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1. Introduction: 

It was shown by Kasahara, S.[2]  in 1976, that several known generalization of the Banach Contraction Theorem 

can be derived easily from a Fixed Point Theorem in an L – space. Iski [1] has used the fundamental idea of 

Kasahara to investigate the generalization of some known Fixed Point Theorem in L- space. 

Let N be the set of natural number and X be a nonempty set. Then L – space is defined to be the pair (X, →) of 

the set X and a subset → of the set 𝑋𝑁 × X, satisfying the following conditions: 

𝐿1 – if 𝑥𝑛 = x Є X for all n Є N, then ({𝑥𝑛}𝑛Є𝑁,𝑥)) Є → 

𝐿2 - if ({𝑥𝑛}𝑛Є𝑁,𝑥)) Є →, then{ 𝑥𝑛𝑖
}𝑖Є𝑁  

For every subsequence  {𝑥𝑛𝑖
}𝑖Є𝑁 of {𝑥𝑛}𝑛Є𝑁 

In what follows instead of writing ({𝑥𝑛}𝑛Є𝑁,𝑥)) Є →, we write  {𝑥𝑛}𝑛Є𝑁 → x or 𝑥𝑛 → x and read {𝑥𝑛}𝑛Є𝑁 

converges to x. Further we give some definitions regarding L – space. 

Definition1. Let (X, →) be an L- space. It is said to be ‘separated’ if each sequence in x converges to at most 

one point of X.  

Definition 2. A mapping f on (X, →) into an L- space (𝑋 ′,→′) is said to be continuous’ if 𝑥𝑛 → x implies f(𝑥𝑛) 

→′ f(x) for some subsequence {𝑥𝑛𝑖
}𝑖Є𝑁 for {𝑥𝑛}𝑛Є𝑁 . 

Definition3. Let d be a non negative extended real valued function on X × X: 0  d(x, y)  ∞𝑖 for all x, y Є X. 

The            L – space is said to be d – complete if each sequence{𝑥𝑛}𝑛Є𝑁inX with ∑ 𝑑(∞
𝑖=0 𝑥𝑖,𝑥𝑖+1) <  ∞ 

converges to the atmost one point of X.  

In this context Kasahara, S. proved a lemma, which as follows: 

Lemma (Kasahara, S.): Let (X, →) be an L – space which is d – complete for a non negative real valued 

function d on X × X. If (X, →) is separated then: 

d(x, y) = d(y, x) = 0 implies, x = y for all x, y Є X. 

During the past few years many great mathematicians Yeh [7], Singh [6], Pathak and Dubey [4], Sharma and 

Agrawal [5], Patel, Sahu and Sao [3], worked for          L- space. In this paper, we similar investigation for the 

study of Fixed Point Theorems in L- space are worked out. We find some more Fixed Point Theorem and 

Common Fixed Point Theorem in L – space.  

Theorem 1: Let (X, →) be a separated      L – space, which is d – complete for a non negative real valued 

function d on X ×  X with d(x, x) = 0, for each x in X. Let E, F, S and T be three continuous self mapping of X 

into itself, satisfying the following condition: 

(1) E(X) ⊂ T (X) and F(X) ⊂ S(X), 

(2)ET = TE, FS = FS  
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(3)d(Ex,Fy)  α[
[d(Sx,Ty){d(Sx,Ex) + d(Ty,Fy)}

d(Sx,Fy) + d (Ty,Ex)
]      

          +β[d(Sx,Ex)+d(Ty,Fy)]+𝛾[d(Sx,Fy) 

                +d(Ty, Ex)] + δ d(Sx, Ty)  

for all x, y in X where non negative α, β, 𝛾, δ such that 0  α + β +𝛾 + δ < 1. With      Sx = Ty. Then E, F, S, T 

have unique common fixed point. 

Proof: Let 𝑥0 Є X, since E(X) ⊂ T(X) we can choose a point 𝑥𝑖 Є X, such that        𝑆𝑥1
 = 𝐸𝑥0

 = 𝑦0 also F(X) ⊂ 

S(X), we can choose 𝑥2 Є X such that 𝑇𝑥2
 = 𝐹𝑥1

 = 𝑦1. In general we can choose the point: 

𝑆𝑥2𝑛+1
= 𝐸𝑥2𝑛

= 𝑦2𝑛, 𝑇𝑥2𝑛+2
=𝐹𝑥2𝑛+1

 = 𝑦2𝑛+1. 

Now consider, 

 d(𝑆𝑥2𝑛+1
,𝑇𝑥2𝑛+2

) = d(𝐸𝑥2𝑛
, 𝐹𝑥2𝑛+1

)   α[
d(S𝑥2𝑛,T𝑥2𝑛+1){d(S𝑥2𝑛,E𝑥2𝑛)+d(T𝑥2𝑛+1,F𝑥2𝑛+1)}

d(S𝑥2𝑛,F𝑥2𝑛+1)+ d(T𝑥2𝑛+1,E𝑥2𝑛)
]  

  + β[d(S𝑥2𝑛, E𝑥2𝑛) + d( T𝑥2𝑛+1, F𝑥2𝑛+1)]  

   +𝛾 [d(S𝑥2𝑛, F𝑥2𝑛+1) + d(T𝑥2𝑛+1, E𝑥2𝑛)] 

  + δ d(S𝑥2𝑛, T𝑥2𝑛+1)  

 d(𝑦2𝑛,𝑦2𝑛+1) α[
[d(𝑦2𝑛−1,𝑦2𝑛){d(𝑦2𝑛−1,𝑦2𝑛) + d(𝑦2𝑛,𝑦2𝑛+1)}

d(𝑦2𝑛−1,𝑦2𝑛+1) + d (𝑦2𝑛,𝑦2𝑛)
]  

 +β[d(𝑦2𝑛−1, 𝑦2𝑛)+d(𝑦2𝑛,𝑦2𝑛+1)]     +𝛾 [d(𝑦2𝑛−1, 𝑦2𝑛+1) + d(𝑦2𝑛, 𝑦2𝑛)]     + δ d(𝑦2𝑛−1, 𝑦2𝑛)  

d(𝑦2𝑛, 𝑦2𝑛+1)  α d(𝑦2𝑛−1, 𝑦2𝑛)    + β d(𝑦2𝑛−1, 𝑦2𝑛+1)  + 𝛾 d(𝑦2𝑛−1, 𝑦2𝑛+1) 

+ δ d(𝑦2𝑛−1, 𝑦2𝑛) 

d(𝑦2𝑛, 𝑦2𝑛+1)     α d(𝑦2𝑛−1, 𝑦2𝑛)    + β[ d(𝑦2𝑛−1, 𝑦2𝑛) + d(𝑦2𝑛, 𝑦2𝑛+1)] 

  + 𝛾 [d(𝑦2𝑛−1, 𝑦2𝑛) + d(𝑦2𝑛, 𝑦2𝑛+1)]                    

  + δ d(𝑦2𝑛−1, 𝑦2𝑛) 

(1 – β – γ) d(𝑦2𝑛, 𝑦2𝑛+1) 

                 (α + β + 𝛾 + δ) d(𝑦2𝑛−1, 𝑦2𝑛)                          

 d(𝑦2𝑛, 𝑦2𝑛+1)  
(α + β +γ + δ)

(1 – β – γ )
 d(𝑦2𝑛−1, 𝑦2𝑛) 

 d(𝑦2𝑛, 𝑦2𝑛+1)  q d(𝑦2𝑛−1, 𝑦2𝑛) 

     where q = 
(α + β +γ + δ)

(1 – β – γ )
  < 1 

for n = 1, 2, 3, . . . 

Whether d(𝑦2𝑛, 𝑦2𝑛+1) = 0 or not  

Similarly, we have 

  d(𝑦2𝑛, 𝑦2𝑛+1)  𝑞𝑛 d (𝑦0, 𝑦1), 

for every positive integer, this means that,  

∑ 𝑑 (𝑆𝑥2𝑖+1, 𝑇∞
𝑖=0 𝑦2𝑖+2) < ∞. 

Thus the d – completeness of the space implies that, the sequence (𝑆𝑛𝑥0)𝑛Є𝑁) and  (𝑇𝑛𝑥0)𝑛Є𝑁 converges to 

some u. 

(𝐸𝑛𝑥0)𝑛Є𝑁) and  (𝐹𝑛𝑥0)𝑛Є𝑁 converges to some point u, respectively. Since E, F, S and T are continuous, there is 

a subsequence t of (𝑇𝑛𝑥0)𝑛Є𝑁 such that: 
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E[S(t) → E(u), S[E(t)] → S(u), F[T(t)] → F(u), T[F(t)] → T(u) 

we have, E(u) = F(u) = S(u) = T(u) 

Thus, we can write  

S (Tu) = T(Su) = E(Tu) = T(Eu) = E(Su) =  E(Eu) = E(Fu)= T(Fu) = S(Fu)) = F(Fu), 

If E(u) ≠ F(Eu) 

d(Eu,F(Eu)] α[
[d(Su,T(Eu)){d(Su,Eu) + d(T(Eu),F(Eu))}

d(Su,F(Eu)) + d (T(Eu),Eu)
] + β[d(Su, Eu) + d( T(Eu), F(Eu))]  

  +𝛾 [d(Su, F(Eu)) + d(T(Eu), Eu)] 

  + δ d(Su, T(Eu))  

d(Eu, F(Eu)]  (β +𝛾 + δ)[d(Eu, , F(Eu))]  

Thus we get a contradiction. Hence Eu = F(Eu) 

we get Eu = F(Eu) = T(Eu) = E(Eu) = S(Eu). Hence Eu is a common fixed point of E, F, S and T. 

Uniqueness: Let v is another fixed point of E, F, S and T different from u, then we have  

d(u, v)  = d(Eu, Fv)  α[
[d(Su,Tv){d(Sx,Eu) + d(Tv,Fv)}

d(Su,Fv) + d (Tv,Eu)
]  

   + β[d(Su, Eu) + d( Tv, Fv)]  

    +𝛾 [d(Su, Fv) + d(Tv, Eu)] 

    + δ d(Su, Tv)  

d(u, v)  (2𝛾 + δ) d(u, v) 

which is a contradiction. Therefore u is unique fixed point of E, F, S and T in X. 
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