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Abstract 

The convex optimization problems of the form, 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 {𝑓(𝑥)|𝑥 ∈ 𝑋} 
can be transformed to their dual problems, called Lagrange dual problems, which help to solve the 

main problem. First, with the dual problem, one can determine lower bounds for the optimal value of 

the original problem. Again, under certain conditions, the solutions of both problems are equal (strong 

duality). In this case the dual problem often offers an easier and clear analytical approach to the 

solution. In this paper, we focus on the mechanics of Lagrange duality, its relation to primal and dual 

problems. A technique of proving strong duality via slater’s constraint qualification is presented with 

particular application to baking factory in Abakaliki. 

1. Introduction 

In constrained optimization,                                                           

 Minimize   𝑓(𝑥) 

 Subject to 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, ⋯ , 𝑚 

   ℎ𝑖(𝑥) = 0, 𝑖 = 1, ⋯ , 𝑝                    (1) 

It is often possible to convert the original form of optimization problem (1) known as the primal 

problem to a dual form which is termed a dual problem. Duality is a powerful and widely employed 

tool in applied mathematics for a number of reasons.  First, the dual program is always convex even if 

the primal is not.  Second, the number of variables in the dual is equal to the number of constraints in 

the primal which is often less than the number of variables in the primal program. Third, the maximum 

value achieved by the dual problem is often equal to the minimum of the primal. Usually dual problem 

refers to the Lagrangian dual problem. The Lagrangian dual problem is obtained by using nonnegative 

Lagrange multipliers to add to the constraints to the cost function, and the solving for some primal 

variable values that minimize the lagrangian. This solution gives the primal variables as function of 

the Lagrange multipliers, which are called dual variables, so that the new problem is to maximize the 

objective function with respect to the dual variables under the derived constraints on the dual 

variables. 

 

In general the optimal values of the primal and dual problems need not be equal the difference is 

called duality gap. For convex optimization problems the duality gap is zero under constraint 

qualification condition. Thus a solution to the dual provides a bound on the value of the solution to the 

primal problem. Essentially, the Lagrangian function is a linear combination of cost function and 

constraint function. Thus, the minimization problem (1) is of the structure, 

𝐿(𝑥, 𝜆, 𝑣) = 𝑓(𝑥) + ∑ 𝜆𝑖
𝑚
𝑖=1 𝑔𝑖(𝑥) + ∑ 𝑣𝑖

𝑝
𝑖=1 ℎ𝑖(𝑥)            (2) 

Thereby reducing a constrained problem to an unconstrained problem. 

1.1 Literature Review 

Duality is one of the oldest and most fruitful ideas in mathematics. Survey of its history has shown 

how it has constantly been generalized. Duality in mathematics is not a theorem, but a “principle”. It 

has a simple origin, it is very powerful and useful, and has a long history going back hundreds of 

years. Over time it has been adopted and modified and so can still use it in novel situations. It appears 

in many subjects in mathematics (geometry, algebra and analysis).Fundamentally, duality gives two 
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different points of view of looking at the same object (Frenkel et al, 2001; Pólik, and Terlaky, 2007; 

Shapiro and Nemirovskii, 2003; Ramana,M.V. 1997; Shapiro and Scheinberg, 2000). 

George et al (1997) maintained that Linear programming (LP or linear optimization) is a mathematical 

method for determining a way to achieve the best outcome (such as maximum profit or lowest cost) in 

a given mathematical model for some list of requirements represented as linear relationships. More 

formally, linear programming is a technique for the optimization of a linear objective subject to linear 

equality and linear inequality constraints. The feasible set of LP is called a convex polyhedron, which 

is a set defined as the intersection of finitely many half spaces (Ben-Israel et al, 1981).  

According to Stephen Wright (1997), Alizadeh et al (1998) and Gonzalez-Lima et al (2009), primal-

Dual interior- points methods, given any linear program, there is another related linear program called 

the dual, which provides an upper bound to the optimal value of the primal problem. In a matrix form, 

we can express the primal problem as  

Maximize 𝑐𝑇𝑥 subject to 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0 with the corresponding symmetric dual problem, 

Minimize 𝑏𝑇𝑦 subject to 𝐴𝑇𝑦 ≥ 𝑦, 𝑦 ≥ 0. 

However, Michael J. Toad (2002) in his survey paper “The many facets of linear programming” says 

there are two ideas fundamental to duality theory. According to him, one is the fact that (for the 

symmetric dual) the dual of a dual linear program is the original primal linear program. Secondly, 

every feasible solution for a linear program gives a bound on the optimal value of the objective of its 

dual. Both Verma A. P.  (2006) and, Vandenberghe and Boyd (1995) in their respective works state 

that if the primal or dual has a finite optimal solution, then the other one also possesses the same with 

equal optimal values of the objective functions. 

Boyd and Vandenberghe (2009) in their textbook defined convex optimization as a special class of 

mathematical optimizing problems, which includes least-squares and linear programming problems. 

While the mathematics of convex optimization has been studied for about a century, several related 

recent developments have stimulated new interest in the topic. The first is the recognition that interior-

points methods, developed in 1980 to solve linear programming problems; can be used to solve 

convex optimization problems. The second development is the discovery that convex optimization 

problems were more prevalent in practice than was previously thought (Jeyakumar and Li, 2009). 

Since 1990 many applications have been discovered in areas such as automatic control system, electric 

circuit design, estimation and signal processing, communications and networks, data analysis and 

modeling, statistics, and finance. There are great advantages to recognizing or formulating a problem 

as convex optimization problem. The most basic advantage is that the problem can be solved, very 

reliably and efficiently using interior-point methods or other special methods for convex 

optimizations. However, Herhenson et al found that solution methods are reliable enough to be 

embedded in a computer-aided design or analysis tool, or even a real-time reactive or automatic 

control system. However, Bertsekas (1999) said they are also theoretical or conceptual advantages of 

formulating a problem as a convex optimization problem. The associated dual problem, for example, 

often has an interesting interpretation in terms of the original problem and sometimes leads to an 

efficient or distributed method of solving it. 

According to Ben-Tac and Nemirovski (2001), mathematical programming deals with optimization 

programs of the form; Minimize 𝑓(𝑥)Subject to 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑚  𝑋 ⊆ ℝn which essentially was 

born in 1948, where George Dantzig inverted linear programming as far as numerical processing of 

programs (P) is concerned, there exists a “solvable case” – the one of the convex optimization 

programs, where the objective 𝑓 and constraints 𝑔𝑖 are convex functions. Under minimal additional 

“computability assumptions” (which are satisfied in basically all applications) a convex optimization 

program is computationally “tractable” “moderately” with the dimensions of the problem and the 

required number of accuracy digits. 
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According to Dimitri et al (2002) in their paper Min Common/Max Crossing Duality, duality in 

optimization is often considered to be a manifestation of a fundamental dual description of a closed 

convex set, as the closure of the union of all line segments connecting the points of the set and the 

intersection of all closed halfspaces containing the set.This is largely true but it is also somewhat 

misleading, because the strongest duality theorems in optimization require assumptions such as the 

Slater condition and other constraint qualifications, whose connection to the dual description of closed 

convex sets is not readily apparent (Pataki G., 2007). As a result, one often observes a dichotomy in 

various developments of optimization duality theory found except perhaps in the eyes of a skilled 

mathematician. For example, the proof of the main duality theorem of linear programming is often 

developed based on Farkas’ lemma (Jeyakumar and Lee, 2008) whose relation with the preceding dual 

closed convex set description is not readily apparent, and in other cases it is developed based on the 

termination properties of the simplex method (Koberstein and Suhl, 2007), with hardly any 

geometrical insight resulting. 

2. Convex Sets 

A set 𝐶 is convex if, for any 𝑥, 𝑦 ∈ 𝐶 and 𝜆 ∈ ℝ with 0 ≤ 𝜆 ≤ 1, 

𝜆𝑥 + (1 − 𝜆)𝑦 ∈ 𝐶.                                      (3) 

Intuitively, this means that if we take any two elements in 𝐶, and draw a line segment between these 

two elements, then every point on that line segment also belongs to 𝐶.  

 

Fig.1: Shows an example of one convex and one non-convex set 

 

2.1  Convex Function 

Convex optimization is centred on the notion of convex function. A function 𝑓: ℝ𝑛 ⟶ 𝑅 is convex if 

its domain (denoted 𝐷(𝑓)) is a convex set, and for all 𝑥, 𝑦 ∈ 𝐷(𝑓) and 𝛼 ∈ ℝ, 0 ≤ 𝛼 ≤ 1, 
 𝑓(𝛼𝑥 + (1 − 𝛼)𝑦) ≤ 𝛼𝑓(𝑥) + (1 − 𝛼)𝑓(𝑦)     (4) 

The way to think about this definition is that if we pick any two points on the graph of a convex 

function and draw a straight line between them, then the portion of the function between these two 

points will lie below this straight line. 

3. Convexity and Differentiability 

3.1 First Order condition for convexity 

Theorem1 : Suppose 𝑆 is a non-empty open convex set and 𝑓(𝑥): S ⟶ ℝ is differentiable (that is, the 

gradient 𝛻𝑥𝑓(𝑥) exists at all points 𝑥 in the domain of 𝑓. Then 𝑓(𝑥) is convex function if and only if 

𝑓(𝑥) satisfy the following gradient inequality 

𝑓(𝑦) ≥ 𝑓(𝑥) + 𝛻𝑥𝑓(𝑥)𝑇(𝑦 − 𝑥).    for all 𝑥, 𝑦𝜖𝑆           (5) 

 

The function 𝑓(𝑥) + 𝛻𝑥𝑓(𝑥)𝑇(𝑦 − 𝑥) is called first-order approximation to the function 𝑓 at the point 

𝑥. This can be thought of as approximating 𝑓 with its tangent line at the point 𝑥. The first order 

condition for convexity says that 𝑓 is convex if and only if the tangent line is a global under-estimator 

of the function 𝑓. In other words, if we take our function and draw a tangent line at any point, then 

every point on this line will lie below the corresponding point on 𝑓. 

Proof: Suppose 𝑓(𝑥) is convex, then ∀ 𝛼 ∈ [0,1], 

𝑓(𝛼𝑦 + (1 − 𝛼)𝑥) ≤ 𝛼𝑓(𝑦) + (1 − 𝛼)𝑓(𝑥) this implies 

𝑓(𝑥 + 𝛼(𝑦 − 𝑥) − 𝑓(𝑥)

𝛼
≤  𝑓(𝑦) − 𝑓(𝑥) 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.9, 2015 

 

30 

Letting 𝛼 → 0    𝛻𝑓(𝑥)𝑡(𝑦 − 𝑥) ≤ 𝑓(𝑦) − 𝑓(𝑥) 

   ∴ 𝛻𝑓(𝑥)𝑡(𝑦 − 𝑥) + 𝑓(𝑥) ≤ 𝑓(𝑦) establishes the ‘‘only if ‘’ part. 

 Now suppose that the gradient inequality holds for all 𝑥, 𝑦 ∈ 𝑆. Let 𝑊 and 𝑍 be any two points 

in 𝑆. Let 𝛼 ∈ [0,1], and set 𝑥 = 𝛼𝑤 + (1 − 𝛼)𝑧. 

Then, 𝑓(𝑤) ≥ 𝑓(𝑥) + 𝛻𝑓(𝑥)𝑡(𝑤 − 𝑥) and 𝑓(𝑧) ≥ 𝑓(𝑥) + 𝛻𝑓(𝑥)𝑡(𝑧 − 𝑥)      

Taking the convex combination of the above inequalities we obtain  

𝛼𝑓(𝑤) + (1 − 𝛼)𝑓(𝑧) ≥ 𝑓(𝑥) + 𝛻𝑓(𝑥)𝑡(𝛼(𝑤 − 𝑥) + (1 − α)(𝑧 − 𝑥) 

Expanding the coefficient of 𝛻𝑓(𝑥)𝑡, we have  

𝛼𝑤 − 𝛼𝑥 + 𝑧 − 𝑥 − 𝛼𝑧 + 𝛼𝑥 

                                               = 𝛼𝑤 + 𝑧 − 𝑥 − 𝛼𝑧. Recall that  𝑥 = 𝛼𝑤 + (1 − 𝛼)𝑧. 

We have therefore, 𝛼𝑤 + 𝑧 − 𝛼𝑤 − 𝑧 +  𝛼𝑧 − 𝛼𝑧 = 0 

∴ 𝛼𝑓(𝑤) + (1 − 𝛼)𝑓(𝑧) ≥ 𝑓(𝑥) + 𝛻𝑓(𝑥)𝑡0 

      = 𝑓(𝑥) 

      = 𝑓(𝛼𝑤 + (1 − 𝛼)𝑧) 

Which shows that 𝑓(𝑥) is convex. 

 

Fig 3: Illustration of first-order condition for convexity 

3.2 Second Order Condition for Convexity 

Theorem 2: Suppose 𝐶 is a non-empty open convex set and  𝑓(𝑥): C ⟶ ℝ is twice differentiable (that 

is, the Hessian 𝛻𝑥
2𝑓(𝑥) is defined for all point 𝑥 in the domain of 𝑓(𝑥)). Let 𝐻(𝑥) denote the Hessian 

of 𝑓(𝑥). Then 𝑓(𝑥) is convex if and only if  𝐻(𝑥) is positive semidefinite for all 𝑥𝜖𝐶. That is,   

𝛻𝑥
2𝑓(𝑥) ≥ 0  for all 𝑥𝜖𝐶 

For a function on ℝ, ( i.e. in one dimension) this reduces to the simple condition 𝑓′′(𝑥) ≥ 0  (and 

dom𝑓 convex) which means that the derivative is non-decreasing. The condition  

𝛻𝑥
2𝑓(𝑥) ≥ 0 can be interpreted geometrically as the requirement that the graph of the function have 

positive (upward) curvature at 𝑥. Observe that;   

 

(a) If  𝛻2𝑓(𝑥)  is positive semi-definite for all 𝑥 ∈ 𝐶, then 𝑓 is convex over 𝐶.  

(b) If  𝛻2𝑓(𝑥)is positive definite for all 𝑥 ∈ 𝐶, then 𝑓 is strictly convex over 𝐶. 

(c) If  𝐶 is open and 𝑓 is is convex over 𝐶, then 𝛻2𝑓(𝑥) is positive semi-definite for all 𝑥 ∈ 𝐶 

Proof: suppose  𝑓(𝑥) is convex. Let �̅� ∈ 𝐶 and 𝑑 be any direction. Then for 𝜆 ≥ 0 sufficiently small 

�̅� + 𝜆𝑑 ∈ 𝐶. We have  
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𝑓(�̅� + 𝜆𝑑) = 𝑓(�̅�) + 𝛻𝑓(�̅�)𝑡(𝜆𝑑) +
1

2
(𝜆𝑑)𝑡H(�̅�)(𝜆𝑑) + ‖𝜆𝑑‖2𝛼(�̅�, 𝜆𝑑), 

Where 𝛼(�̅�, 𝜆𝑑) → 0 as 𝑦 → 0 

Using gradient inequality, we obtain 

 𝜆2(
1

2
𝑑𝑡H(�̅�)𝑑 + ‖𝑑‖2𝛼(�̅�, 𝜆𝑑) ≥ 0 

Dividing by 𝜆2 ≥ 0, and letting 𝜆 → 0, we obtain  

                 

         𝑑𝑡H(�̅�)𝑑 ≥ 0  proving the ‘‘only if ‘’part. 

Conversely, suppose that H(𝑧) is positive definite for all 𝑧 ∈ 𝐶. Let 𝑥, 𝑦 ∈ 𝐶 be arbitrary. Invoking the 

second-order version of the Taylor’s theorem, we have: 

𝑓(𝑦) = 𝑓(𝑥) + ∇𝑓(𝑥)𝑇(𝑦 − 𝑥) +
1

2
(𝑦 − 𝑥)𝑇𝐻(𝑧)(𝑦 − 𝑥) 

For some 𝑧 which is a convex combination of 𝑥 and 𝑦 (and hence 𝑧 ∈ 𝐶). Since H(𝑧) is positive 

semidefinite, the gradient inequality holds, and hence 𝑓 is convex. 

4. Continuity of Convex Functions 

Theorem 4: Let 𝑓: 𝐷 ⊆ ℝ𝑛 → ℝ .  Suppose 𝑓 is convex on 𝐷 where 𝐷 is non-empty, open and convex 

then 𝑓  is continuous on 𝐷. 

Proof:  The set 𝐷 is open ⇒ ∀ 𝑥 ∈ 𝐷 ∃ 𝑟 > 0:   𝐵(𝑥, 𝑟) ⊂ 𝐷. 

Suppose that 𝑓 is convex, we show that ∀ (𝑥𝑛) ⊂ (𝐷): the sequence 𝑥𝑛 ⟶ 𝑥 and  𝑓(𝑥𝑛) ⟶ 𝑓(𝑥) 

Define  𝐴 = {𝑍|‖𝑧 − 𝑥‖ = 𝛼}. Then 𝐴 ⊂ 𝐵(𝑥, 𝑟).      

   ∀ 𝑛 ≥ 𝑁 ∃𝑧𝑛 ∈ 𝐴,  ∋     𝜆𝑛 ∈ (0,1) , 1 − 𝜆𝑛 → 0 and 𝜆𝑛 → 1 

We have that, 

 𝑥𝑛 = 𝜆𝑛 + (1 − 𝜆𝑛)𝑧𝑛 

By convexity of 𝑓, 

𝑓(𝑥𝑛) ≤ 𝜆𝑛𝑓(𝑥) + (1 − 𝜆𝑛)𝑓(𝑧𝑛) 

Taking the limit, as 𝑛 → ∞ and  𝜆𝑛 →1 

lim sup
𝑛⟶∞

𝑓 (𝑥𝑛) ≤ 𝑓(𝑥)                                                  (1)  

Similarly, ∀ 𝑛 ≥ 𝑁 ∃𝑤𝑛 ∈ 𝐴,  ∋  𝜆𝑛 ∈ (0,1) , 1 − 𝜆𝑛 → 0 and 𝜆𝑛 → 1 such that 

 𝑥 ≤ 𝜆𝑛𝑥𝑛 + (1 − 𝜆𝑛)𝑤𝑛 

  𝑓(𝑥) ≤ 𝜆𝑛𝑓(𝑥𝑛) + (1 − 𝜆𝑛)𝑓(𝑤𝑛) 

Since 𝑓 is convex 

𝑓(𝑥) ≤ lim inf
𝑛⟶∞

𝑓 (𝑥𝑛)                                                    (2) 

Combining equation (1) and (2)  

  lim sup𝑛⟶∞ 𝑓 (𝑥𝑛) ≤ 𝑓(𝑥) ≤ lim inf𝑛⟶∞ 𝑓 (𝑥𝑛) 

So    𝑓(𝑥𝑛) ⟶ 𝑓(𝑥);  ∴   𝑓  is continuous ∀ 𝑥 ∈ 𝐷 hence the proof. 
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5. Convex Optimization Problems  

A convex optimization problem is the study of mathematical optimization problems of the form ; 

Minimize 𝑓(𝑥) 

Subject to 𝑥 ∈ 𝐶                                   (5) 

where 𝑓: 𝑅𝑛 → 𝑅 is convex function, 𝐶 is a convex set, and 𝑥 ∈ 𝑅𝑛 is the optimization variable. 

However, since this can be a little vague, we will often write it as  

 minimize𝑓(𝑥) 

 subject to 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, ⋯ , 𝑚 

      ℎ𝑖(𝑥) = 0, 𝑖 = 1, ⋯ , 𝑝 

where 𝑓 is a convex function, 𝑔𝑖 are convex functions, and ℎ𝑖 are affine functions, and 𝑥 is the 

optimization variable. 

6. The Lagrangian 

The basis of Lagrange duality theory is an artificial construct called the lagrangian. Given a convex 

constrained minimization problem of the form; 

(𝑃) min 
𝑥∈ℝ𝑛

(𝑓𝑥) 

Subject to 𝑔𝑖(𝑥) ≤ 0,      𝑖 = 1, ⋯ , 𝑚                                               (3.1) 

                  ℎ𝑖(𝑥) = 0,       𝑖 = 1, ⋯ , 𝑝 

where 𝑥 ∈ ℝ𝑛 is the optimization variable, 𝑓: ℝ𝑛 → ℝ and 𝑔𝑖: ℝ𝑛 → ℝ are differentiable convex 

function and ℎ𝑖: ℝ𝑛 → ℝ are affine functions: The lagrangian of the above problem (3.1) is the 

function 𝐿: ℝ𝑛 × ℝ𝑚 × ℝ𝑝 → ℝ defined by  

𝐿(𝑥, 𝜆, 𝜇) =  𝑓(𝑥) + ∑ 𝜆𝑖

𝑚

𝑖=1

𝑔𝑖(𝑥) + ∑ 𝜇𝑖

𝑝

𝑖=1

ℎ𝑖(𝑥)             (3.2) 

The first argument of the lagrangian is a vector 𝑥 ∈ ℝ𝑛, whose dimensionality matches that of the 

optimization variable in the original optimization problem. Hence 𝑥 is referred as the primal variables 

of the lagrangian. The second argument 𝜆 ∈ ℝ𝑚  with one variable 𝜆𝑖 for each of the 𝑚 convex 

inequality constraints in the original optimization problem the final argument of the lagrangian is a 

vector 𝜇 ∈ ℝ𝑝, with are variable 𝜇𝑖 for each of the affine equality constraints in the original 

optimization problem. These elements 𝜆 and 𝜇 are collectively known as the dual variables of the 

lagrangian or Lagrange multipliers. The lagrangian can be seen as the costs associated with violating 

different constraints.  

6.1 Langrange Dual Function 

The Lagrange dual function is defined as the infimum of the lagrangian over 𝑥:   𝑞: ℝ𝑚 × ℝ𝑝 →
ℝ,      𝑞(𝜆, 𝜇) = inf 𝐿(𝑥, 𝜆, 𝜇) 
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𝑞(𝜆, 𝜇) = inf (𝑓(𝑥) + ∑ 𝜆𝑖
𝑚
𝑖=1 𝑔𝑖(𝑥) + ∑ 𝜇𝑖

𝑝
𝑖=1 ℎ𝑖(𝑥))                    (3.3) 

Lemma 1. If (𝜆, 𝜇) are dual feasible, then 𝑞(𝜆, 𝜇) ≤ 𝑝∗.              (3.4) 

Where  𝑝∗ denotes the primal optimal value.The dual function provides lower bounds on the optimal 

value 𝑝∗ of the original problem when 𝜆 ≥ 0. 

 Proof: 

Observe that,  𝑞(𝜆, 𝜇) = inf𝑥𝜖𝑋 𝐿(𝑥, 𝜆, 𝜇) ≤  𝐿(𝑥∗, 𝜆, 𝜇)      

=  𝑓(𝑥∗) + ∑ 𝜆𝑖

𝑚

𝑖=1

𝑔𝑖(𝑥∗) + ∑ 𝜇𝑖

𝑝

𝑖=1

ℎ𝑖(𝑥∗) 

≤ 𝑓(𝑥∗) = 𝑝∗ 

The lemma shows that that given any dual feasible(𝜆, 𝜈), the dual objective 𝑔(𝜆, 𝜈), provides a lower 

bound on the optimal value 𝑝∗ of the primal problem. Since the dual problem involves maximizing the 

dual objective over the space of all dual feasible(𝜆, 𝜈), it follows that the dual problem can be seen as 

a search for the tightest possible lower bound on 𝑝∗. This gives rise to a property of any primal and 

dual optimization problem pairs known as weak duality: However, the lower bound from Lagrange 

dual function depends on (𝜆, 𝜇); therefore the best lower bound that can be obtained from Lagrange 

dual function is 

 

(𝐷) =   maximize q(𝜆, μ)                        (3.5) 

 Subject 𝜆 ≥ 0 

Equation (3.5) is called Lagrange dual problem with dual variables (𝜆, 𝜇). Observe that (3.5) again is 

convex optimization (maximaztion of concave functions over linear constraints and Lagrange dual 

problem associated with (3.1). The optimal value of (3.5) is denoted by 𝑑∗.If 𝑔(𝜆, 𝜇) = −∞ the dual 

function gives a non-trivial lower bound on 𝑝∗. This is possible only where 𝜆 ≥ 0 and (𝜆, 𝜇) ∈

𝐷𝑔(𝜆, 𝜇) > −∞. The pair (𝜆, 𝜇) is therefore referred to as dual feasible.  The pair (𝜆∗, 𝜇∗) is called 

dual optimal or optimal Lagrange multipliers.   

Theorem 5: Weak Duality 

Let 𝑥∗ be any feasible solution to the primal problem (3.1) and (𝜆∗, 𝑢∗) be a feasible solution to the 

dual problem (3.5) . Then, the objective function of 𝐷 evaluated at (𝜆∗, 𝑢∗)   is less or equal to the 

objective function 𝑃  evaluated at 𝑥∗ that is 𝑞(𝜆∗, 𝜇∗) ≤ 𝑓(𝑥∗). 

Proof: Let 𝑥∗ be any feasible point meaning that 𝑔(𝑥∗) ≤ 0, and ℎ(𝑥∗) = 0 

Then we have, for any 𝜇 and 𝜆 ≥ 0. 

∑ 𝜆𝑖

𝑚

𝑖=1

𝑔𝑖(𝑥∗) + ∑ 𝜇𝑖

𝑝

𝑖=1

ℎ𝑖(𝑥∗)  ≤ 0,  

⇒ 𝐿(𝑥∗, 𝜆, 𝜇) = 𝑓(𝑥∗) + ∑ 𝜆𝑖

𝑚

𝑖=1

𝑔𝑖(𝑥∗) + ∑ 𝜇𝑖

𝑝

𝑖=1

ℎ𝑖(𝑥∗) ≤ 𝑓(𝑥∗) 

⇒ 𝑞(𝜆, 𝜇) = inf𝐿(𝑥, 𝜆, 𝜇) ≤ 𝐿(𝑥∗, 𝜆, 𝜇) ≤ 𝑓(𝑥∗), ∀𝑥∗                 (3.7) 
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Clearly, weak duality is a consequence of Lemma 1 using (𝜆∗, 𝑢∗) as the dual feasible point. For some 

primal/dual optimization problems, an even stronger result holds, known as strong duality: 

Theorem 6: (Strong Duality). For any pair of primal and dual problems which satisfy certain technical 

conditions called constraint qualifications, both optimization problems (3.1) and (3.5) has the same 

solution that is, 

𝑑∗ = 𝑝∗.                                                     (3.8) 

The proof of strong duality shall be x-rayed in the next chapter using two techniques namely strong 

duality via slaters’constraint qualification and convex theorem on alternatives. 

Example 1: Linear optimization duality. 

Consider 

Minimize{𝐶𝑇𝑥 |𝐴𝑥 ≥b} 

The lagrangian is 

                                 L(𝜆, 𝑣) =: 𝐶𝑇𝑥 + 𝜆𝑇(𝑏 − 𝐴𝑥) 

The Lagrange dual function is 

𝑔(𝜆) = min 𝐶𝑇𝑥
𝑥

+ 𝜆𝑇(𝑏 − 𝐴𝑥) = {𝜆𝑇𝑏 𝑖𝑓 𝐶𝑇 = 𝜆𝑇𝐴
−∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

So the dual is  

𝑚𝑎𝑥{𝑔(𝜆) |𝜆 ≥ 0}  = max {𝜆𝑇𝑏 |𝑐𝑇  = 𝜆𝑇𝐴, 𝜆 ≥ 0}  
We have strong duality. 

7.  Strong Duality via Slater’s Constraint Qualification 
Strong duality is a condition that holds when the optimality gap is zero, which is equation (3.8). This 

case is possible if the optimization problem is convex and satisfies slater’s constraint qualification.  

Theorem 9: Consider the convex optimization problem of the form; 

 minmize 𝑓(𝑥) 

 Subject to       𝑔𝑖(𝑥) ≤ 0  𝑖 = 1, ⋯ , 𝑚 

𝐴𝑥 = 𝑏                                                                                (4.1) 

With the assumption that 𝑓, 𝑔𝑖 , ⋯ , 𝑔𝑚 are convex 𝐴 ∈ ℝ𝑝,𝑛, 𝑏 ∈ ℝ𝑝 then there exists an 𝑥 ∈ 𝑟𝑒𝑙𝑖𝑛𝑡ℱ 

such that  

𝑔𝑖(𝑥∗) < 0, 𝑖 = 1, ⋯ , 𝑚,   𝐴𝑥∗ = 𝑏                        (4.2) 

Implying existence of strictly feasible point. 

Proof: We begin by defining the set.  

 𝒜 = {(𝑢, 𝑣, 𝑡):  ∃𝑥 ∈ ℱ, 𝑔𝑖(𝑥) ≤ 𝜇, ℎ𝑖(𝑥) = 𝑣, 𝑓(𝑥) ≤ 𝑡}:  

This is convex since each of the 𝑔𝑖(𝑥) are convex functions. 

The optimal solution to our problem is  

𝑝∗ = inf{𝑡: (0,0, 𝑡) ∈ ℱ}.     

In order to evaluate the dual function at a point (𝜆, 𝜇) with 𝜆 ≥ 0, we can minimize the affine function. 

 (𝜆, 𝜇, 1)𝑇(𝑢, 𝑣, 𝑡) over 𝒜 

Next, if 𝜆 ≥ 0 
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 𝑔(𝜆, 𝑣) = inf{(𝑢, 𝑣, 𝑡)(𝜆, 𝜇, 1)𝑇}: (𝑢, 𝑣, 𝑡) ∈ 𝒜 

If the infimum is finite then 

 (𝜆, 𝑣, 1)𝑇(𝑢, 𝑣, 𝑡) ≥ 𝑔(𝜆, 𝑣)                                                                 (4.3) 

Defines a nonvertical supporting hyperplane to 𝒜. In particular since 

(0,0, 𝑝∗) ∈ bd 𝒜,we have   

𝑝∗ = (𝜆, 𝑣, 𝐼)𝑇(0,0, 𝑝∗) ≥ 𝑔(𝜆, 𝑣 )                       (4.4) 

Strong duality holds if an only if we have equality in (4.4). 

7.1 Slater’s Constraint Qualification 

Definition: (Slater’s condition) There exist 𝑥∗ ∈ 𝐫𝐞𝐥𝐢𝐧𝐭ℱ with 𝑔𝑖(𝑥) < 0 for 𝑖 = 1, ⋯ , 𝑚 and 

𝐴𝑥∗ = 𝑏 (existence of strickly feasible point). 

Theorem 10:- Slater’s condition implies strong duality  

Proof: We shall make two additional assumption before the proof: first that ℱ has a nonempty interior, 

hence relintℱ = intℱ, and second, that rank 𝐴 = 𝑝. We assume that 𝑝∗ is finite (since there is a 

feasible point, we can only have 𝑝∗ = −∞ or 𝑝∗ finite; if 𝑝∗ = −∞, then 𝑑∗ = −∞ by weak duality. 

Consider the following convex set 

𝛽 = {(0,0, 𝑆) ∈ ℝ𝑚 × ℝ𝑝 × ℝ: 𝑆 < 𝑝∗}, which is obviously disjoint from 𝒜 by separating hyperplane 

theorem, there exists (𝜆∗, 𝑣∗, 𝜇) ≠ 0 and 𝛼 such that 

(𝑢, 𝑣, 𝑡) ∈ 𝒜 ⇒ 𝑈𝜆∗𝑇 + 𝑉𝑣∗𝑇 + 𝑡𝜇 ≥ 𝛼                                 (4.5) 

And                       (𝑢, 𝑣, 𝑡) ∈ 𝐵 ⇒ 𝜆∗𝑇𝜇 + 𝑉∗𝑇𝑣 + 𝜇𝑡 ≤ 𝛼                               (4.6) 

This implies that 𝜆∗ ≥ 0, by equation (4.5) (since 𝒜 is closed under 𝑢 getting larger), and 𝜇 ≥ 0, by 

the second which says that 𝜇𝑡 ≤ 𝛼. From the inequality (4.5) for any 𝑥 ∈ ℱ, we have, 

∑ 𝜆∗
𝑖

𝑚

𝑖=1

𝑔𝑖(𝑥) + 𝑣∗𝑇(𝐴𝑥 − 𝑏) + 𝜇𝑓(𝑥) ≥ 𝛼 ≥ 𝜇𝑝∗                         (4.7) 

We proceed in two cases  

Case I: 𝜇 > 0 dividing (4.7) by 𝜇, we obtain  

𝐿 (𝑥, 𝜆∗

𝜇⁄ , 𝑣∗

𝜇⁄ ) ≥ 𝑝∗ 

For all 𝑥 ∈ ℱ. Thus minimizing over 𝑥 it follows that 𝑔(𝜆, 𝑣) ≥ 𝑝∗ where 𝜆 = 𝜆∗

𝜇  ⁄ and 𝑣 = 𝑣∗

𝜇⁄ . By 

weak duality, we have  

𝑔(𝜆, 𝑣) ≤ 𝑝∗, so infact 𝑔(𝜆, 𝑣) = 𝑝∗. This shows that strong duality holds and that the dual optimum 

is attained. 

Case II: 𝜇 = 0; Using (4.6) it follows that for 𝑥∗ satisfying slater’s condition, we have 

∑𝜆𝑖
∗𝑔𝑖(𝑥∗) ≥ 0 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.9, 2015 

 

36 

Therefore 𝜆∗ = 0 since all 𝑔𝑖(𝑥∗) < 0 and 𝜆∗ ≥ 0. From (𝜆∗, 𝑣∗, 𝜇∗) ≠ 0 and 𝜆∗ = 𝜇 = 0, we 

conclude that 𝑣∗ ≠ 0. Thus (4.6) implies that  

  𝑉∗(𝐴𝑥 − 𝑏) ≥ 0. 

By assumption, 𝑉∗(𝐴𝑥 − 𝑏) = 0, since 𝑥∗ ∈ in 𝑡 ℱ. It follows that there exists points in ℱ with 

𝑉∗𝑇(𝐴𝑥 − 𝑏) < 0 unless 𝐴𝑇𝑣∗ = 0, thus contradicting our assumption that rank 𝐴 = 𝑝 

8.  Application of Duality 

A baking factory produces bons
1
 and chinchin

2
. Each product requires raw material resource and 

labour. Production times required for the product are measured at different times respectively. Total 

labour hours per week are only 96 hours. Raw material required for Bons and chinchin are 2 and 3 

units respectively. Total supply of raw material is 60 units per week. The net profit per units of 

products, resource requirements of the product and labour are summarized below in Table 5.1(a). 

 Baking time (hours)  

Products Bons      Chinchi Total per week 

Raw material constraint 

Labour hours constraint 

2             3 

4             3 

60 

96 

Profit /unit (Naira) 40           35  

Table 5.1(a): Net profit per units of products, resource requirements of the product and labour. 

The objective is to determine how many units of bons and chinchin that should be produced per week 

to maximize the profit. 

The working model for the factory’s problem is 

Maximize 𝑍 = 40𝑥1 + 35𝑥2 

Subject to      2𝑥1 +  3𝑥2  ≤ 60 𝑟𝑎𝑤 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑡 

          4𝑥1 + 3𝑥2 ≤ 96 𝑙𝑎𝑏𝑜𝑢𝑟 ℎ𝑜𝑢𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑡 

      𝑥1, 𝑥2  ≥ 0 

In canonical form 

Maximize 𝑍 = 40𝑥1 + 35𝑥2 + 0𝑠1 +  0𝑠2    

Subject to      2𝑥1 +  3𝑥2  + 𝑆1 = 60 

           4𝑥1 +  3𝑥2 +  𝑆2 =  96 

   𝑥1, 𝑥2, 𝑆1𝑎𝑛𝑑 𝑆2  ≥ 0 

The model formulated above is the primal and its equivalent to  

   𝐴𝑋 ≤ 𝑏 𝑎𝑛𝑑 𝑍 = 𝐶𝑋, 𝑋 ≥ 0 

Where 𝑎𝑖𝑗 is called the technological matrix  

 𝑏 = resource availability. 

 𝑍 =  [40, 35] [ 𝑥1
𝑥2

 ] , 𝐴 =  [2   3
4   3

] , 𝑏 =  ⌊
6  0
9  6

⌋ , 𝑋 =  [ 𝑥1
𝑥2

 ] 

                                                           
1
 Locally made round-shaped bakery product in Nigeria 

2
 Nuts-like bakery products locally made in Nigerian bakery factories  
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  𝑏 =  ⌊
6  0
9  6

⌋ , 𝑋 =  [ 𝑥1
𝑥2

 ] 

        𝑥1 and 𝑥2 are the production volumes of bons and chinchin.  

8.1 Dual of the Problem 

Let 𝑦1, 𝑦2   be the dual variables. The problem is to determine 𝑦 as to minimize 𝑓(𝑦); ie. 

      [60, 96] [ 𝑦1
𝑦2

 ] = 𝑓(𝑦)(𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒) 

 ⌊
2    4
3     3

⌋ [ 𝑦1
𝑦2

 ]  ≥  [40, 35]    

We find 𝑓(𝑦) to 

Minimize 60 𝑦1 + 96 𝑦2    

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 2𝑦1 + 4𝑦2 ≥ 40    

                   3𝑦1 + 3𝑦2 ≥ 35 

                 𝑦1 , 𝑦2 ≥ 0 

By converting the dual form into standard form; we now have 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒  𝑍∗ = −60𝑦1 − 96𝑦2 + 𝑂𝑆1 +  𝑂𝑆2 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 2𝑦1 + 4𝑦2 − 𝑆1 = 40 

                     3𝑦1 + 3𝑦2 − 𝑠1 = 35 

Introducing the artificial variable 𝑀 we have  

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒  𝑍∗ = −60𝑦1 − 96𝑦2 + 𝑂𝑆1 + 𝑂𝑆2 − 𝑀𝑅1 − 𝑀𝑅2 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                   2𝑦1 + 4𝑦2 − 𝑆1 + 𝑅1 = 40 

                                                                        3𝑦1 + 3𝑦2 − 𝑆2 + 𝑅2 =     35 

𝑦1, 𝑦2,𝑠1, 𝑠2,𝑅1, 𝑅2 ≥ 0  
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Tableau 2 

 

Table 5.2(b): Final Table of the dual problem 

Optimality conditions: since all (𝑐𝑗 − 𝑍𝑗)  ≤ 0. The optimality is reached; hence, the optimal solution 

is 𝑦2 = 25
3⁄ ,  𝑦1 = 10

3⁄    

𝑓(𝑦)𝑚𝑖𝑛 = N1000  

The optimal solution is to make 18 pieces of bons and 8 packs of chinchin per week. With this optimal 

strategy, the net profit is 𝑁 1000.00. Hence, the optimal value is the same. Therefore, there is no 

duality gap. 

9.  Economic Interpretation of the Dual 

Suppose the factory wishes to buy insurance form the net profit. Let  𝑦1  be the amount (𝑁) payable to 

the factory for every labour hour cost due to accident and let  𝑦2 be the amount (𝑁) payable to the 

factory for every raw material unit cost due to late delivery. The insurance officer therefore tries to 

minimize the total amount 𝑁( 60𝑦1 + 96𝑦2 ) payable to the factory. The factory however insists that 

the insurance company covers all his loss that is his net profit since he cannot make the products. The 

company’s problem is  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑍 = 60𝑦1 + 96𝑦2 

                                                𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜         2𝑦1 + 4𝑦2 ≥ 40  𝑁𝑒𝑡 𝑝𝑟𝑜𝑓𝑖𝑡 𝑓𝑟𝑜𝑚 𝑏𝑜𝑛𝑠 

                                                                                3𝑦1 + 3𝑦2 ≥ 35 𝑁𝑒𝑡 𝑝𝑟𝑜𝑓𝑖𝑡 𝑓𝑟𝑜𝑚 𝑐ℎ𝑖𝑛𝑐ℎ𝑖𝑛 

                 𝑦1 ,𝑦2 ≥ 0   

The dual solution provides an interesting economic interpretation such as the shadow price (marginal 

elements of RHS element.) The shadow price can be seen as the improvement in the objective value 

per unit increase in the right hand side. The shadow prices are the solution to the dual problem. The 

shadow prices (imputed price) can as well be seen as the opportunity costs associated with the 

insurance policy. The unit measure of the shadow price is 𝑦1 = 𝑁 10
3⁄  per unit of raw material and  

𝑦2 = 25
3⁄  per hour for the labour. 

Suppose the insurance company agrees with the factory. The imputed cost for every 1 unit of bons lost 

is 2 unit of raw material x 𝑁 10
3⁄  per unit material + 4 hours of labour x 𝑁 25

3⁄  per hour  

20

3
+

100

3
= 𝑁 40  

Again for every 1 unit of chinchin lost,  
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3 unit of raw material 𝑋 𝑁 10
3 ⁄ per unit material +3 unit of labour 𝑋 N25

3⁄ /hr 

= 10 + 25 = N35 

. If the factory’s net profit is valued at the shadow prices, we find that 

𝑍𝑚𝑖𝑛 = 60 𝑋 10
3⁄ +  96 𝑋 25

3⁄ = 𝑁 1000.00 is exactly equal to the optimal value of the objective 

function of the factory’s decision problem. 

With the optimal value of N 1000.00 (the amount the factory expects to receive). The business can be 

managed smoothly except for premium that the insurance company will charge. 

Observe that, the shadow prices of the dual gives the decision variables of the primal, hence when the 

factory bakes 18 pieces of bons (𝑥1 = 18) and sells making a profit of N40.00 for each and for 8 

packs of chinchin (𝑥2 = 8) sold and making a profit of N35.00. The total profit turns out to be 

N1000.00 Moreover, the elements of the dual solution called lagrargian multiplers provides a tight 

bound on the optimal value of the primal. The dual solution of the factory’s problem can be used to 

find a lower tight bound for the optimal value. This can be computed by multiplying each constraint 

by its corresponded dual solution and then sum them up; 

                                                10
3 ⁄ [2𝑥1 +  3𝑥2  ≤ 60] 

25
3⁄ [4𝑥1 + 3𝑥2 ≤ 96] 

40𝑥1 + 35𝑥2 ≤ 1000 

The result on the left side is the objective function of the primal and a lower tight bound. 

10.  Sensitivity Analysis 

Sensitivity analysis is an essential tool used to determine how the optimal solution changes when the 

parameters of the models are changed. It investigates the effects of the uncertainty on the model 

recommendation. 

10.1  Changes in the Objective Function 

In business environment, the net profit is an uncontrollable factor. The fixed prices of N (40 𝑎𝑛𝑑 35) 

are the uncontrollable inputs that are determined by the market. The range of the objective function 

coefficient C, say must be determined before introducing new product so that the optimality will not 

be affected.  

Any product that will be introduced must be within the range of  

N ([35 − 10
3 ⁄ + 40 − 25

3 ⁄  ]𝑎𝑛𝑑 [35 + 10
3 ⁄ + 40 + 25

3 ⁄  ]) 

38.33 + 48.33 = N86.66k 

Again  [35 − 10
3 ⁄ + 40 − 25

3 ⁄  ] = 63.33𝑘. 

The range therefore is 

𝑁 [63.33 ≤  𝐶 ≤ 86.66 ] 

10.2  Introducing New Product 

Suppose the factory decides to introduce meat pie with profit margin of N70.00. The labour hours 

required for the production is 3 hours and 6 units of raw material, what should the factory do? We 

compute as follows: 

6 unit of raw material  𝑋 10
3⁄ = 60 

2 hours of labour 𝑋 25
3⁄ = 25 
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Total is N 85.00 

Since N[85 > 63.33]𝑎𝑛𝑑 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 𝑁 86.66𝑘 the factory can go on with the production. 

10.3  Changes in the Right Hand Side Constant of Constraints 

The shadow price for product 1 (Bons) is 𝑁 10
3⁄  and that of 2 (chinchin) is 𝑁 25

3⁄ . The shadow 

prices are also called marginal profitability of the products making additional bons would increase the 

factory’s net profit by 𝑁 10
3⁄  while if one bons is removed, the profit will be lowered by that amount. 

Similarly, making one additional pack of chinchin would increase its profit by the same amount if it is 

reduced by one pack. 

Suppose the right side constants of constraint 1 and constraint 2 are changed from 60 to 30 and 96 to 

60 respectively. What is the new optimum value? The changes can be incorporated in the constraints 

by using the formula. 

𝐵𝑎𝑠𝑖𝑐 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠
𝑖𝑛 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑡𝑎𝑏𝑙𝑒

= [
𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 

𝑠𝑙𝑎𝑐𝑘 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠
] [

𝑛𝑒𝑤 𝑅𝐻𝑆
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

] 

[ 
𝑥2

𝑥1
 ] = [   

2
3⁄   −1

3⁄

        −1
2⁄      1 2⁄        

 ] ⟦
30
6𝑜

⟧ = ⟦
10
15

⟧ 

 𝑥1 = 15 𝑎𝑛𝑑 𝑥2 = 10. These values are non-negative hence the revised solution is feasible and 

optimal. The corresponding optimal objective function value is N 950.00. 

11.  Conclusion 

This paper has essentially looked at the mechanics of lagrangian duality, previewed a technique of 

proving that under favourable circumstances, two optimal values are equal; we refer to this relation as 

strong duality and applied duality to a baking factory where the sensitivity analysis of the perturbed 

problem were performed. 
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