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Abstract 

In this paper, the existence theorems of fixed points and common fixed points for two weakly increasing 

mappings satisfying a new condition in ordered  metric spaces are proved. Our results extend, generalize and 

unify most of the fundamental metrical fixed point thaorems in the literature in Integral type mappings. 
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1. Introduction  and Preliminaries 

 Fixed point theory plays basic role in application of various branches of mathematics from elementary calculus 

and  linear algebra to topology and analysis. Fixed point theory  is not restricted to mathematics and  this theory 

has many application in other disciplines. This theory is closely related to game theory, military, economics, 

statistics and medicine. 

  Theorem 1.1 (Banach’s contraction principle) Let (X, d) be a complete metric space, c∈(0,1) and f: X→X be a 

mapping such that for each x, y ∈X,  

d(fx, fy) ≤ cd (x, y) Then f has a unique fixed point a ∈X, such that for each 

 x∈ X,    

 Theorem1.2 (Branciari) Let (X, d)  be a complete metric space ,c  and  

let f : X  be a mapping such that for each x, y ∈X,  

  ≤ c  where [0,+ [0,+  is a Lebesgue integrable  

mapping which is summable on each compact subset of  [0,+  ,  non-negative ,and such that  for each 

,  , then f has a unique fixed point  a ∈X, such that for each  x ∈ X,   

 

After the paper of Branciari, a lot of research works have been carried out on generalizing contractive condition 

of integral type for different contractive mappings satisfying various known properties. A fine work has been 

done by Rhoades [2] extending the result of Branciari by replacing the condition [1.2]  by the following 

 

 ≤  . 

 

                 Due to its simplicity and usefulness, it has become a very popular tool in solving existence problems 

in many branches of mathematical analysis and its has many applications in solving nonlinear equations. Then, 

several authors studied and extended it in many direction; 

   Despite these important features, Theorem 1.1 suffers from one drawback: the contractive condition (1.1) 

forces T to be continuous on X. It was then natural to ask if there exist weaker contractive conditions which do 
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not imply the continuity of T. In 1968, this question was answered in confirmation by Kannan[20], who 

extended Theorem 1.1 to mappings that need not be continuous on X. 

    On the other hand, Sess[35] introduced the notation of weakly commuting mappings, which are a 

generalization of commuting mappings, while Jungck[18] generalized the notation of weak commutativity by 

introducing compatible mappings and then weakly compatible mappings[19]. 

    In 2004, Berinde[4] defined tha notion of a weak contraction mapping which is more general than a 

contraction mapping. However in [5] Berinde renamed it as an almost contraction mapping, which is more 

appropriate. Berinde[4] proved some fixed point theorems for almost contractions in  complete metric spaces. 

Afterward, many authors have studied this problem and obtained significant results. Moreover Berinde[4]  

proved that any strict contraction, the Kannan[20] and Zamfirescu[43] mappings as well as a large class of quasi- 

contractions are all almost contractions. 

         Let T and S be two self mappings in a metric space(X,d). The mapping T is said to be a  S – contraction if 

there exists k  (0,1) such that d (Tx, Ty)  k d(Sx, Sy) for all x, y X. 

     In 2006, Al- Thagafi and Shahzad [1] proved the following theorem which is a generalization of  many 

known results. 

Theorem 1.3. Let E be a subset of a metric space (X,d) and S, T be two self maps of E such that T(E)  S (E ). 

Suppose that S and T are weakly compatible, T is an S- contraction and S(E ) is complete. Then S and T have a 

unique common fixed point in E. 

 

    Recently Babu et al. [2] defined the class of mappings satisfying condition(B) as follows. 

Definition 1.4.  Let ( X,d) be a metric space. A mapping T: X X is said to satisfy condition (B) if there exist a 

constant ( 0,1) and some L  0such that 

 

              d (Tx,Ty)   d(x,y) + L min  

 

 for  all x,y  X. 

 

   They proved a fixed point theorem for such mappings in  complete metric spaces. They also discussed quasi- 

contraction, almost contraction and the class of mappings that satisfy condition (B) in detail.  

      In recent year, Ciric [15] defined the following class of mappings satisfying an almost generalized  

contractive condition. 

Definition 1.5.  Let ( X,d) be a metric space, and let S, T: X X . A mapping T is called an almost generalized  

contraction  if  there exist  [ 0,1) and  

 L  0 such that 

 

              d (Tx,Sy)   M(x,y) + L min  

 

 for  all x,y  X. where   

                               M(x,y) = max  

 

   Definition 1.6.  Let ( X,d) be a metric space, and let S, T: X  X, are said to be  compatible of type (A) if   

 

       = 0  and    = 0, 

 

Whenever {  }  is a sequence in X such that    =   = z  

For some z  X. 
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Proposition 1.7. Let ( X,d) be a metric space, and let S, T: X  X, are   compatible of type (A) and    

 =   = z for  some  z  X. Then we have  

(1)    = Sz if  S is continuous at z. 

(2) STz = TSz  and  Sz = Tz if  S and T are continuous at z. 

 

Definition 1.8. A pair (S,T) of self- mappings on X is said to be weakly compatible if S  and T commute at their 

coincidence point. A  point y  X is called a point of coincidence of two self-mappings S and T on X if there 

exists a point  x  X such that y = Tx = Sx. 

 

Definition 1.9. Let X bea nonempty set. Then ( X,d, ) is called  an ordered metric space  iff: 

(1)  ( X,d) is a metric space, 

(2)  ( X, ) is  partial ordered. 

 

 

 

2.  Main Results 

 

Theorem 2.1. Let  ( X, ) be a  partially ordered set and suppose that there exists a metric d on X such that the 

metric ( X,d) is complete.  

Let A, B, S, T: X  X be four  mappings with respect to  satisfying the following  

(i)  A( X) ⊆ T(X)  and  B( X) ⊆ S(X), 

(ii)  The pairs {A, S} and {B, T} are compatible of  type (A), 

(iii) One of A, B, S and T is continuous, 

(iv) There exists [ 0,1) and  L  0 such that 

 

 ≤  . 

  

                       + L                 (2.1.1) 

Where M(x,y) =  

 for  all comparable elements x,y  X.also [0,+ [0,+  is a Lebesgue integrable  mapping which is 

summable on each compact subset of  [0,+  ,  non-negative ,and such that  for each ,  

.Then A, B, S and T have a unique common fixed point in X.  

 

 

Proof.  Suppose   X is arbitrary. Let us construct a sequence {  in X such that  

 

                                           = A  = T   and  

 

                                           = B  = S  ,   for  all n  0. 

 

Now 
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 M( , ) =   

                       =  

  

     

                      =   

 

                         

 

                    =   

 

Therefore  M( , )     . 

 

        Since   and    are comparable then by taking   for x  and  for y in (2.1.1), it follows 

that 

 

       = . 

   

                                        ≤  . 

   

                                   + L   

 

                                     ≤  .  

      

                                   + L   

 

                                     ≤  .  

      

                                   + L  

Thus  

 

     ≤  .   
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If       =    Then 

 

                     ≤   

 

In case       =    for some n, we have 

 

                     ≤   . 

 

Which is  contradiction 

 

Therefore we have 

 

                              ≤    

 

Similarly, it can be proved that 

 

                               ≤    

So 

 

               ≤                                     (2.1.2) 

 

                                             ≤      

 

                                            ≤  ……………. 

                                           

                                           ≤   , for all n  1. 

It is obvious that  the following inequality  holds for  m n. 

 

                 

 

                                    

 

                                        

 

             

  

Hence 

   = 0  as n .                                                            (2.1.3) 

Now we prove that   is a Cauchysequence.  Suppose it is not.Then there exists an   0 and sub 

sequence  and  such that 
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M(p)  n(p)  m(p+1)  with    

) , 

 
Now    

) )   +   )    

                       )   +                                            (2.1.5)                                                                                                      

From   (2.1.3), (2.1.5), we get   

                                               (2.1.6)                                                                    

Using (2.1.2), (2.1.4), and (2.1.6)    we  get ,  

                            

                                          k  

                                          k  

Which is contradiction,      

  

Hence  we conclude that   is a Cauchy  sequence. Since X is complete. The sequence    converges to 

a point z in X and  subsequences  {A , {S ,{B  and  {T   also converges  to z. 

 

        Now suppose that T is continuous. Since B and T are compatible of type (A), then by Proposition 1.7, we 

have 

 

            B T , T T   Tz  as n . 

Putting  x =   and y =    in (2.1.1), we have 

 

  

             

                         ≤  . 

  

                       + L     

Taking  the limit  n , we get 

            

             

                                       ≤  . 
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                                     + L     

                                    =    

 

Which  implies that Tz = z. Again by replacing x by   and y by z in (2.1.1), we have 

 

  

             

                         ≤  . 

  

                       + L     

,  

 Taking  the limit  n , we get 

            

             

                                       ≤  . 

  

                                      + L     

                                    =  , 

 

 Which implies that  Bz = z.  Since B(X) ⊆ S(X), there exists a point w in X such that Bz = Sw = z. Again by 

(2.1.1), we have 

 

  

             

                         ≤  . 

  

                       + L  

 

Taking  the limit  n , we get 
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                                       ≤  . 

  

                                      + L     

                                    =  , 

 

 Which implies that Aw = z. Since A and S are compatible of type (A), and Aw = Sw = z, then by  Proposition 

1.7, we have 

 

                                          Az = ASw = SAw =Sz. 

 

By using (2.1.1) again, we  have Az = z. 

  

        Therefore Az = Bz = Sz = Tz = z, that is z is a  common fixed point of A, 

 B, S  and T. For  uniqueness, let   be  another common fixed point such that  

 

z . Then 

 

               =   

 

                                     ≤  .  

  

                                    + L                  

          ≤    

 

Which means that  z = . Thus z is a unique common fixed point of  A, B, S and T. 
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