∞  , {𝛽𝑛}n=0

∞   and {𝑟𝑛}n=0
∞  are sequences of real numbers in [0, 1]. 

Lemma 1.3 [2]  Let E be a real uniformly convex Banach space, K is nonempty closed 

convex subset of E and T a continuous pseudocontrative mapping of K, then 𝐼 − 𝑇 is 

demiclosed at zero, that is, for all sequences  {𝑥𝑛} ⊂K with 𝑥𝑛 ⇀ 𝑝 and 𝑥𝑛 − 𝑇𝑥𝑛 → 0 it follows 

that p = Tp 

Lemma 1.4 [4,5]  Let 𝛿 be a number satisfying 0≤ 𝛿 < 1 and {∈𝑛} a positive sequence 

satisfying lim𝑛→∞ ∈𝑛= 0.  Then, for any positive sequence {𝑢𝑛} satisfying: 

𝑢𝑛+1   ≤ 𝛿𝑢𝑛   +∈𝑛 ,It follows that lim𝑛→∞𝑢𝑛 = 0 

2. Main Results 

Theorem 2.  Let   {𝑇𝑛}n=1
∞  be defined as above and F: = ⋂ 𝐹(𝑇𝑛)≠

∞
𝑖=1 𝜙 and let (E,∥. ∥) be a 

Banach space, T: E → E  a self map of E with a fixed point p, satisfying the contractive 

condition  

⟨ 𝑇𝑥 − 𝑥∗ , 𝑗(𝑥 − 𝑥∗ ) ⟩ ≤ ‖𝑥 − 𝑥∗ ‖2 For 𝑥0 ∈ 𝐸.  

Let   {𝑥𝑛}n=1
∞   is converge to p and defined by the iteration (1.2) where {∝𝑛}n=1

∞    is a real sequence 

in (0, 1) and define as  ∈𝑛=∥ 𝑥𝑛+1 – (1 −∝𝑛)𝑥𝑛 −∝𝑛 𝑇𝑞𝑛 ∥  Then 

(i) lim𝑛→∞ ∥ 𝑥𝑛 − 𝑝 ∥exists for  p ∈ F ; 

(ii) lim𝑛→∞d(𝑥𝑛, 𝐹) = {𝑖𝑛𝑓 ∥ 𝑥𝑛 − 𝑝 ∥: 𝑝 ∈  𝐹} ; 

(iii) {𝑥𝑛} converges strongly to a common fixed point of  {𝑇𝑛}n=1 
∞ if and only if 

lim𝑛→∞d(𝑥𝑛, 𝐹) = 0 

 

Proof Let 𝑝 ∈  𝐹 and n≥ 1 by 1.1 we choose 𝑗(𝑥𝑛 − 𝑝 ) ∈ 𝐽(𝑥𝑛 − 𝑝 ) such that 

 

∥ 𝑥𝑛+1 − 𝑝 ∥2= ⟨𝑥𝑛+1 − 𝑝 , 𝑗(𝑥𝑛+1 − 𝑝)⟩ 
 

∥ 𝑥𝑛+1 − 𝑝 ∥  ≤ ∥ 𝑥𝑛+1 − (1 −∝𝑛)𝑥𝑛   −∝𝑛 𝑇𝑞𝑛 ∥ + ∥ (1 −∝𝑛)𝑥𝑛   + ∝𝑛 𝑇𝑞𝑛 − 𝑝 ∥ 

 

 =  ∈𝑛 +∥ (1 −∝𝑛)𝑥𝑛 +∝𝑛 𝑇𝑞𝑛 – ((1 −∝𝑛) +∝𝑛)𝑝 ∥ 

 

= ∈𝑛 +∥ (1 −∝𝑛) ∥ 𝑥𝑛 − 𝑝 ∥ +∝𝑛 ( 𝑇𝑞𝑛 − 𝑝) ∥ 

 

≤ ∈𝑛+ (1 −∝𝑛) ∥ 𝑥𝑛 − 𝑝 ∥ +∝𝑛∥  𝑇𝑞𝑛 − 𝑝 ∥ 
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 = ∈𝑛+ (1 −∝𝑛) ∥ 𝑥𝑛 − 𝑝 ∥ +∝𝑛∥  𝑝 − 𝑇𝑞𝑛 ∥ 

 

≤ ∈𝑛+ (1 −∝𝑛) ∥ 𝑥𝑛 − 𝑝 ∥ +∝𝑛 𝑎 ∥  𝑝 − 𝑞𝑛 ∥ 

 

= ∈𝑛+ (1 −∝𝑛) ∥ 𝑥𝑛 − 𝑝 ∥ +∝𝑛 𝑎 ∥  𝑞𝑛 − 𝑝 ∥       (1)  

 

For the estimate of ∥ 𝑞𝑛 − 𝑝 ∥ in (1) we get  

 

∥  𝑞𝑛 − 𝑝 ∥ = ∥ (1 − 𝛽𝑛)𝑥𝑛 + 𝛽𝑛𝑇𝑟𝑛 − 𝑝 ∥ 

 

= ∥ (1 − 𝛽𝑛)𝑥𝑛 + 𝛽𝑛𝑇𝑟𝑛 − ((1 − 𝛽𝑛) + 𝛽𝑛)𝑝 ∥ 

 

= ∥ (1 − 𝛽𝑛) (𝑥𝑛 − 𝑝) + 𝛽𝑛(𝑇𝑟𝑛 − 𝑝) ∥ 

 

≤ (1 − 𝛽𝑛) ∥ 𝑥𝑛 − 𝑝 ∥ +𝛽𝑛 ∥ 𝑇𝑟𝑛 − 𝑝 ∥ 

 

= (1 − 𝛽𝑛) ∥ 𝑥𝑛 − 𝑝 ∥ +𝛽𝑛 ∥ 𝑝 − 𝑇𝑟𝑛 ∥ 

 

≤ (1 − 𝛽𝑛) ∥ 𝑥𝑛 − 𝑝 ∥ +𝛽𝑛𝑎 ∥ 𝑝 − 𝑟𝑛 ∥ 

 

=  (1 − 𝛽𝑛) ∥ 𝑥𝑛 − 𝑝 ∥ +𝛽𝑛𝑎 ∥ 𝑟𝑛 − 𝑝 ∥        (2)  

 

 Substituting (2) into (1) gives 

∥ 𝑥𝑛+1 − 𝑝 ∥≤  ∈𝑛+ (1 − (1 − 𝑎) ∝𝑛−∝𝑛 𝛽𝑛𝑎) ∥ 𝑥𝑛 − 𝑝 ∥ +∝𝑛 𝛽𝑛𝑎2 ∥ 𝑟𝑛 − 𝑝 ∥   (3)  

 

For ∥ 𝑟𝑛 − 𝑝 ∥ in (3) we have, 

 

 ∥ 𝑟𝑛 − 𝑝 ∥ = ∥ (1 − 𝛾𝑛)𝑥𝑛 + 𝛾𝑛𝑇𝑥𝑛   − 𝑝 ∥  

 

                      = ∥ (1 − 𝛾𝑛)𝑥𝑛 + 𝛾𝑛𝑇𝑥𝑛   ((1 − 𝛾𝑛) + 𝛾𝑛) − 𝑝 ∥  

 

 =  ∥ (1 − 𝛾𝑛)(𝑥𝑛 − 𝑝) + 𝛾𝑛(𝑇𝑥𝑛   − 𝑝) ∥  

 

 ≤ (1 − 𝛾𝑛) ∥ 𝑥𝑛 − 𝑝 ∥ +𝛾𝑛 ∥ 𝑇𝑥𝑛 − 𝑝 ∥ 

 

  =  (1 − 𝛾𝑛) ∥ 𝑥𝑛 − 𝑝 ∥ +𝛾𝑛 ∥  𝑝 − 𝑇𝑥𝑛   ∥ 

 

 ≤ (1 − 𝛾𝑛) ∥ 𝑥𝑛 − 𝑝 ∥ +𝛾𝑛𝑎 ∥  𝑝 − 𝑥𝑛  ∥ 

 = (1 − 𝛾𝑛 + 𝛾𝑛𝑎) ∥ 𝑥𝑛 − 𝑝 ∥        (4)  

 

Substituting (4) into (3) and using lemma 1.3  

 

 = ∈𝑛+ (1 − (1 − 𝑎) ∝𝑛−∝𝑛 𝛽𝑛𝑎)  ∥ 𝑥𝑛 − 𝑝 ∥ +∝𝑛 𝛽𝑛𝑎2(1 − 𝛾𝑛 + 𝛾𝑛𝑎) ∥ 𝑥𝑛 −

𝑝 ∥ 

= ∈𝑛 (1 − (1 − 𝑎) ∝𝑛− (1 − 𝑎) ∝𝑛 𝛽𝑛𝑎 − (1 − 𝑎) ∝𝑛 𝛽𝑛𝛾𝑛𝑎2 )  ∥ 𝑥𝑛 − 𝑝 ∥ 

≤ (1 − (1 − 𝑎)𝛼 − (1 − 𝑎)𝛼𝛽𝑎 − (1 − 𝑎)𝛼𝛽𝛾𝑎2) ∥ 𝑥𝑛−1 − 𝑝 ∥ + ∈𝑛 
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 Observe that 

                 0≤ (1 − (1 − 𝑎)𝛼 − (1 − 𝑎)𝛼𝛽𝑎 − (1 − 𝑎)𝛼𝛽𝛾𝑎2) < 1    (5)  

Therefore, taking the limit as 𝑛 → ∞ of both sides of the inequality (5) and using lemma 1.6 we get  

lim𝑛→∞ ∥ 𝑥𝑛 − 𝑝 ∥ = 0,  That is lim𝑛→∞𝑥𝑛=𝑝 

By theorem 1.2  ∥ 𝑥𝑛 − 𝑝 ∥≤∥ 𝑥𝑛−1 − 𝑝 ∥ 

Taking infimum over all 𝑝 ∈ 𝐹,we have,  

𝑑(𝑥𝑛, 𝐹) = ∥ 𝑥𝑛 − 𝑝 ∥≤ ∥ 𝑥𝑛−1 − 𝑝 ∥𝑝∈𝐹
𝑖𝑛𝑓

𝑝∈𝐹
𝑖𝑛𝑓

= 𝑑(𝑥𝑛−1, 𝐹), 

Thus lim𝑛→∞ 𝑑(𝑥𝑛, 𝐹)exist.We finally prove (iii).suppose that 𝑥𝑛 → 𝑝 ∈ 𝐹 from (ii) and  

 𝑑(𝑥𝑛, 𝐹) ≤∥ 𝑥𝑛 − 𝑝 ∥→ 0, We have lim𝑛→∞ 𝑑(𝑥𝑛, 𝐹) = 0 for n, m ∈ ℕ and 𝑝 ∈ 𝐹,it follows  

From (1.3) that   

∥ 𝑥𝑛+𝑚 − 𝑥𝑛 ∥≤∥ 𝑥𝑛+𝑚 − 𝑝 ∥ +∥ 𝑥𝑛 − 𝑝 ∥≤ 2 ∥ 𝑥𝑛 − 𝑝 ∥ 

Consequently, 

∥ 𝑥𝑛+𝑚 − 𝑥𝑛 ∥≤ 2 ∥ 𝑥𝑛 − 𝐹 ∥→ 0 

Therefore {𝑥𝑛} is a Cauchy sequence. Suppose lim𝑛→∞𝑥𝑛 = 𝑢 for some 𝑢 ∈ 𝐸.then  

𝑑(𝑢, 𝐹) = lim𝑛→∞𝑑(𝑥𝑛, 𝐹) = 0 

Since F is closed set,  𝑢 ∈ 𝐹  

So, Noor iteration process is T –stable. 

 

Thus, the stability of Noor iteration considerable for finding fixed point for enumerable class 

of continuous hemi contractive mapping in Banach spaces. 
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