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Abstract 

 The weighted distributions are widely used in many real life fields such as medicine, ecology, 

reliability, etc., for the development of proper statistical model. The concept of double weighted distribution was 

introduced by Al-khadim and Hantoosh (2013) and later has been studied by other researchers. In his article,𝑒𝑛𝑥 

has been considered as suitable weight for efficient modeling of double weight exponential distribution. The 

statistical properties of the modified double weighted exponential distribution (MDWED) are explored. The 

Kolmogorov- Smirnov test has been used to choose a better fitted probability model. The result of this testshown 

that (MDWED) is more suitable distribution to fit rainfall data then (DWED) proposed by Al-khadim and 

Hantoosh (2013).  

Keywords:Weighted distribution, Exponential distribution, Moment Generating Function, Fisher information. 

1. Introduction 

 Fisher (1934) introduced the concept of weighted distributions. Rao (1965) developed this concept in 

general terms by in connection with modelling statistical data where the usual practice of using standard 

distributions were not found to be appropriate, in which various situations that can be modelled by weighted 

distributions, where non-observe ability of some events or damage caused to the original observation resulting in 

a reduced value, or in a sampling procedure which gives unequal chances to the units in the original that means 

the recorded observations cannot be considered as original random sample.Patiland Rao(1978) discussed the 

weighted distribution and size-biased sampling with applications to wildlife populations and human 

families.Subhan and Boudrissa(2000) suggested length biased Weibull distribution properties and 

estimations.Abdel and Piegorsch (2002)provided in detail the applications and examples of weighted 

distribution. Jing (2010) explored the Weighted Inverse Weibull and Beta Inverse Weibull Distribution using 

𝑤(𝑥) = 𝑥 as weight for inverse Weibull distribution and Beta inverse Weibull distribution and derive the various 

statistical properties. Dasand Roy (2011) presented applicability of length biased Weighted Generalized 

Rayleigh Distribution using the PDF of Rayleigh distribution and 𝑤(𝑥) = 𝑥2𝑐−𝑁exp(−𝑥2(𝑐σ2 −
1

2σ2)) as weight 

and find the relation for statistical properties.Ahmed et al. (2013)offeredthe structural properties of size biased 

Gamma distributions.Al-khadim and Hantoosh(2013) introduced the double weighted distribution and discuss 

the statistical properties of double weighted exponential distribution with one weight as 𝑥 and second 

weight𝐹(𝑐𝑥), where 𝐹(𝑥) CDF of the exponential distribution.Rashawn(2013)developed the double Weighted 

Rayleigh distribution and estimate its properties using 𝑥 as first weight and CDF of the Rayleigh distribution as 

second weight. 

 Suppose 𝑋 is non negative random variable with 𝑓(𝑥) as its probability density function (PDF), then the 

PDF of the weighted random variable 𝑋𝑤 is given by: 

  𝑓𝑤(𝑥) =
𝑤(𝑥)𝑓(𝑥)

𝜇𝑤
,𝑥 > 0       (1) 

where𝑤(𝑥) be a non-negative weight function and𝜇𝑤 = 𝐸(𝑤(𝑥)) < ∞. When we use weighted distribution as 

a tool in the selection of suitable models for observed data is the choice of the weight function that fits the data 

(see Al-khadim and Hantoosh (2013)). Depending upon the choice of the weight function 𝑤(𝑥), we have 

different weighted models. For example,𝑤(𝑥) = 𝑥,the resulting distribution is called length biased. More 

generally, when𝑤(𝑥) = 𝑥𝑐; 𝑐 > 0 then the resulting distribution is called sized biased. This type of sampling is 

a generalization of length biased sampling and majority of literature is centered on this weight function. Another 

type of models is double weighted distributions originally introduced by Al-khadim and Hantoosh (2013).  

The double weighted distribution is defined as: 
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  𝑓𝑤(𝑥; c) =
𝑤(𝑥)𝑓(𝑥)𝐹(𝑐𝑥)

𝑊𝐷
,𝑥 ≥ 0𝑐 > 0.    (2) 

Where𝑊𝐷=∫ 𝑤(𝑥)𝑓(𝑥)𝐹(𝑐𝑥)
∞

0
𝑑𝑥, andfirst weight is 𝑤(𝑥) and second weight is𝐹(𝑐𝑥). Also, 𝐹(𝑐𝑥) depends 

upon the original distribution𝑓(𝑥). 

2.  Proposed Double Weighted Exponential Distribution 

In this section, we propose a modified double weighted exponential distribution by considering the weight 

function𝑤(𝑥) = 𝑒𝑛𝑥. The probability density function and cumulative density function of the exponential 

distribution are given by; 

 𝑓(𝑥) = λ𝑒−λ𝑥𝑥 ≥ 0, 𝜆 > 0,    and𝐹(𝑐𝑥) = 1 − 𝑒−cλ𝑥𝑐 > 0, 

 𝑊𝐷=∫ 𝑤(𝑥)𝑓(𝑥)𝐹(𝑐𝑥)
∞

0
𝑑𝑥 = ∫ 𝑒n𝑥λ𝑒−λ𝑥(1 − 𝑒−cλ𝑥)

∞

0
𝑑𝑥 =

cλ2

(𝑛−λ)(𝑛−λ−λc)
.        (3) 

2.1 The PDF of MDWED  

Taking the first weight function 𝑤(𝑥) = 𝑒𝑛𝑥 and substituting the valuesof the Equation (3) in the definition of 

double weighted distribution which is defined in Equation (2) results as; 

 𝑓𝑤(𝑥; 𝑐, 𝜆, 𝑛) =
𝑛−𝜆)(𝑛−𝜆−𝜆𝑐)

𝜆𝑐
𝑒(n−λ)𝑥(1 − 𝑒−𝑐𝜆𝑥), 𝑥 ≥ 0, 𝑐 > 0, 𝜆 > 𝑛.  (4) 

The p.d.f defined in Equation (4) is named as Modified Double Weight Exponential Distribution (MDWED) and 

the statistical properties of this distribution will be explored in the coming sections. 

2.2 The CDFof MDWED 

The cdf of the MDWED is obtained as: 

 𝐹𝑤(𝑥; 𝑐λ, n) = ∫ 𝑓𝑤(𝑡; c, 𝑛, λ, n)𝑑𝑥
𝑥

0
,  

 𝐹𝑤(𝑥; 𝑐, λ, n) =
(𝑛−λ)(𝑛−λ−λc)

λc
∫ (𝑒(n−λ)t − 𝑒(n−λ−cλ)t)

𝑥

0
𝑑𝑡 

 𝐹𝑤(𝑥; 𝑐,λ, n) = 1 −
𝑒(n−λ)𝑥[(λ+λc−n)+(𝑛−λ)𝑒−cλ𝑥]

λc
     (5) 
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The probability density function and the cumulative density function of the proposed MDWED are made for 

various choices of parameters and are plotted in Figures 1 and 2.     

Figure 1: The probability density function of MDWED at various parameters choices.  

 

 

 
 

 

Figure 2: The CDF of the MDWED for the various choices of parameters. 
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From the Figure 1, it can be seen that the p.d.f of the proposed distribution increases when𝑐 and λ increases 

while it decreases when 𝑛 increases. The figure 2 shows that the c.d.f remain lesser for lesser choices of c and 

λwhile it is grater for the lesser values of n. All the curves given in figure2approaches to 1when 𝑥 → ∞.  

3.  Particular case of distribution 

 If we put 𝑛 = 0in 𝑡ℎ𝑒𝑝. 𝑑. 𝑓 of MDWED given by Equation (4), then it becomes: 

 𝑓𝑤(𝑥; 𝑐,λ) =
λ(1+c)

c
𝑒(−λ)𝑥(1 − 𝑒−cλ𝑥), 𝑥 ≥ 0c > 0, λ > 𝑛    (6)  

Which is new class of weighted exponential distribution given by Gupta andKundu (2009). Hence, the Equation 

(6) is special case of the proposed MDWED. 

4.  The Shape(Mode) 

The shape of density function given in (4) can be clarified by studying this function defined over the positive real 

line [0 ∞) and behavior of its derivative as follow: 

4.1 Limit and mode of function 

 Note that the limits of the density function given in (4) is given by 

 lim𝑥→0 𝑓𝑤(𝑥; c, λ) = lim
𝑥→0

(𝑛−λ)(𝑛−λ−λc)

λc
𝑒−(λ−n)𝑥(1 − 𝑒−cλ𝑥) = 0 

 lim𝑥→∞ 𝑓𝑤(𝑥; c, λ) = lim
𝑥→∞

(𝑛−λ)(𝑛−λ−λc)

λc
𝑒−(λ−n)𝑥(1 − 𝑒−cλ𝑥) = 0𝑓𝑜𝑟λ > 𝑛 (7) 

Since lim
𝑥→∞

𝑒−(λ−n)𝑥 =0,lim
𝑥→0

(1 − 𝑒−cλ𝑥) = 0and lim
𝑥→∞

(1 − 𝑒−cλ𝑥) = 1 

From the limits, we can concluded that (MDWED) has one modesay𝑥0for𝑤(𝑥) = 𝑒𝑛𝑥. In order to determined 

the modal value of the given function, the log likelihood function is 

log𝑓𝑤(𝑥; 𝑐, λ, n) = log(n − λ) + log(n − λ − λc) + (n − λ)𝑥 + log(1 − 𝑒−cλ𝑥) − log(λc)(8) 

Differentiating w.r.t x, we have 

 
𝜕log𝑓𝑤(𝑥;𝑐,λ,n)

𝜕𝑥
= (n − λ) +

λc𝑒−cλ𝑥

1−𝑒−cλ𝑥 

The mode of the MDWED can be calculated by solving nonlinear equation w.r.t,x 

 (n − λ) +
λc𝑒−cλ𝑥

1−𝑒−cλ𝑥 = 0,   i.e.   𝑥0 =
−1

λc
ln

(λ−n)

(λc+λ−n)
,     (9) 

The mode of the MDWED using the equation (9) is calculated for various parametric choices and tabulated in 

Table 1 below.  
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Table 1: The modal values of MDWED at various parameters.   

𝜆 n c 𝑥0 𝜆 n c 𝑥0 𝜆 N c 𝑥0 

2 1 1 

2 

3 

4 

0.5493 

0.4024 

0.3243 

0.2747 

5 1 

2 

3 

4 

1 0.1622 

0.1962 

0.2506 

0.3584 

2 

3 

4 

5 

1 1 0.5493 

0.3054 

0.2118 

0.1622 

 

5.  Reliability Analysis 

5.1 Reliability function 

The Reliability function or survival function 𝑅(𝑥) can be derived using the cumulative distribution and given by: 

 𝑹𝒘(𝒙;𝒄,λ,n) = 𝟏 − 𝐹𝑤(𝑥; 𝑐, λ) 

 𝑹𝒘(𝒙;𝒄,λ,n) =
𝑒(n−λ)𝑥[(λ+λc−n)+(𝑛−λ)𝑒−cλ𝑥]

λc
      (10) 

 

Figure 3: The reliability behavior of modified weighted exponential distribution for values of parameters 

λ = (2, 3, 4, )and𝑛 = 1, 𝑐 = 2. 

It is clear that 𝑅(𝑥) decreases from 1 to zero as 𝑥 increases. Also when value of λ increases𝑅(𝑥) converges to 

zero as 𝑥 → ∞ 

5.2 Hazard function 

The hazard function also known as the failure rate or hazard rate. Hazard function is the ratio of the probability 

density function to the survival function given by.  
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 𝐻𝑤(𝑥;𝑐,λ,n) =
𝑓𝑤(𝑥;c,λ)

𝑹𝒘(𝒙;𝒄,λ)
 

 𝐻𝑤(𝑥;𝑐,λ,n) =
(𝑛−λ)(𝑛−λ−λc)(1−𝑒−cλ𝑥)

[(λ+λc−n)+(𝑛−λ)𝑒−cλ𝑥]
       (11) 

 

Figure 4:The behavior of hazard function for different values ofλ.  

The value of 𝐻(𝑥) decreases whenλ increases as it is clear from figure 3.  

5.3   Reverse hazard function 

The reverse hazard function is ratio of PDF and CDF of the distribution 

𝝋𝒘(𝑥;𝑐,λ,n) =
𝑓𝑤(𝑥; c, λ)

𝐹𝑤(𝑥; c, λ)
 

𝝋𝒘(𝑥;𝑐,λ,n) =
(𝑛−λ)(𝑛−λ−λc)𝑒(n−λ)𝑥(1−𝑒−cλ𝑥)

λc−𝑒(n−λ)𝑥[(λ+λc−n)+(𝑛−λ)𝑒−cλ𝑥]
       (12) 

 

Figure 5: Represent the behavior of reverse hazard function for different choice  λ which indicate that values of 

𝝋𝒘(𝑥)decreases as x increases.  
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6.   Moments of MDWED 

The 𝑘𝑡ℎ moment of the MDWED is given by: 

𝐸𝑓𝑤(𝑥𝑘) =
(𝑛 − λ)(𝑛 − λ − λc)

λc
∫ 𝑥𝑘

∞

0

𝑒(n−λ)𝑥(1 − 𝑒−cλ𝑥)𝑑𝑥𝑘 = 1,2,3… …… …. 

𝐸𝑓𝑤(𝑥𝑘) =
(𝑛 − λ)(𝑛 − λ − λc)

λc
∫ [𝑥𝑘

∞

0

𝑒−(λ−n)𝑥 − 𝑥𝑘𝑒−(λ+cλ−n)]𝑑𝑥 

𝐸𝑓𝑤(𝑥𝑘) =
(𝑛 − λ)(𝑛 − λ − λc)

λc
[

Γ(𝑘 + 1)

(λ − n)𝑘+1
−

Γ(𝑘 + 1)

(λ + λc − n)𝑘+1
] 

𝐸𝑓𝑤(𝑥𝑘) =
(𝑛 − λ)(𝑛 − λ − λc)

λc
Γ(𝑘 + 1) [

(λ + λc − n)𝑘+1 − (λ − n)𝑘+1

(λ − n)𝑘+1(λ + λc − n)𝑘+1
] 

𝐸𝑓𝑤(𝑥𝑘) = Γ(𝑘 + 1) [
(λ+λc−n)𝑘+1−(λ−n)𝑘+1

λc(λ−n)𝑘(λ+λc−n)𝑘
]k=1,2,3………… 

Le t 𝜖𝑐 = λ + λc − n, and𝜖 = λ − n 

𝐸𝑓𝑤(𝑥𝑘) = Γ(𝑘 + 1) [
(𝜖𝑐)

𝑘+1−(𝜖)𝑘+1

λc(𝜖)𝑘(𝜖𝑐)𝑘
]   k=1,2,3…           (13) 

From the above equation we can find mean, variance,coefficient of variation, skewness and kurtosis as follow; 

6.1 The Mean 

To find mean put 𝑘 = 1in          

𝝁 = Γ(2) [
(𝜖𝑐)2−(𝜖)2

(λc)(𝜖)(𝜖𝑐)
]               

(14) 

𝝁 = [
(𝜖𝑐)

2 − (𝜖)2

(λc)(𝜖)(𝜖𝑐)
] 𝑎𝑠Γ(2) = 1 

6.2  The Variance    

𝑽𝒂𝒓.= 𝑬(𝑥2) − 𝝁𝟐 

𝝈𝟐 = Γ(3) [
(𝜖𝑐)

3−(𝜖)3

λc(𝜖)2(𝜖𝑐)
2] -Γ(2)2 [

(𝜖𝑐)2−(𝜖)2

(λc)(𝜖)(𝜖𝑐)
]
2

 

𝝈𝟐 =
1

(λc)2(𝜖)2(𝜖𝑐)
2 [Γ(3)λc((𝜖𝑐)

3 − (𝜖)3) − (Γ(2))2((𝜖𝑐)
2 − (𝜖)2)2        (15) 

𝝈𝟐 =
1

(λc)2(𝜖)2(𝜖𝑐)
2
[2λc((𝜖𝑐)

3 − (𝜖)3) − ((𝜖𝑐)
2 − (𝜖)2)2]𝑎𝑠Γ(3) = 2, Γ(2) = 1 

6.3  The Standard deviation (S.D) 

𝝈 =
[2λc((𝜖𝑐)

3 − (𝜖)3) − ((𝜖𝑐)
2 − (𝜖)2)2]

1

2

(λc)(𝜖)(𝜖𝑐)
 

6.4 The coefficient of variance 

𝐶. 𝑉 =
[2λc((𝜖𝑐)

3−(𝜖)3)−((𝜖𝑐)
2−(𝜖)2)

2
]

1
2

(𝜖𝑐)
2−(𝜖)2
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7.5 The Coefficient of skewness 

C. S =
(λc)2Γ(4)[(𝜖𝑐)

4 − (𝜖)4] − 3Γ(2)Γ(3)λc[(𝜖𝑐)
3 − (𝜖)3][(𝜖𝑐 )

2 − (𝜖)2] + 2Γ(2)((𝜖𝑐)
2 − (𝜖)2)]3

[Γ(3)λc((𝜖𝑐)
3 − (𝜖)3) − (Γ(2))2((𝜖𝑐)

2 − (𝜖)2)2]
3

2

 

C. S =
6(λc)2[(𝜖𝑐)

4−(𝜖)4]−6λc[(𝜖𝑐)3−(𝜖)3][(𝜖𝑐)
2−(𝜖)2]+2((𝜖𝑐)2−(𝜖)2)]

3

[Γ(3)λc((𝜖𝑐)3−(𝜖)3)−(Γ(2))2((𝜖𝑐)
2−(𝜖)2)2]

3
2

,Γ(4) = 6,        (18) 

6.6 Coefficient of kurtosis 

Let 𝜖𝑐 = λ + λc − n, and𝜖 

𝐶. 𝐾

=
(λc)3Γ(5)[𝜖𝑐

5 − 𝜖5] − 4(λc)2Γ(4)Γ(2)[𝜖𝑐
4 − 𝜖4][𝜖𝑐

2 − 𝜖2] + 6λcΓ(3)(Γ(2))
2
[𝜖𝑐

3 − 𝜖3][𝜖𝑐
2 − 𝜖2]2 − 3(Γ(2))

4
[𝜖𝑐

2 − 𝜖2]4

[Γ(3)λc(𝜖𝑐
3 − 𝜖3) − (Γ(2))2(𝜖𝑐

2 − 𝜖2)2]2
 

asΓ(5) = 24, Γ(4) = 6, Γ(3) = 2, Γ(2) = 1           (19) 

The Table 2Given below shows the Mod (𝑋𝑤),Mean(𝜇), Variance(𝝈𝟐), Standard Deviation(S.D), Coefficient of 

variance(C.V), Coefficient of Skewness(C.S), Coefficient of kurtosis S(C.K) with some values parameters. 

Table2: The values of mean, mod, variance, S.D, C.V, C.S and C.K at various choices of parameters. 

𝜆 N C 𝑋𝑤 𝜇 𝜎2 S.D C.V C.S C.K 

2 1 

 

1 

2 

3 

4 

0.5493 

0.4024 

0.3243 

0.2747 

1.3333 

1.2000 

1.1429 

1.1111 

1.1111 

1.0400 

1.0204 

1.0123 

1.0541 

1.0198 

1.0101 

1.0061 

0.7926 

0.8498 

0.8838 

0.9055 

1.7709 

1.9008 

1.9460 

1.9662 

7.9200 

8.5562 

8.7680 

8.8554 

5 1 

2 

3 

4 

1 0.1622 

0.1962 

0.2506 

0.3584 

0.3611 

0.4583 

0.6429 

1.1667 

0.0748 

0.1267 

0.2704 

1.0278 

0.2735 

0.3560 

0.5200 

1.0138 

0.7574 

0.7768 

0.8088 

0.8689 

1.6601 

1.7284 

1.8194 

1.9284 

7.3486 

7.7029 

8.1627 

8.6844 

2 

3 

4 

5 

1 1 0.5493 

0.3054 

0.2118 

0.1622 

1.3333 

0.7000 

0.4762 

0.3611 

1.1111 

0.2900 

0.1315 

0.0748 

0.0541 

0.5385 

0.3626 

0.2735 

0.0406 

0.7693 

0.7614 

0.7574 

1.7709 

1.7033 

1.6753 

1.6601 

7.9200 

7.5731 

7.4269 

7.3486 

7. Moment generating function of (MDWED) 

𝑴
𝒙(𝒕)=

(𝑛−λ)(𝑛−λ−λc)

λc
∫ 𝑒n𝑥𝑒t𝑥𝑒−λ𝑥(1−𝑒−cλ𝑥)𝑑𝑥
∞
𝟎

 

𝑴
𝒙(𝒕)=

(𝑛−λ)(𝑛−λ−λc)

λc
∫ 𝑒(n+t−λ)𝑥(1−𝑒−cλ𝑥)𝑑𝑥
∞
𝟎
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𝑴
𝒙(𝒕)=

(𝑛−λ)(𝑛−λ−λc)

λc
∫ [𝑒(n+t−λ)𝑥−𝑒(n+t−λ−cλ)𝑥]𝑑𝑥
∞
𝟎

 

𝑴
𝒙(𝒕)=

(𝑛−λ)(𝑛−λ−λc)

λc
∫ [𝑒−(λ−n−t)𝑥−𝑒−(λ+cλ−n−t)𝑥]𝑑𝑥
∞
𝟎

 

𝑴
𝒙(𝒕)=

(𝑛−λ)(𝑛−λ−λc)

λc
[

𝟏
(λ−n−t)

−
𝟏

(λ+cλ−n−t)
]
         (20) 

8. Fisher information of (MDWED) 

The fisher information of the above modified weighted exponential distribution can be fined as follow: 

log𝑓𝑤(𝑥; 𝑐, λ, n) = log(n − λ) + log(n − λ − λc) + (n − λ)𝑥 + log(1 − 𝑒−cλ𝑥) − log(λc)(21) 

Differentiating w.r.t c 

𝜕log𝑓𝑤(𝑥;𝑐,λ,n)

𝜕𝑐
=

(−λ)

(n−λ−λc)
+

𝑥λ𝑒−cλ𝑥

(1−𝑒−cλ𝑥)
−

1

𝑐
            (22) 

𝜕2

𝜕𝑐2
(log𝑓𝑤(𝑥; 𝑐, λ, n) =

−λ2

(n − λ − λc)2
−

𝑥2λ2𝑒−cλ𝑥

(1 − 𝑒−cλ𝑥)2
+

1

𝑐2
 

𝐸(
𝜕2

𝜕𝑐2
(log𝑓𝑤(𝑥; 𝑐, λ, n)) = 𝐸(

−λ2

(n − λ − λc)2
) − 𝐸(

𝑥2λ2𝑒−cλ𝑥

(1 − 𝑒−cλ𝑥)2
) + 𝐸(

1

𝑐2
) 

𝐸(
𝜕2

𝜕𝑐2
(log𝑓𝑤(𝑥; 𝑐, λ, n)) =

−λ2

(n−λ−λc)2
− ∫ 𝑓𝑤(𝑥; 𝑐, λ, n)

∞

0

𝑥2λ2𝑒−cλ𝑥

(1−𝑒−cλ𝑥)
2 𝑑𝑥 +

1

𝑐2        (23) 

𝐸(
𝜕2

𝜕𝑐2 (log𝑓𝑤(𝑥; 𝑐, λ, n)) =
−λ2

(n−λ−λc)2
−

(𝑛−𝜆−𝜆𝑐)(𝑛−𝜆)

𝜆2𝑐4
∑ ∑

(−1)𝑖+𝑗Γ(
(λ+λc−n)

λc
)Γ(j)

Γ(
(λ+λc−n)

λc
−1)(i!)(j!)

∞
𝑖=0 ×∞

𝑗=0
2!

(𝑖+1)!
+

1

𝑐2  

                (24)                

Differentiating (20) w.r.t λ 

𝜕log𝑓𝑤(𝑥;𝑐,λ,n)

𝜕λ
=

(−1)

(n−λ)
−

(1+𝑐)

(n−λ−λc)
− 𝑥 +

𝑐𝑥𝑒−cλ𝑥

(1−𝑒−cλ𝑥)
−

1

λ
           (25) 

𝜕2

𝜕λ2
(log𝑓𝑤(𝑥; 𝑐, λ, n)) =

−1

(n−λ)2
−

(1+𝑐)2

(n−λ−λc)2
−

𝑐2𝑥2𝑒−cλ𝑥

(1−𝑒−cλ𝑥)
2 +

1

λ2         (26) 

𝐸[
𝜕2

𝜕λ2
(log𝑓𝑤(𝑥; 𝑐, λ, n))] = 𝐸(

−1

(n − λ)2
) − 𝐸(

(1 + 𝑐)2

(n − λ − λc)2
) − 𝐸(

𝑐2𝑥2𝑒−cλ𝑥

(1 − 𝑒−cλ𝑥)2
) + 𝐸(

1

λ2
) 

𝐸[
𝜕2

𝜕λ2
(log𝑓𝑤(𝑥; 𝑐, λ, n))] =

−1

(n − λ)2
−

(1 + 𝑐)2

(n − λ − λc)2
− 𝐸(

𝑐2𝑥2𝑒−cλ𝑥

(1 − 𝑒−cλ𝑥)2
) +

1

λ2
 

𝐸[
𝜕2

𝜕λ2
(log𝑓𝑤(𝑥; 𝑐, λ, n))] =

−1

(n−λ)2
−

(1+𝑐)2

(n−λ−λc)2
−

(𝑛−𝜆−𝜆𝑐)(𝑛−𝜆)

𝜆4𝑐2
∑ ∑

(−1)𝑖+𝑗Γ(
(λ+λc−n)

λc
)Γ(j)

Γ(
(λ+λc−n)

λc
−1)(i!)(j!)

∞
𝑖=0 ×∞

𝑗=0
2!

(𝑖+1)!
+

1

λ2 

 (27) 

Differentiating (20) w.r.t 𝑛 

𝜕log𝑓𝑤(𝑥;𝑐,λ,n)

𝜕𝑛
=

1

(n−λ)
+

1

(n−λ−λc)
+ 𝑥             (28) 

𝜕2

𝜕n2
(log𝑓𝑤(𝑥; 𝑐, λ, n)) = −

1

(n−λ)2
−

1

(n−λ−λc)2
            (29) 
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𝐸 [
𝜕2

𝜕n2
(log𝑓𝑤(𝑥; 𝑐, λ, n))] = 𝐸[−

1

(n−λ)2
−

1

(n−λ−λc)2
] 

𝐸 [
𝜕2

𝜕n2
(log(𝑥; 𝑐, λ, n))] = −

1

(n−λ)2
−

1

(n−λ−λc)2
           (30) 

Differentiating (21) w.r.t λ 

𝜕2

𝜕λ𝜕𝑐
(log𝑓𝑤(𝑥; 𝑐, λ, n)) =

(−n)

(n − λ − λc)2
−

𝑐λ𝑥2𝑒−cλ𝑥

(1 − 𝑒−cλ𝑥)2
+

𝑥𝑒−cλ𝑥

(1 − 𝑒−cλ𝑥)
 

𝐸[
𝜕2

𝜕λ𝜕𝑐
(log𝑓𝑤(𝑥; 𝑐, λ, n))] = 𝐸[

(−n)

(n − λ − λc)2
] − 𝐸[

𝑐λ𝑥2𝑒−cλ𝑥

(1 − 𝑒−cλ𝑥)2
] + 𝐸[

𝑥𝑒−cλ𝑥

(1 − 𝑒−cλ𝑥)
] 

𝐸 [
𝜕2

𝜕λ𝜕𝑐
(log𝑓𝑤(𝑥; 𝑐, λ, n))] =

(−n)

(n−λ−λc)2
− 𝐸[

𝑐λ𝑥2𝑒−cλ𝑥

(1−𝑒−cλ𝑥)
2] + 𝐸[

𝑥𝑒−cλ𝑥

(1−𝑒−cλ𝑥)
] 

𝐸 [
𝜕2

𝜕λ𝜕𝑐
(log𝑓𝑤(𝑥; 𝑐, λ, n))] =

(−n)

(n−λ−λc)2
−

(𝑛−𝜆−𝜆𝑐)(𝑛−𝜆)

λ3𝑐3
∑ ∑

(−1)𝑖+𝑗Γ(
(λ+λc−n)

λc
)Γ(j)

Γ(
(λ+λc−n)

λc
−1)(i!)(j!)

∞
𝑖=0 ×∞

𝑗=0
2!

(𝑖+1)!
+

n−λ

n−λ−λc
 

                           (31) 

Where 𝐸[
𝑥𝑒−cλ𝑥

(1−𝑒−cλ𝑥)
] =

n−λ

n−λ−λc
 

Differentiating (21) w r t n 

𝜕2

𝜕n𝜕𝑐
(log𝑓𝑤(𝑥; 𝑐, λ, n)) =

λ

(n − λ − λc)2
=

𝜕2

𝜕c𝜕𝑛
(log𝑓𝑤(𝑥; c)) 

𝐸 [
𝜕2

𝜕n𝜕𝑐
(log(𝑥; 𝑐, λ, n))] =

λ

(n−λ−λc)2
= 𝐸 [

𝜕2

𝜕c𝜕𝑛
(log𝑓𝑤(𝑥; c))]         (32) 

Differentiating (24) w r t n 

𝜕2

𝜕n𝜕λ
(log𝑓𝑤(𝑥; 𝑐, λ, n)) =

1

(n − λ)2
+

(1 + 𝑐)

(n − λ − λc)2
=

𝜕2

𝜕λ𝜕n
(log𝑓𝑤(𝑥; c)) 

𝐸 [
𝜕2

𝜕n𝜕λ
(log𝑓𝑤(𝑥; 𝑐, λ, n))] =

1

(n−λ)2
+

(1+𝑐)

(n−λ−λc)2
= 𝐸 [

𝜕2

𝜕λ𝜕n
(log𝑓𝑤(𝑥; c))]        (33) 

Differentiating (24) w r t c 

𝜕2

𝜕c𝜕λ
(log𝑓𝑤(𝑥; 𝑐, λ, n)) =

(−n)

(n − λ − λc)2
−

𝑐λ𝑥2𝑒−cλ𝑥

(1 − 𝑒−cλ𝑥)2
+

𝑥𝑒−cλ𝑥

(1 − 𝑒−cλ𝑥)
 

𝐸 [
𝜕2

𝜕n𝜕λ
(log𝑓𝑤(𝑥; 𝑐, λ, n))] =

(−n)

(n−λ−λc)2
−

(𝑛−𝜆−𝜆𝑐)(𝑛−𝜆)

λ3𝑐3
∑ ∑

(−1)𝑖+𝑗Γ(
(λ+λc−n)

λc
)Γ(j)

Γ(
(λ+λc−n)

λc
−1)(i!)(j!)

∞
𝑖=0 ×∞

𝑗=0
2!

(𝑖+1)!
+

n−λ

n−λ−λc
 

                (34) 

Now the fisher information matrixfor (MDWED)is given by: 

𝐼𝑤(𝑥; 𝑐, λ, n)=

[
 
 
 
 −𝐸 [

𝜕2

𝜕c2
(log(𝑥; 𝑐, λ, n))] −𝐸 [

𝜕2

𝜕λ𝜕𝑐
(log(𝑥; 𝑐, λ, n))] −𝐸 [

𝜕2

𝜕n𝜕𝑐
(log(𝑥; 𝑐, λ, n))]

−𝐸 [
𝜕2

𝜕c𝜕λ
(log(𝑥; 𝑐, λ, n))] −𝐸 [

𝜕2

𝜕λ2
(log(𝑥; 𝑐, λ, n))] −𝐸 [

𝜕2

𝜕n𝜕λ
(log(𝑥; 𝑐, λ, n))]

−𝐸 [
𝜕2

𝜕n𝜕𝑐
(log(𝑥; 𝑐, λ, n))] −𝐸 [

𝜕2

𝜕λ𝜕𝑛
(log(𝑥; 𝑐, λ, n))] −𝐸 [

𝜕2

𝜕n2
(log(𝑥; 𝑐, λ, n))] ]

 
 
 
 

      (35) 

9.  Estimation of parameters of the MDWED 
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This section presented the Method of moment and maximum likelihood to estimate the parameter of the 

proposed MDWED. 

9.1 Method of Moment estimator  

The Method of Moment estimators are not efficient as Maximum Likelihood. They are often use due to simple 

computation. Since there are three parameters are used so we find the first 3 moment estimator. If X follows 

(MDWED) with parameter n, c and λ then 𝑘𝑡ℎmoment of X is given by: 

𝐸𝑓𝑤(𝑥𝑘) = Γ(𝑘 + 1) [
(λ + λc − n)𝑘+1 − (λ − n)𝑘+1

λc(λ − n)𝑘(λ + λc − n)𝑘
] 

For k=1 and 𝑋1, 𝑋2, 𝑋3 … …… . . 𝑋𝑛 be an independent simple from the (MDWED). We obtain the 1
st
 simple as: 

1

𝑛
∑ 𝑋𝑗

𝑛
𝑗=0 = Γ(2) [

(λ+λc−n)2−(λ−n)2

λc(λ−n)(λ+λc−n)
]             (36) 

𝑋̅=[
(λ+λc−n)2−(λ−n)2

λc(λ−n)(λ+λc−n)
] where Γ(2) = 1 

1

𝑛
∑ 𝑋𝑗

2𝑛
𝑗=0 =2 [

(λ+λc−n)3−(λ−n)3

λc(λ−n)2(λ+λc−n)2
]            where Γ(3) = 2          (37) 

1

𝑛
∑ 𝑋𝑗

3𝑛
𝑗=0 =6 [

(λ+λc−n)4−(λ−n)4

λc(λ−n)3(λ+λc−n)3
]             (38) 

Solving above equations for n, c and λwe can estimate the parameters. 

We can find n, c and λ from above equations. 

9.2 Maximum likelihood estimator 

 This is the best identified, most widely used, and most important method of estimation. First we write a 

likelihood function 𝐿(𝜃; 𝑥),and then find the value 𝜀 of 𝜃 which maximize𝐿(𝜃; 𝑥) the log-likelihood function 

based on the random sample 𝑥1, 𝑥2, 𝑥3, … …… … . . 𝑥𝑚 is given by: 

𝐿(𝑥; 𝜆, 𝑛, 𝑐) = 𝑚𝑙𝑜𝑔(𝑛 − λ) + mlog(n − λ − λc) + (n − λ)∑𝑥𝑖 + ∑ log(1 − 𝑒−cλ𝑥𝑖)𝑚
𝑖=1 − 𝑚𝑙𝑜𝑔(λc) 

               (39) 

Taking partial derivative w.r.t λ, candnthenwehave 

𝜕𝐿(𝑥;𝜆,𝑛,𝑐)

𝜕λ
=

−m

(n−λ)
−

𝑚(1+𝑐)

(n−λ−λc)
− ∑ 𝑥𝑖

𝑚
𝑖=1 + ∑

c𝑥𝑖(𝑒
−cλ𝑥𝑖)

(1−𝑒−cλ𝑥𝑖)

𝑚
𝑖=1 −

𝑚

λ
         (40) 

𝜕𝐿(𝑥;𝜆,𝑛,𝑐)

𝜕c
=

(−𝑚λ)

(n−λ−λc)
+ ∑

λ𝑥𝑖(𝑒
−cλ𝑥𝑖)

(1−𝑒−cλ𝑥𝑖)

𝑚
𝑖=1 −

𝑚

𝑐
            (41) 

𝜕𝐿(𝑥;𝜆,𝑛,𝑐)

𝜕n
=

𝑚

(n−λ)
+

m

(n−λ−λc)
+ ∑ 𝑥𝑖

𝑚
𝑖=1             (42) 

Equating above equation to zero we have  

−m

(n−λ)
−

𝑚(1+𝑐)

(n−λ−λc)
− ∑ 𝑥𝑖

𝑚
𝑖=1 + ∑

c𝑥𝑖(𝑒
−cλ𝑥𝑖)

(1−𝑒−cλ𝑥𝑖)

𝑚
𝑖=1 −

𝑚

λ
= 0          (43) 

(−𝑚λ)

(n−λ−λc)
+ ∑

λ𝑥𝑖(𝑒
−cλ𝑥𝑖)

(1−𝑒−cλ𝑥𝑖)

𝑚
𝑖=1 –

𝑚

𝑐
= 0             (44) 

𝑚

(n−λ)
+

m

(n−λ−λc)
+ ∑ 𝑥𝑖

𝑚
𝑖=1 = 0                                             (45) 
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 To find the value of 𝑛, λandc we have to solve (42), (43) and (44) using numerical technique methods. 

We use newton Raphson method to (see Adi (1966)) to obtain the solution of nonlinear equation given above.  

10. Application  

In this section, an illustrative example is presented to demonstrate the application of the MDWED in the real life. 

The rain fall data given by Khadim and Hantoosh (2013) is used to fit the MDWED. Following the Khadim and 

Hantoosh (2013), the MDWED is fitted on rainfall data using Newton Raphson method. Starting with λ =
0.02, 𝑛 = 0.01and𝑐 = 0.9 as initial guess, Newton Raphson after 11 iteration gives values of parameters 

correct up to 4 decimals places as λ̂ = 0.0087, �̂� = −0.0137𝑎𝑛𝑑�̂� = 0.2253. For the validity of our Newton 

Raphson code, the DWED is also fitted on the given data. The values of parameters are obtained �̂� = 0.00051 

andλ̂ = 0.03513, which are similar to the values obtained in Khadim and Hantoosh (2013) if round off up to 4 

decimal points.  

We can also apply formal goodness of fit test in order to verify which distribution fits to the given data. 

We apply the Kolmogorov-Smirnov test (KS test) for the goodness of fit purpose. Table 4. Lists the MLE 

estimatesof the parameters λ, 𝑛 and 𝑐 and the values of the test statistics which is KS test. The p values of KS for 

(MDWED) and (DWED) are 0.450 and 0.285 respectively. The results in table 4 shows that (MDWED) fits the 

data as well as the (DWED). 

Table 3. Parameter estimates and K-S statistics for total annual rainfall (mm) in province of Babylon. 

Distributions DWED MDWED 

Parameters estimates λ̂ = 0.0351 

�̂� = 0.0005 

�̂� = 0.0087 

�̂� = −0.0137 

�̂� = 0.2253 

K.S statistics 0.1876 0.1019 

P values 0.285 0.450 

My second judgement is based on the probability plot. Here the empirical distribution functions values are taken 

along x-axis and theoretical distribution values are taken along y-axis. For the (MDWED) we have computed 

based on (4) for the y-axis against the empirical CDF (𝑖 − 0.5)/𝑛where𝑖 = 1,2,3, …… …𝑛 and (𝑥𝑖) are the 

values in the sample of data, in order from smallest to largest. The probability plot corresponding to the (DWED) 

and (MDWED)are given in figure 6 
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 Figure-6:The probability Plot of MDWED and DWED for rainfall data. 

A statistical distribution which is close to the line of theoretical probabilities gives better fit. The MDWED is 

better fit to rainfall data as compare to the DWED as it is obvious from figure 6. Therefore, on the basis of these 

two comparisons it is concluded that the MDWED provides better fit than DWED for modelling the rainfall data. 

11.  Discussions and Conclusions 
 The (MDWED) is the consequence of (DWED) hosted by Al-Khadim and Hantoosh (2013). In this 

practice the comparison of (DWED) and (MDWED) is made by well-known statistical test K.S. Test claims that 

statistical distribution better adequate for grater p values. The p values of (MDWED) and (DWED) are estimated 

in Table 3. The p value of (MDWED) is grater then p value of (DWED)which claim that(MDWED) gives better 

adequate for rainfall data and 𝑒𝑛𝑥 is better weight choice as compared to𝑥. Also we found that New Class 

Weighted Exponential Distribution given by Gupta and Kundu (2009) is a special case of the MDWED hence 

(MDWED) is most broad-spectrum and useful distribution.We hope the MDWED mayattract extensive 

applications in lifetime data analysis andother fields. The future research may consider inparameter estimation 

using Bayesian or other approaches. 
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