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Abstract 

This paper investigates market efficiency, non-linearity and thin trading effects in the returns 

of two companies listed on the Ghana Stock Exchange, namely Ghana Commercial Bank 

(GCB) and Transol. The Jarque-Bera and Runs tests showed that the returns of both 

companies deviate from normality and randomness, respectively. The returns are also 

non-linearly dependent using Ljung-Box and BDS tests. ARCH effects were found in the 

return series’ of both companies. An ARMA-GARCH model was adopted for the linearity 

modeling of the stock returns of GCB. The sum of the parameter estimate, 𝛼+ 𝛽= 0.99, for the 

ARMA-GARCH model is also an estimate of the rate at which the response function decays 

on daily basis. 
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1. Introduction 

  The concept of market efficiency has been investigated by many researchers in recent years, 

with most studies focusing on developed economies. Far fewer investigations have been carried 

out in emerging markets. The results have been contradictory in nature. Some emerging 

markets appear to be weak form efficient, whereas others seem to be inefficient. Emerging 

markets are typically characterized by low frequency of trading, known as thin trading and low 

levels of liquidity as well as, in some cases, ill-informed investors with access to information 

that is sometimes less than reliable (Harrison and Moore, 2012). 

As markets develop and reporting requirements are imposed on firms, the characteristics of 

weak form efficiency might become less significant and investigations that fail to test for 

evolving market efficiency might therefore conclude that markets are inefficient over the entire 

sample period, but fail to note that these markets are becoming more efficient over time 

(Harrison and Paton, 2005). Stock market efficiency hypothesis, implicitly, assumes that 

investors are rational. Rationality  implies  risk  aversion,  unbiased  forecasts  and  

instantaneous  responses  to  new  information.  Such rationality leads to stock prices 

responding linearly to new information. These attributes especially in emerging stock market 

with uninformed participants are not realistic.  Therefore, the behavioral biases of investors 

may result in stock prices responding to new information in a non-linear manner.  In addition, 

given the informational asymmetries and lack of reliable information, noise traders may also 

lean towards delaying their responses to new information in order to assess informed traders’ 

reaction, and then respond accordingly (Oskooe, 2012). 

Ghana Stock Exchange is a developing market and will show most, if not all, of the 
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characteristics of developing markets mentioned earlier. This study seeks to investigate market 

efficiency and the effects of non-linearity and thin trading in GSE. 

2.0 METHODOLOGY 

The data used for the study was taken from the Ghana Stock Exchange (GSE). The daily stock 

prices of Ghana Commercial Bank (GCB) and Transol were collected, spanning over the 

period May, 1990 to November, 2012 for GCB and January, 1997 to November, 2012 for 

Transol. The log returns of the stock prices were computed using the formula 

𝑟𝑡 = 𝐼𝑛 (
𝑃𝑡

𝑃𝑡−1
)*100….……….………… (1) 

Where 𝑟𝑡 is the stock return at time 𝑡, 𝑙𝑛 is the natural logarithm, 𝑃𝑡 and 𝑃𝑡−1 are stock price 

at date 𝑡 and 𝑡 − 1 respectively. 

To establish the nature of the return series’ used for the study, Jarque-Bera test for 

normality, Runs for the dependency and ADF and PP tests for the stationarity of the series’ 

were carried out. Also, we used the Ljung-Box, McLeod-Li and BDS tests to establish the 

randomness and linearity of the data. ARMA, ARIMA and GARCH models were fitted for 

the data. The ARCH LM test was also carried out. 

2.1 Ljung-Box and McLeod-Li test: The test statistic is given by: 

𝑄𝑚 = 𝑇(𝑇 + 2) ∑ (𝑇 − 𝐾)−1𝑚
𝐾=1 𝑟𝑘

2….. (2) 

The test statistic has a 𝑋2 distribution with (𝑚 − 𝑥) degree of freedom written as 

𝑄𝑚 ∽ 𝑋𝛼,𝑚−𝑥
2  

Where  𝑇 is the sample size of the series, 𝑚 is the maximum lag used in computing the test 

statistic and 𝑥 is the number of parameters estimated from the model. 

2.2 BDS TEST: This test is a powerful tool for detecting serial dependence in time series. Let 

{𝑋𝑡; 𝑡 = 1,2, … , 𝑇} be a sequence of T observations that are independent and identically 

distributed (I.I.D.). For 𝑁  dimensional vectors, 𝑋𝑡
𝑁 = (𝑥𝑡, 𝑥𝑡+1, … , 𝑥𝑡+𝑁−1) ,     the 

correlation integral 𝐶𝑁(ℓ, 𝑇) is given as 

𝐶𝑁(ℓ, 𝑇) =
2

𝑇𝑁(𝑇𝑁−1)
∑ 𝐼ℓ(𝑋𝑡

𝑁 , 𝑋𝑠
𝑁)….… (3) 

Where 𝑇 is the observations of the series, 𝑁 is the embedding dimension,  𝑋𝑡
𝑁 and 𝑋𝑠

𝑁are the 

series of vectors with overlapping entries and 𝐼ℓ = 1 if ∥ 𝑋𝑡
𝑁 − 𝑋𝑠

𝑁 ∥≤ ℓ and 0 otherwise. As 

𝑇 → ∞ for any fixed values of 𝑁 and ℓ𝐶𝑁(ℓ, 𝑇) → 𝐶1(ℓ)𝑁 with  p-value  of 1 and is 

independently and identically  distributed  with  a non-degenerated density 𝐹 . 

Also√𝑇[𝐶𝑁(ℓ, 𝑇) − 𝐶1(ℓ, 𝑇)𝑁] , has a normal limiting distribution with mean zero and 

variance  𝜎𝑁
2(ℓ). If the ratio 

𝑇

 𝑁
> 200, then the values of  ℓ/𝜎  range from 0.5 to 2.0 and the 

values of 𝑁are between 2 and 5. The test statistic of the BDS test is given as 

𝐵𝐷𝑆𝑁(ℓ, 𝑇) =
√𝑇[𝐶𝑁(ℓ,𝑇)−𝐶1(ℓ,𝑇)𝑁]

√𝜎𝑁
2

………. (4) 

Where 𝑇 is the observations of the series, ℓ is the embedding dimension and 𝜎𝑁
2(ℓ) is the 

variance. 

BDS test statistic has standard normal limiting distribution and hence the test statistics 

computed if greater than or less than the critical value, then the null hypothesis is rejected in 
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favor of the alternative. As well, it is not safe to choose too large a value for 𝜀. As for the 

choice of the relevant embedding dimension 𝑚, Hsieh (1989) suggests consideration of a 

broad range of values from 2 to 10 for this parameter. Following recent studies of Barnett et 

al. (1995), we implement the BDS test for the range of 𝑚 values from 2 to an upper bound of 

8. 

3.0 RESULTS AND DISCUSSION 

The daily returns of both GCB and Transol show a high standard deviation with respect to the 

mean, indicating high volatility of these stock returns. GCB returns indicate a negative 

coefficient of skewness, indicating that the data is skewed to the left while Transol shows a 

positive coefficient. Also, both return series’ show a high positive kurtosis greater than 3, 

indicating that the daily returns have leptokurtic distribution. These are shown in Table 1. 

Jarque-Bera normality test, shown in Table 2, rejects the null hypothesis of a normal 

distribution as the p-values are significantly less than the level of significance of 5% in both 

data sets. Figure 1 is a time series plot for the stock returns of GCB. The series show no 

constant trend over the entire period. It also shows no seasonality and no obvious outliers. It 

will be difficult to judge if the variance is constant. The QQ- plots, shown in Figures 2 and 3, 

confirm the conclusion of the Jarque-Bera test for both companies. The Augmented 

Dickey-Fuller (ADF) and the Phillips-Perron (PP) unit root test were employed to determine 

the stationarity of the returns series’ of both companies. This is necessary because long time 

interval data, such as the data used for this study, can be non-stationary. Also, structural 

changes can lead to rejection of the I.I.D. process. The results implied that the returns series’ 

for the two companies were stationary at levels at 5% level of significance. Table 3 displays 

the findings of this test. In examining the linear dependency of both return series, we used 

the modified Q-statistic of the Ljung-Box. We tested the autocorrelation coefficients up to 

lag 40. The results as presented in Table 4, implies the existence of significant serial 

autocorrelation at all the lags. It is important to note that the serial correlation of the series’ 

should not necessarily imply that the GSE is inefficient because fake autocorrelation may 

exist due to institutional factors which may induce price adjustment delays into the trading 

process. Hence, we focus on uncovering the linear dependency in both series. 

ARMA models were adopted to remove all the linearity in both series. An advantage of using 

the residuals of ARMA (p, q) model is that it adjusts the effect of infrequent trading, which 

appears more in stock prices index of thinly traded stock market. The identification of the 

ARMA (p, q) model was based on the autocorrelations and partial autocorrelations as well as 

the AICs and BICs lowest value criteria. For the daily stock returns of GCB, the first spike for 

both the autocorrelation and the partial autocorrelation occurred at lag 14, shown in Figure 5, 

and comparing it with the AIC and BIC lowest value criteria, ARMA (4, 5) model was 

adopted for the linearity modeling of the series.  

For the stock returns of Transol, the autocorrelation has only one spike at lag 1 and the 

partial autocorrelation has thirteen spikes up to lag 3 as displayed in Figure 6. We compared it 

with the AIC and BIC lowest values criteria and adopted ARMA (1, 2) model for the linearity 

modeling of the returns series. We then test for the serial correlation of the residuals of our 

estimated ARMA (4, 5) model for the daily returns of GCB as well as the ARMA (1, 2) model 

for the daily returns of Transol. The results of the MQ-statistics of Ljung-Box for ARMA (4, 5) 

model of GCB as presented in Table 5, indicates that the estimated model is inadequate for all 
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the linearity modeling of the series. We used the McLeod-Li test for autocorrelation on the 

residuals of our estimated ARMA (1, 2) model for the stock returns of Transol. The results 

shown in Table 6 indicate that the residuals of the ARMA model of the returns display no 

significant autocorrelation. This implies that the model has succeeded in taking out the 

nonlinearity in the series. Insignificant values of McLeod-Li (ML) test statistics for the 

squared residuals of the ARMA (1, 2) model for Transol also prove no significant 

autocorrelation, indicating no evidence of nonlinear dependencies in the series. This is shown 

in Table 7. 

To verify the presence of nonlinear dependence in the returns of GCB, we used the BDS 

test on the residuals. The result strongly rejected the I.I.D assumption as displayed in Table 8. 

This may be due to either non-stationarity or nonlinearity in the return series (Hsieh, 1989). 

But the results of the unit root tests Table 3 showed that the data is stationary at levels. Hence 

we suspect the presence of nonlinearity in the return series of GCB. BDS test for the stock 

returns of Transol also rejected the null hypothesis of the I.I.D assumption indicating that the 

residuals of the ARMA (1, 2) model for the stock returns are not I.I.D as shown in Table 9. 

Since the MQ-statistics for the residuals of GCB proved significant autocorrelation, it gives 

an evidence of time varying conditional heteroskedasticity in the series and for Transol, the 

rejection of the I.I.D assumption must be further investigated. 

We employed ARCH-LM test for the existence of ARCH effect in the ARMA models. The 

results of the ARCH-LM test strongly confirmed the presence of ARCH effect in the return 

series of GCB. However, the ARCH-LM test computed for the residuals of ARMA (1, 2) 

model of Transol strongly rejected the presence of ARCH effect in the series. The test follows 

a chi-square distribution shown in Table 10. 

Since ARCH effects were present in the residuals of the ARMA (4, 5) model of GCB, we 

further developed an ARMA (4, 5)-GARCH (0, 1) model to take out the ARCH effects in the 

series. We investigated for the coefficients  of  the  conditional  variance  equation,  𝛼 

and  𝛽,  which were  significant  at  1%,  implying  a strong support for the ARCH 

and GARCH effects in stock returns data generating process. In addition, the sum of the 

parameters estimated by the conditional variance equation is close to one. A sum of 𝛼 and  

𝛽  close to one is an indication of a covariance stationary (weakly stationary) model with a 

high degree of persistence; and long memory in the conditional variance. The sum of the 

coefficients, 𝛼 +  𝛽 =  0.99, of the ARMA-GARCH model is also an estimation of the rate at 

which the response function decays on daily basis. Since the rate is high, the response 

function to shocks is likely to die slowly which is consistent with emerging stock markets. 

Hence, such a market will experience thin trading and low liquidity. The Jarque-Bera (JB) test, 

in Table 11, rejects the null hypothesis that the standardized residuals are normally distributed. 

To get more comprehensive conclusion about the normality assumption, we looked at the 

QQ-plot given in Figure7, which shows deviation in the tales from the normal QQ-line. 

Therefore, the normality for the residuals of the fitted volatility model is not suitable. 

According to the Ljung-Box test in Table 12, it can be seen that there are no evidence of serial 

correlations and nonlinear dependencies in the daily returns of GCB. Furthermore, from Table 

13, the finding of the ARCH-LM test concludes that there is no evidence of conditional 

heteroskedasticity in the series. This implies that the fitted volatility model is adequate and it 

has accounted for all the volatility clustering in the return series’. To assess whether the 
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ARMA (4, 5) - GARCH (0, 1) model has succeeded in capturing all the non-linear structures; 

we employed the BDS test to its standardized residuals. The results in Table 14 rejects the null 

hypothesis of the I.I.D which implies that there is a remaining structure in the time series, 

which could include a hidden non-linearity, hidden non-stationarity or other type of structure 

missed by detrending or model fitting. 

4.0 CONCLUSION 

This study investigated market efficiency and the effects of non-linearity and thin trading of 

two companies on GSE. We first explored the data and found that both the return series’ used 

were volatile. Also, both series’ were found not to be normally distributed, but stationary at 

level. Again, the data showed the existence of linear dependency. However, this could not 

necessarily be associated with the inefficiency of GSE as this may exist due to institutional 

factors. Employing the ARMA models to uncover the linear dependency, we had ARMA (4, 

5) for GCB and ARMA (1, 2) for Transol. 

However, the returns of GCB showed the existence of ARMA effect while Transol did not. 

Finally, an ARMA (4, 5) - GARCH (0, 1) model was developed to take out the ARCH effect 

in GCB returns. However, it did not and we conclude that the remaining structure in the time 

series could include a hidden non-linearity, hidden non-stationarity or other type of structure. 
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Notes 

Table 1: Descriptive statistics of daily returns 

Returns No. Minimum 

Value 

Maximum 

Value 

Mean Std. 

Deviation 

Skewness Kurtosis 

GCB  3176 -14.133 66.080 0.0504 1.0795 -0.4603 66.0795 

Transol 1417 -422.220 422.220 -0.049 15.8950 0.0064 700.6500 

 

Table 2: Jarque-Bera test of normality of daily returns 

Returns Test Statistic P – value 

GCB  577581.8000 0.0000 

Transol 2.89843e+007 0.0000 
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Table 3: Unit Root test for daily return of GCB and Transol 

Returns ADF PP 

 Test statistic p-value Test statistic p-value 

GCB -53.275 0.01 -54.742 0.01 

Transol -45.902 0.00 -886.816 0.01 

 

Table 4: Test for serial correlation of daily returns for both companies 

MQ 5 10 15 20 25 30 35 40 

GCB 653.53 889.97 1302.40 1536.45 1815.22 2402.60 2913.75 3013.43 

Transol 352.83 352.83 352.83 352.83 352.83 352.83 353.20 353.20 

 

Table 5: Ljung-Box text for serial correlationof residuals of the ARMA (4, 5) model of GCB 

 LB (1) LB (2) LB (3) LB (4) LB (5) LB (6) LB (7) 

Statistic 447.7239 674.9596 1028.446 1227.049 1467.271 2020.076 2511.504 

 

Table 6: McLeod-Li test for serial correlation of residuals of the ARMA (1, 2) model of 

Transol 

 McL (5) McL (10) McL (15) McL (20) McL (25) McL (30) McL (35) 

Statistic 0.1208 0.1758 0.2325 0.3588 0.5789 1.0234 1.5540 

 

Table 7: McLeod-Li test for the Squared Residuals of ARMA (1, 2) models of Transol 

 McL (5) McL (10) McL (15) McL (20) McL (25) McL (30) McL (35) 

Statistic 0.1114 0.1913 0.2491 0.3176 0.4019 0.5029 0.6236 
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Table 8:  BDS test for the residuals of the ARMA (4, 5) model of GCB 

𝑀 𝜀 Statistic 𝜀 Statistic 𝜀 Statistic 𝜀 Statistic 

     2     0.5 17.1712     1.0 14.0792     1.5 13.9238     2.0 12.6538 

     3     0.5 21.4797     1.0 16.1942     1.5 15.0184     2.0 13.7352 

     4     0.5 24.822     1.0 17.6027     1.5 15.5700     2.0 14.2427 

     5     0.5 27.4959     1.0 18.4979     1.5 15.7377     2.0 14.3607 

     6     0.5 30.3852     1.0 19.3465     1.5 16.1118     2.0 14.6877 

     7     0.5 33.5598     1.0 20.0437     1.5 16.3683     2.0 15.0072 

     8     0.5 37.3278     1.0 20.7427     1.5 16.5592     2.0 15.1943 

 

Table 9: BDS test for the residuals of the ARMA (1, 2) model of Transol 

𝑀 𝜀 Statistic 𝜀 Statistic 𝜀 Statistic 𝜀 Statistic 

     2     0.5 21.1657       1.0 6.6107       1.5 3.4475       2.0 1.2333 

     3     0.5 34.7991     1.0 23.0816     1.5 20.6679     2.0 19.0626 

     4     0.5 43.1387     1.0 29.0460     1.5 26.0024     2.0 24.1554 

     5     0.5 52.0352     1.0 33.1419     1.5 28.9085     2.0 26.4934 

     6     0.5 63.1105     1.0 36.9732     1.5 31.1896     2.0 28.0289 

     7     0.5 77.5034     1.0 41.1258     1.5 33.4043     2.0 29.3936 

     8     0.5 96.4824     1.0 45.8802     1.5 35.7673     2.0 30.7387 

 

Table 10: ARCH-LM test for the residuals of ARIMA and ARMA models  

GCB ARCH 

(1) 

ARCH (2) ARCH (3) ARCH (4) ARCH (5) ARCH (6) ARCH (7) 

Statistic 34.375* 38.098* 41.337* 66.609* 70.435* 74.506* 75.225* 

Transol 

ARCH 

(1) ARCH (2) ARCH (3) ARCH (4) ARCH (5) ARCH (6) ARCH (7) 

Statistic 0.0000 0.0600 0.0600 0.0980 0.0983 0.1224 0.1238 

 

  

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.8, 2015 

 

178 

Table 11: The estimation results of 𝐴𝑅𝑀𝐴 (4, 5)  and 𝐴𝑅𝑀𝐴 (4, 5) − 𝐺𝐴𝑅𝐶𝐻 (1, 1) 

models 

Coefficient ARMA (4, 5) GARCH (0, 1) ARMA (4, 5)-GARCH 

µ 0.0513 0.0048 -0.0827 1.69e-08 -0.0166 0.0090 

∅4 0.1234 0.0334   -0.6965 0.0390 

𝜃5 0.0458 0.0051   0.0316 0.0151 

𝜔     0.0210 0.0000 

Α   1.0000 2.92e-018 0.0686 0.0000 

Β   0.0000 .0000 0.9233 0.0000 

𝛼 +  𝛽   1.0000  0.9919  

Log 

Likelihood 

-4690.5600  -4310.0570  -4289.4900  

AIC 9403.1190  8628.1130  7921.8640  

BIC 9469.8160  8652.3670  8000.6800  

JB 493701 .0000 673743 .0000 683798 0.0000 

 

Table 12: Serial correlation of residuals of ARMA-GARCH model of GCB 

 LB (1) LB (2) LB (3) LB (4) LB (5) LB (6) LB (7) 

Statistic 1.5442 4.3129 4.8171 5.2411 6.7413 8.3813 8.7236 

 

Table 13: ARCH LM test for residuals of ARMA-GARCH model of GCB 

 

ARCH 

(1) 

ARCH 

(2) 

ARCH 

(3) 

ARCH 

(4) 

ARCH 

(5) 

ARCH 

(6) 

ARCH 

(7) 

Statistic 1.1517 1.1530 1.1789 5.6089 5.6362 5.6455 5.6403 
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Table 14: BDS test for the standardized residuals of ARMA- GARCH model of GCB 

𝑀 𝜀 Statistic 𝜀 Statistic 𝜀 Statistic 𝜀 Statistic 

     2     0.5 21.0676     1.0 15.9051     1.5 15.0300     2.0 13.5896 

     3     0.5 26.2686     1.0 18.3715     1.5 16.5484     2.0 14.8267 

     4     0.5 31.0041     1.0 20.0243     1.5 17.1567     2.0 15.5498 

     5     0.5 35.2395     1.0 21.0958     1.5 17.5570     2.0 15.6493 

     6     0.5 40.0821     1.0 22.1197     1.5 17.9809     2.0 15.8782 

     7     0.5 45.6712     1.0 23.0168     1.5 18.2979     2.0 16.1147 

     8     0.5 52.3454     1.0 23.9190     1.5 18.5320     2.0 16.3061 

 

 

Figure 1: Time Series Plot for Daily Returns of GCB 

 

Figure 2: QQ- Plot for Daily returns of GCB 
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Figure 3: QQ-Plot for Daily returns of Transol 

 

 

 

Figure 4: ACF and PACF Plot of Residuals of ARMA model for stock returns of GCB 
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Figure 5: ACF and PACF of Residuals of ARMA model for Stock Returns of Transol 
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Figure 6: QQ-Plot for standardized residuals of ARMA-GARCH model 
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Figure 7: Time Series plot for residuals of ARMA-GARCH model 
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