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Abstract 

The multi-criteria problem of scheduling n jobs on a single machine was considered in this paper. The 

criteria belong to minimize total completion times, total tardiness and total late work and minimize total 

completion times, total tardiness and maximum late work by using some exact and local search methods. The 

proposed methods for solving these minimization problems were seemed to be helpful in finding the set of all 

efficient solutions. This set of all efficient solutions is not easy to find, therefore, it could be preferable to have 

an approximation to that set in a reasonable amount of time. Therefore branch and bound (BAB) technique was 

proposed as an exact approach, while the Genetic algorithm (GA) and Particle Swarm Optimization (PSO) 

methods were also proposed as local search methods. 

Keywords: Multiple objective Scheduling, Branch and Bound, Pareto Optimal Solutions, Genetic Algorithm, 

Particle Swarm Optimization. 

 

1. Introduction 

Scheduling problems are branch of a large field of combinatorial optimization (CO). It was defined as a 

decision making process that is used on a regular basis in many manufacturing and services industries. 

Scheduling problems deals with the allocation of resources to tasks over given time periods. Its goal is to 

minimize one or more objectives (Pinedo 2008). Scheduling theory has been of concern in production problems, 

manufacturing models, computer science, industrial management, transportation, agriculture, hospitals and many 

other applications (Agin 1996). Resources and tasks were called machines and jobs respectively. A machine can 

perform at most one job at a time. The multi-criteria scheduling problem can be stated as follows: There are n 

jobs to be processed on a single machine, each job i has processing time pi and due date di at which ideally 

should be completed. Penalties are incurred whenever a job i is completed earlier or later than its due date di. 

Multi-criteria optimization with conflicting objective functions provides a set of Pareto optimal solutions, 

rather than one optimal solution. This set of solutions includes the solution that no other solution is better than 

with respect to all objective functions (Abdul_Razaq). 

Although the importance of multi-criteria scheduling has been founded for many years (French 1982); 

(Nelson et al. 1986); (George and Paul 2007); (Mahmood 2014), little attention has been given in the literature to 

this topic. 

The branch and bound (BAB) methods have been first applied to scheduling by Lomnicki 1965 and Ignall 

and Schrage (1965), these methods accurately solve machine scheduling problems (MSP). 

Genetic Algorithm (GA) can be considered as a class of optimization algorithms. GA attempts to solve 

problems through modeling a simplified version of genetic process. There are many problems for which a GA 

approach is useful. It is, however, untraditional if assignment is such a problem (Sabah 2004). 

The Particle Swarm Optimization (PSO) considered a new family of algorithms that may be used to find 

optimal, near optimal or approximated solutions to optimization problems. PSO is an extremely simple algorithm 
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that seems to be effective for optimizing a very wide range of applications (Shi 2004). 

The organization of this paper is as follows: in section2 we present multiple objective problems. Section3 and 

4 presents the mathematical model and discusses the BAB, PSO and GA methods. Implementation, experimental 

results, analysis and conclusions are given in the last sections. 

1.1 Problem Statement 

The problem of this work is to propose different models to find the efficient solution (Pareto optimal 

solutions) for 1//(Ci,Ti,Vi) and 1//(Ci,Ti,Vmax) problems. Complete Enumeration Method (CEM) and 

Branch And Bound (BAB) method can be used. GA and PSO as two local search methods (LSM) may also 

applied for multi-criteria scheduling problem. 

The following notation will be used in this paper: 

n   : number of jobs. 

N :  Set of n jobs. 

pj : processing time of job j. 

dj : due date of job j. 

Cj : completion time of job j. 

Tj : the tardiness of job j. 

Vj : the late work of job j. 

Vmax : The maximum late work 

The following basic concepts sequence and rules were used in this paper: 

Definition (1): Shortest Processing Time (SPT) rule; Jobs are sequencing in non-decreasing order of pi, this rule 

was used to minimize Ci for 1/ /Ci problem (Smith 1956). 

Definition (2): Earliest Due Date (EDD) rule: Jobs are sequencing in non-decreasing order of di, this rule was 

used to minimize Tmax for 1/ /Tmax (Jouni 2000). 

Definition (3): The term "Optimize" in a multi-criteria decision making problem refers to a solution around 

which there is no way to improve any objective without worsening the other objective (Jouni 2000). 

Definition (4): A feasible schedule  is a Pareto optimal (PO), or non-dominated (efficient) with respect to the 

performance criteria f and g if there is no feasible schedule  such that both f()f() and g()g(), where at 

least one of the inequalities is strict (Hoogeveen 2005). 

Lemma (1): (Al-Magraby's lemma) If djpi, then there exists an optimal sequence in which job j sequencing 

last, for the 1/ /Ti problem (Chen et al. 1997). 

Theorem (1): (Emmon's theorem)If pipj and didj then there exists an optimal sequencing in which job i 

sequencing before job j, for the 1/ /Ti problem (Chen et al. 1997). 

 

2. Mathematical Formulation with Analysis 

The MCP deals with scheduling the set N={1,2,…,n} of n  jobs which are processed on a single machine to 

minimize the multi-criteria. Each job iN has is to be processed on a single machine which can handle only one 

job at a time. The job i has a processing time pi and due date di, all jobs are available for processing at a time 

zero. 

If a schedule  = (1,2,…,n) is given,  then the earliest completion time 



i

1j
ji pC for each job i can be 

computed and consequently the tardiness of job iTi = max{Ci-di,0} and 
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2.1 Main Concepts 

Theorem (2): If the composite objective function F is linear, then there exists an extreme schedule that 

minimizes F (Hoogeveen 2005). 

 

Definition (5): The function F(f,g) is said to be non-decreasing in both arguments if for any pair of outcome 

values (x,y) of the functions f and g, we have F(x,y)  F(x+a, y+b), for each pair of non-negative values a and b 

(Hoogeveen 2005).  

Theorem (3): If the composite objective function F(f,g) is non-decreasing in both arguments, then there exists  

a Pareto optimal schedule that minimizes F (Hoogeveen 2005). 

 

In this work, the following algorithms were required: 

Lawler's algorithm (LA) which solves the 1//Vmax problem [1], to find minimum Vmax. 

Lawler's algorithm (LA) (Mahmood 2014) was described by the following steps: 

Step (1): Let N={1,2,..,n}, F is the set of all jobs with no successors and  = . 

Step (2): Let j* be a job such that )}p(V{min)p(V
Ni

ij
Fj

Ni
i*j 






 . 

Step (3): Set N=N-{j*} and sequence job j* in last position of , i.e. =(j*,). 

Step (4): Modify F with respect to the new set of schedulable jobs. 

Step (5): If  =   stop, otherwise go to step (2). 

 

In this subsection we shall try to find efficient (Pareto optimal) solutions for multi-criteria simultaneous 

problems. Definition (5) can be extended for three objectives as: 

Definition (6): The function F (f1, f2, f3) is said to be non-decreasing in its arguments if for any outcome value 

(x,y,z) of the functions f1, f2 and f3, we have F(x,y,z)  F(x+a, y+b, z+c) for each of non-negative value a, b and 

c. 

Theorem (4): Consider the composite objective function F(f1, f2,...,fk) where F is non-decreasing in all 

performance criteria fi, i=1, 2,…, k, then there is a Pareto optimal schedule with respect to f1,f2,…,fk that 

minimizes F (Mahmood 2014). 

Let us first consider the formulations of the multi-criteria simultaneous problems say 1//(f1,f2,f3). The 

formulation was as follows:  

Min Multi-criteria  

















3

2

1

f

f

f

 

S.t. 

Constraints for the problem of object f1 

Constraints for the problem of object f2 

Constraints for the problem of object f3 

In multi-criteria scheduling problems, the optimal solutions were generally called Pareto optimal solutions. 
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This means that in this type of optimization, we generate all efficient (non-dominated) solutions, then allow the 

decision maker to make explicit trade-offs among these solutions. 

For the problem )f,f,f//(1 321  a schedule (solution) 
1  dominates another schedule 

2
 if and only if 

f1(1)f1(2), f2(1)f2(2) and f3(1)f3(2), with at least one strict inequality. 

 

Suppose that f1=∑Cj, f2=∑Tj and f3{∑Vj,Vmax}. Our objective is to find a schedule S (where S is the set 

of all feasible schedule) that minimizes the multi-criteria problems: 1//(∑Cj,∑Tj,∑Vj) and 1//(∑Cj,∑Tj,Vmax),  

these problems belong to simultaneous optimization. 

Problem (P1) can be formulated as follows: 

Min { Ci , Ti, Vi} 

Subject to 

Ci pi,    i=1,2,…,n. 

Ti Ci-di,   i=1,2,…,n.            …(P1) 

Ti,Vi 0,   i=1,2,…,n. 

The 


n

1j
jV//1  problem is NP-hard since its non-preemptive total late work problem is NP-hard (Jouni 2000). 

While problem (P2) can be formulated as follows: 

 

Min { Ci , Ti, Vmax} 

Subject to 

Ci pi,    i=1,2,…,n. 

Ti Ci-di,   i=1,2,…,n.            …(P2) 

Ti,Vi 0,   i=1,2,…,n. 

 

The only chance to minimize Ti is to use the special cases for the jobs with the same processing times (see 

section 2.2). 

From problems (P1) and (P2) we can derive two subproblems, say (SP1) and (SP2) respectively. 

Problem (SP1) is 1/ / Ci + Ti+ Vi which can be written as: 

Min { Ci + Ti+ Vi} 

Subject to 

Ci pi,   i=1,2,…,n. 

Ti Ci-di,   i=1,2,…,n.             …(SP1) 

Ti,Vi 0,  i=1,2,…,n. 

 

While problem (SP2) is 1/ / Ci + Ti + Vmax which can be written as: 

Min { Ci + Ti + Vmax } 

Subject to 

Ci pi,   i=1,2,…,n. 

Ti Ci-di,   i=1,2,…,n.             …(SP2) 

Ti,Vi 0,  i=1,2,…,n. 

The aim for the (P1) and (P2) problems is to find a processing order of the jobs on a single machine to 

minimize the sum of total completion times and the total tardiness and the total of late work, or maximum late 
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work, which are a single object and can be minimized by BAB method. 

 

2.2 Special Cases for the Problems (P1) and (P2) 

For the multi-criteria, if the objectives can be optimized individually, then one can deduce that the set of 

efficient solutions have no more elements only one with extreme values of the individul objective functions. The 

above fact can be seen in the following special cases: 

Case (1): A schedule  obtained by ordering the jobs in a non-decreasing order of thier processing times 

(SPT-rule) is an effeceint solution for both problems (P1) and (P2) if d(i)+p(i)  C(i+1)  for all i = 1,2,…,n-1. 

Case (2): From Emmon's theorem, if the SPT and EDD rules are identical then there exist an effeceint solution 

for both problems (P1) and (P2). 

Case (3): If pi = p, i, p is positive integer and a schedule  obtained by ordering the jobs in a non-decreasing 

order of due dates (EDD-rule) is an effeceint solution for both problems (P1) and (P2). 

Case (4): If di = d, i, d is positive integer and a schedule  obtained by ordering the jobs in a non-decreasing 

order of processing times (SPT-rule) is an effeceint solution for both problems (P1) and (P2). 

Note that case (3) and case (4) are special case of case (2). 

Case (5): From Al-Magrapy lemma, if dj


n

1i

ip , and }p{maxp i
Ni

j


 , and this also satisfies for each job kN-{j}, 

then there exists an efficient solution for (P1)and (P2). 

Case (6): If  satisifes Lawler's algorithm (LA),then there exist an efficient solution for problem (P2). 

Case (7): If for any schedule, C(j)d(j), j, j=1,2,…,n, and  satisfies SPT-rule, then the schedule gives 

Vi=0 and Vmax=0 then there exists an efficient solution for both (P1) and (P2). 

3. MSP Exact Solving Methods 

3.1 Complete Enumeration Method (Jouni 2000). 

Complete enumeration methods generate one by one, all feasible schedules and then pick the best one. For  

a single machine problem of n jobs there are n! different sequences. Hence for the corresponding m machines 

problem, there are (n!)
m
 different sequences. This method may take considerable time as the number (n!)

m
 is very 

large even for relatively small values of n and m. 

  

3.2 Branch and Bound Method for (P1) and (P2) 

This method depends on the techniques of branch and bound (BAB) algorithm with some modifications. The 

BAB method is characterized by its branching procedure, upper and lower bounding procedures and search 

strategy. 

We present a constructive BAB algorithm to find all or some of the efficient solutions (Pareto optimal 

points (POP)) when the criteria Ci, Ti and Vi (Vmax) are of simultaneous interest in problem P1 (or P2). The 

main idea of this BAB algorithm is depending on properties of BAB algorithm and some modifications such as 

using the definition of efficient solutions and without reset the upper bound (UB) at the last level of BAB 

method. 

Let LB1=max(Ci-di,Tmax(EDD)) 

The main steps of the BAB algorithm are as follows: 

Step(1): Find the proposed UB by SPT rule, that is sequencing the job in non-decreasing order of their 

processing time pi, i=1,2,...,n, for this order  calculate Ci(),Ti() and Vi() (Vmax()) and set 
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UB=(Ci(),Ti(),Vi()) (or UB=(Ci(),Ti(),Vmax())) at the parent node of the search tree. UB is 

efficient by proposition (1) and add this efficient solution to the set of POP. If Tmax(EDD)=0, then there exists an 

efficient sequence obtained by proposition (2), and also add this efficient solution to the set of POP.  

Step(2):For each partial sequence of jobs  (i.e., for each node in the search tree), compute the lower bound 

LB() as follows: 

LBP1()=(SPT(),LB1,Tmax(EDD)) for (P1) and LBP2()=(SPT(),Tmax(EDD),Lawler())for (P2). 

Step(3):Branch from each node with LB()  UB. 

Step(4):At each node of the last level of the BAB method, if (Ci,Ti,Vi) (or (Ci,Ti,Vmax)) denote the 

outcome, then add this outcome to the set of POP, unless it is dominated by the previously obtained POP. 

Step(5): Stop. 

 

3.3 Branch and Bound Method for (SP1) and (SP2) 

In this section we will apply the above BAB steps for the (SP1) and (SP2) subproblems with different 

lower bounds. We still use the sequence  satisfies SPT-rule as an UB for both subproblems. While, the lower 

bound for the same subproblems is as follows: 

LBSP1()=(SPT()+LB1+Tmax(EDD)) for (SP1) and LBSP2()=(SPT()+LB1+ Lawler()) for (SP2). 

 

3.4 Experimental Results of Applying CEM and BAB for (P1) and (P2) 

For the problems (P1) and (P2), and for the subproblems (SP1) and (SP2), a simulation has been constructed 

using MATLAB10.0 in order to apply CEM and BAB. The following notations were used: 

EV: Efficient Value(s). 

NE: Number of Efficient Values. 

T/s: Time in seconds. 

Table (1) and (2) shows the CPU time results after applying BAB method compared with results obtained 

from CEM in order to get a set of efficient solutions, on samples of different jobs. The results of CPU time, 

which generate all solutions for n10. 

In table (3) we will show the performance of BAB method for the problems (P1) and (P2) for n=11,…,25. 

In table (4) we will show the results accuracy when applying BAB compared with CEM for the 

subproblem(SP1) and (SP2)for n=3,…,10. 

Table (5) describes the results of applying BAB method for the subproblem (SP1) and (SP2) for n=11,…,30. 

 

4. MSP Local Search Solving Methods 

There are many methods that can be used to solve multi-criteria scheduling problems, which are to find the 

set of all (some) efficient solutions or at least approximation to it. It is known that the set of all efficient solutions 

is difficult to find especially for large n (25). Therefore, it could be acceptable to find an approximation to the 

Pareto set in a reasonable time. 

In this paper, we will introduce two local search methods to solve multi-criteria scheduling for both problem 

(P1) and (P2) (and subproblem (SP1) and (SP2)) to find the set of efficient solutions. 

Before we discuss each of the proposed methods, we have to talk about the common basics between the two 

methods, these basics are: 

1. Problem Definition and Representation 

The most important problem of the set of combinatorial optimization problems is undoubtedly the Machine 

Scheduling Problem (MSP). In order to find the set of POP, we solve the problems (P1) and (P2) of 

minimizing (Ci,Ti,Vi) and (Ci,Ti,Vmax) respectively. Obviously, this scheduling problem is example of 
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NP-complete, the work area to be explored grows exponentially according with number of jobs, and so does. 

The general complexity is n!, such that n jobs were must be arranged in a single machine. The solution 

representation should be an integer vector. In this particular approach we accept schedule representation 

which is described as a sequence of jobs. 

2. Initial Population 

For the initialization process we can either use some heuristics starting from different jobs, or we can 

initialize the population by a random sample of permutation of N={1,2,…,n}. 

 

4.1 Genetic Algorithms 

Genetic Algorithms (GA’s) are search algorithms based on the mechanics of natural selection and natural 

genetics. GA is an iterative procedure, which maintains a constant size population of candidate solution. During 

each iteration step (Generation) the structures in the current population are evaluated, and, on the basic of those 

evaluations, a new population of candidate solutions formed (Mitchell 1998). 

Now we will discuss the use of GA first, since it has been used before in MSP for many times. 

1. Genetic Operators 

 Selection Operator 

The selection method is the roulette wheel. Copying string according to their fitness value means strings 

with higher value have higher probability of contributing one or more offspring in the next generation 

(Mitchell 1998). 

 Crossover Operator 

Order Crossover (OX) (Davis 1985) builds offspring by choosing a subsequence of a tour from one parent 

and preserving the relative order of cities from the other parent. For example, two parents (with two cut 

points marked by '|') 

Individual1  1   2   3 | 4   5   6   7 | 8   9   and 

Individual2  4   5   2 | 1   8   7   6 | 9   3 

Would produce the, offspring in the following way; First, the segments between cut points are copied into 

offspring: 

Offspring1  x   x   x | 4   5   6   7 | x    x   and 

Offspring2  x   x   x | 1   8   7   6 | x    x 

This sequence is placed in the first offspring (starting from the second cut point), then the Offspring1 and 

Offspring2 are: 

Offspring1  2   1   8 | 4   5   6   7 | 9   3 

Offspring2  3   4   5 | 1   8   7   6 | 9   2 

 Mutation Operator 

After the new generation has been determined, the chromosomes are subjected to a low rate mutation 

process. For our problems we apply the two point mutation operator to introduce genetic diversity into the 

evolving population of permutation, which randomly selects two elements in the chromosome and swap 

them (Abdil_Razaq 2013). 

2. Genetic Parameters  

For MSP, from our experience, the following parameters are preferred to be used: population size (pop size 

=20), probability of crossover (Pc = 0.7), probability of mutation Pm =0.1 and some hundreds number of 
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generations. 

 

4.2 Particle Swarm Optimization 

PSO is an extremely very simple concept, which it can be implemented without complex data structure. No 

complex or costly mathematical functions are used, and it doesn’t require a great amount of memory (Ribeiro 

2003). 

The PSO algorithm depends in its implementation in the following two relations: 

vid = w * vid + c1 * r1* (pid -xid) + c2 * r2 * (pgd -xid)   …(a) 

xid = xid + vid        …(b) 

where w is the inertia weight, c1 and c2 are positive constants, r1 and  r2  are random function in the range 

[0,1], xi=(xi1,xi2,…,xid) represents the i
th

 particle; pi=(pi1,pi2,…,pid) represents the (pbest) best previous position 

(the position giving the best fitness value) of the i
th

 particle; the symbol g represents the index of the best particle 

among all the particles in the population,  vi=(vi1,vi2,…,vid) represents the rate of the position change (velocity) 

for particle i (Ribeiro 2003). 

The original procedure for implementing PSO is as follows:   

1. Initialize a population of particles with random positions and velocities on d-dimensions in the problem 

space. 

2. PSO operation includes: 

a. For each particle, evaluate the desired optimization fitness function in d-variables. 

b. Compare particle's fitness evaluation with its pbest. If current value is better than pbest, then set pbest 

equal to the current value, and pai equals to the current location xi. 

c. Identify the particle in the neighborhood with the best success so far, and assign it index to the variable 

g. 

d. Change the velocity and position of the particle according to equation (a) and (b). 

3. Loop to step (2) until a criterion is met. 

Like the other evolutionary algorithms, a PSO algorithm is a population based on search algorithm with 

random initialization, and there is an interaction among population members. Unlike the other evolutionary 

algorithms, in PSO, each particle flies through the solution space, and has the ability to remember its previous 

best position, survives from generation to another (Abdul_Razaq 2013). 

A number of factors will affect the performance of the PSO. These factors are called PSO parameters, these 

parameters are (Kennedy 1995): 

1. Number of particles in the swarm affects the run-time significantly, thus a balance between variety (more 

particles) and speed (less particles) must be sought. 

2. Maximum velocity (vmax) parameter. This parameter limits the maximum jump that a particle can make in 

one step.  

3. The role of the inertia weight w, in equation (3a), is considered critical for the PSO’s convergence behavior. 

The inertia weight is employed to control the impact of the previous history of velocities on the current one. 

4. The parameters c1 and c2, in equation (3a), are not critical for PSO’s convergence. However, proper 

fine-tuning may result in faster convergence and alleviation of local minima, c1 than a social parameter c2 

but with c1 + c2 = 4.  

5. The parameters r1 and r2 are used to maintain the diversity of the population, and they are uniformly 

distributed in the range [0,1]. 
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5. Experimental Results of Applying GA and PSO for (P1) and (P2) 

For the problems (P1) and (P2), and for the subproblems (SP1) and (SP2), a simulation has been constructed 

using Delph10.0 in order to apply GA and PSO for n=3,…,1000 jobs. We use the following notations: 

MBV: Mean of Best Value(s). 

MEV: Mean of Efficient Value(s). 

MAE: Mean Absolute Error between the MBV and MEV. 

AAE: Average of Absolute Error comparing MBV with EV obtained from SPT rule. 

 

5.1 Experimental Results for Problems (P1) and (P2) 

For the problems (P1) and (P2), a simulation has been constructed using Delph10.0 in order to apply GA and 

PSO. 

Table (6) and (7) shown the experimental results of applying the local search methods; GA and PSO for 

problems (P1) and (P2) respectively compared with CEM for n=3,…,10. 

Table (8) and (9) shown the experimental results of applying the local search methods; GA and PSO for 

problems (P1) and (P2) respectively compared with BAB for n=11,…,25. 

Figure (1) and (2) shows the MAE behavior for both PSO and GA applied for (P1) and (P2) respectively, with 

n=11,…,25. 

Table (10) and (11) shown the experimental results of applying the local search methods; GA and PSO 

(compared with other) for problems (P1) and (P2) respectively for n=(30,(10),90) and (100,(100),1000). 

Figure (3) and (4) show the AAE behavior for both PSO and GA applied for (P1) and (P2) respectively, while 

figure (5) shows the time comparison for the two problems with n=30,…,100,…,1000. 

 

5.2 Experimental Results for Subproblems (SP1) and (SP2) 

Table (12) and (13) shown the experimental results of applying the local search methods; GA and PSO for 

subproblems (SP1) and (SP2) respectively compared with CEM for n=3,…,10. We use the following notations: 

BV: Best Value obtained from GA and PSO. 

OV: Optimal Value obtained from CEM and BAB. 

AE: Absolute Error between the BV and OV. 

AES: Absolute Error between the BV, of GA and PSO, and BV obtained from SPT. 

NI: Number of Iterations. 

Table (14) and (15) shown the experimental results of applying the local search methods; GA and PSO for 

subproblems (SP1) and (SP2) respectively compared with BAB for n=11,…,30. 

Table (16) and (17) shown the experimental results of applying the local search methods; GA and PSO 

(compared with other) for subproblems (SP1) and (SP2) respectively for n=(40,(10),90), (100,(100),1000) and 

2000. 

Figure (6) and (7) show the AES behavior for both PSO and GA applied for (SP1) and (SP2) respectively, 

while figure (8) shows the time comparison for the two subproblems with n=40,…,100,…,1000,2000. 

 

6. Analysis of the Experimental Results 

1. For this paper, a different number of jobs (n) are used for single machine, starting from n=3(1)10, 

n=30(10)100, n=200(100)1000 and n=2000, with number of iterations which is suitable with n to solve 

the problems (P1) and (P2). 

2. The criteria of testing the efficiency of local search method (GA and PSO) are calculated, these criteria 

represented by, the value of the triple-objective function of exact efficient solutions for the problems (P1) 
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and (P2) of this paper (which are calculated from CEM for n10 and from BAB for 11n25), the 

approximated local search best efficient solutions (BV) and their average (MBV), the MAE and AAE, 

while for subproblems (SP1) and (SP2) we calculate the BV, AE and AES, and the time which complete 

the single experiment, lastly, the iteration which found the corresponding BV. 

3. For problems (P1) and (P2): 

 from tables (6) and (7) for n=3,…,10, GA and PSO gives approximated results from EV and from each 

other and that is clear from MAE values. 

 from tables (8) and (9) for n=11,…,25, GA and PSO gives approximated results from EV but GA serves 

better from PSO and that is clear from MAE values (see figures (1) and (2)). 

 from tables (10) and (11) for n=30,…,1000, GA gives better results from PSO and that is clear from 

AAE values (see figures (3) and (4)). 

 from figure (5), for n=30,…,1000, PSO gives better performance in time from GA. 

4. For subproblems (SP1) and (SP2): 

 from tables (12) and (13) for n=3,…,10, GA and PSO gives approximated results from OV and from 

each other and that is clear from AE values. 

 from tables (14) and (15) for n=11,…,30, GA and PSO gives approximated results from OV and from 

each other and that is clear from AE values. 

 from tables (16) and (17) for n=40,…,2000, PSO gives better results from GA and that is clear from AE 

values (see figures (5) and (6)). 

 from figure (8), for n=40,…,2000, PSO gives better performance in time from GA. 

 

7. Conclusions and future Works 

1. In this paper, we applied exact (CEM and BAB) and local search methods (GA and PSO) to solve the 

problems (P1) and (P2) and the subproblems (SP1) and (SP2). 

2. It's not easy to find an efficient solution to problem of multi-objective functions, especially for more than 

double-objective functions. 

3. From this paper, we see, in general, that the GA gives accuracy results better than PSO, while PSO gives 

better performance time than GA. 

4. As special case, its not hard to solve hierarchical subproblems derived from (P1) and (P2). 

5. A hybrid can be done to improve the performance of local search methods, e.g. using simulated annealing or 

tabu search. 
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Table (1) Applying CEM and BAB methods on (P1) for n=3,..,10. 

n 

Values of (P1) 

CEM BAB 

NE EV T/s NE EV T/s 

3 2 (16,1,1),(17,0,0) 0.1 2 (16, 1,1),(17,0,0) 0.09 

4 2 (32,13,9),(33,12,8) 0.1 2 (32,13,9),(33,12,8) 0.1 

5 5 (37,9,7),(38,8,7)… 0.19 5 (37,9,7),(38,8,7)… 0.1 

6 2 (61,20,15),(64,23,13) 0.15 2 (61,20,15),(64,23,13) 0.09 

7 3 (83,35,19),(86,34, 21).. 0.46 2 (83,35,19),(91,43,17) 0.1 

8 3 (117,61,26),(120,60,28 ).. 3.15 2 (117,61,26),(127,71,24) 0.12 

9 4 (134,73,30),(135,71,28).. 26.4 4 (134,73,30),(135,71,28).. 0.2 

10 4 (170,101,35),(171,99,33).. 281 4 (170,101,35),(171,99,33).. 0.22 
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Table (2) Applying CEM and BAB methods on (P2) for n=3,..,10. 

n 

Values of (P2) 

CEM BAB 

NE EV T/s NE EV T/s 

3 2 (16,1,1),(17,0,0) 0.05 2 (16,1,1),(17,0,0) 0.08 

4 3 (32,13,5),(33,12,5).. 0.1 2 (32,13,5),(33,12,5) 0.086 

5 7 (37,9,4),(38,8,4)… 0.11 6 (37,9,4),(38,8,4)…. 0.097 

6 4 (61,20,9),(64,23,7) … 0.15 3 (61,20,9),(64,23,7).. 0.095 

7 6 (83,35,9),(86,34,9)… 0.46 3 (83,35,9),(91,43,7)… 0.11 

8 5 (117,61,9),(120,60,9)… 3.07 2 (117,61,9),(127,71,7) 0.112 

9 6 (134,73,9),(135,71,9)… 26.7 5 (134,73,9),(135,71,9)… 0.195 

10 6 (170,101,9),(171,99,9)… 246.25 99 (170,101,9),(171,99,9).. 0.236 

 

Table (3) Applying BAB method for (P1) and (P2) for n=11,…,25. 

n 

Values of (P1) Values of (P2) 

BAB BAB 

NE EV T/s NE EV T/s 

11 12 (159,59,25),(160,56,25),(161,53, 25)… 1 16 (159,59,9),(160,56,9),(161,53, 9)…. 1 

12 12 (198,85,30),(199,82,30),(200,79,30)… 1 16 (198,85,9),(199,82,9),(200,79 ,9)… 1 

13 18 (211,91,31),(211,94,30),(212,89,32)… 4 15 (211,91,9),(212,89,9),(213,86 ,9)… 4 

14 18 (266,126,40),(266,129,39), (267,124, 41)… 6 7 (266,126,9),(267,124,9),(268,121 ,9)… 2 

15 15 (281,133,41),(281,135,39),(282,132, 43)… 3 6 ( 281,133, 9),(282,132,9),( 283, 130,9)… 1 

16 15 (318,154,40),(319,151,43),(319,153, 39 )… 4 7 (318,154, 9),(319, 151,9),(320,150,9)… 2 

17 9 (421,291,59),(422,289,57), (423,288,56)… 2 5 (421,291, 9),(422,289, 9),(423, 288, 9)… 3 

18 12 (439,234,52),(440,231,55),(440,233,51)… 18 18 (439,234,10),(440,231,10),(441,230,10)… 38 

19 12 (711,527,93),(712,528,92),(713,529,90)… 16 1 ( 711,527,10) 6 

20 16 (895,664,95),(896,663,97),(898,662,101)… 165 14 (895,664,10),(896,663,10),(898,662,10)… 210 

21 14 (992,746,101),(993,745,103),(995,744,107)… 114 10 (992,746,10),(993,745,10),(995,744,10)… 230 

22 14 (1106,848,108),(1107,847,110),(1109,846,114).. 511 10 (1106,848,10),(1107,847,10),(1109,846,10)… 907 

23 15 (1151,880,112),(1152,883,110 ),(1159,879,113).. 968 6 (1151,880,10),(1159,879,10),(1160,877,10).. 966 

24 6 (840,568,86),(841,567,85),(842,565,83)… 279 9 (840,568,10),(841,567,10),(842,565,10)… 4343 

25 6 (934,648,92),(935,647,91),(936,645,89)… 310 9 (934,648,10),(935,647,10),(936,645,10)… 4666 

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.6, 2015 

 

61 

Table (4) Applying CEM and BAB methods for subproblem (SP1) and (SP2) for n=3,...,10. 

 

Table (5) Applying BAB methods for the subproblem(SP1) and (SP2) for n=11,..,30. 

n 
SP1 SP2 

BAB T/s BAB T/s 

11 163+51+24=238 1 163+51+9=223 1 

12 202+77+29=308 1 202+77+9=288 1 

13 215+84+32=331 1 215+84+9=308 2 

14 270+119+41=430 2 270+119+9=398 2 

15 281+133+41=455 1 285+128+9=422 1 

16 319+153+39=511 3 323+146+9=478 4 

17 423+288+56=767 5 422+289+9=720 2 

18 440+233+51=724 64 444+226+10=680 35 

19 711+527+93=1331 130 711+527+10=1248 4 

20 895+664+95=1654 58 895+664+10=1569 10 

21 992+746+101=1839 150 992+746+10=1748 10 

22 1106+848+108=2062 769 1106+848+10=1964 29 

23 1151+880+112=2143 389 1151+880+10=2041 33 

24 843+564+82=1489 514 842+565+10=1417 41 

25 937+644+88=1669 583 936+645+10=1591 47 

26 1312+1002+117=2431 906 1310+1000+10=2320 59 

27 1358+1031+118 =2507 984 1353+1034+10=2397 83 

28 1489+1148+125=2762 4609 1484+1151+10=2645 299 

29 1713+1361+139=3213 6027 1711+1359+10=3080 311 

30 1881+1511+148=3540 9220 1879+1509+10=3398 324 

 

 

 

 

 

 

n 
SP1 SP2 

CEM T/s BAB T/s CEM T/s BAB T/s 

3 17+0+0=17 0.01 17+0+0=17 0.08 17+0+0=17 0.01 17+0+0=17 0.07 

4 33+12+8=53 0.01 33+12+8=53 0.07 33+12+5=50 0.01 33+12+5=50 0.07 

5 39+6+5=50 0.02 39+6+5=50 0.08 39+6+4=49 0.02 39+6+4=49 0.07 

6 61+20+15=96 0.06 61+20+15=96 0.08 61+20+9=90 0.06 61+20+9=90 0.07 

7 83+35+19=137 0.33 83+35+19=137 0.09 83+35+9=127 0.3 83+35+9=127 0.09 

8 117+61+26=204 2.6 117+61+26=204 0.1 117+61+9=187 2.7 117+61+9=187 0.08 

9 135+71+28=234 23.59 135+71+28=234 0.2 135+71+9=215 22.8 135+71+9=215 0.1 

10 171+99+33=303 251.9 171+99+33=303 0.32 171+99+9=279 245.5 171+99+9=279 0.1 
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Table (6) Applying GA & PSO compared with CEM for(P1) for n=3,…,10. 

Table (7) Applying GA & PSO compared with CEM for(P2) for n=3,…,10. 

Where  0<<1. 

Table (8) Applying GA & PSO compared with BAB for(P1) for n=11,…,25. 

n 
GA PSO CEM MAE 

MBV T/s MBV T/s MEV PSO GA 

3 (16.5,0.5,0.5) 1,1 (16.5,0.5,0.5) 1,1 (16.5,0.5,0.5) (0,0,0) (0,0,0) 

4 (32.5,12.5,8.5) 0,2 (32.5,12.5,8,5) 0,2 (32.5,12.5,8.5) (0,0,0) (0,0,0) 

5 (38.6,8,5.4) 0,5 (38.6,8,5.4) 0,5 (38.6,8,5.4) (0,0,0) (0,0,0) 

6 (62.5,21.5,14) 0,2 (62.5,21.5,14) 1,2 (62.5,21.5,14) (0,0,0) (0,0,0) 

7 (87,35,20.5) 1,2 (87,37.3,19) 1,3 (86.7,37.3,19) (0.004,0,0) (0.004,0.06,0.08) 

8 (96.4,45.4,19.6) 0,5 (94.7,44.3,19.67) 0,3 (96.4,45.4,19.6) (0.02,0.02,0.004) (0,0,0) 

9 (137.5,70.5,29) 0,2 (137.4,7,29.6) 1,5 (139.8,75,28.3) (0.02,0.03,0.05) (0.02,0.06,0.03) 

10 (176,101,34.5) 1,2 (175.3,103,34.75) 0,4 (176.8,104,33.3) (0.008,0.01,0.05) (0.004,0.03,0.04) 

n 
GA PSO CEM MAE 

MBV T/s MBV T/s MEV PSO GA 

3 (16.5,0.5,0.5)  (16.5,0.5,0.5)  (16.5,0.5,0.5) (0,0,0) (0,0,0) 

4 (32.5,12.5,9.5)  (32.5,12.5,9.5)  (32.5,12.5,8.5) (0,0,0.1) (0,0,0.1) 

5 (38.6,8,9.5)  (38.6,8,9.5) 1 (38.6,8,5.4) (0,0,0.8) (0,0,0.8) 

6 (62.5,21.5,9.5) 1 (62.5,21.5,9.5)  (62.5,21.5,14) (0,0,0.3) (0,0,0.3) 

7 (86.67,37.33,9.5) 1 (87.67,37.33,9.5)  (86.67,37.33,19) (0.1,0,0.5) (0,0,0.5) 

8 (96.4,45.4,9.5) 1 (96.4,45.4,19.6) 1 (96.4,45.4,19.6) (0,0,0) (0,0,0.5) 

9 (139.75,75,9.5) 1 (139.71,75.29,9.5) 1 (139.75,75,28.25) (0.0003,0.004,0.7) (0,0,0.7) 

10 (176.83,104.67,9.5) 1 (174,101.75,9.5) 1 (176.75,104,33.25) (0.02,0.02,0.7) (0.0005,0.006,0.7) 

N 
GA PSO BAB MAE 

MBV T/s MBV T/s MEV PSO GA 

11 (163.1,55.1,23.9) 1 (171.7,59.7,21.7) 1 (166,56,22) (0.034,0.065,0.015) (0.017,0.015,0.085) 

12 (202.6,83.6,28.4) 1 (214,95.7,26.7) 1 (207,84,27) (0.034,0.861,0.012) (0.021,0.005,0.052) 

13 (214.8,87.2,30.8) 1 (238.8,112.8,26.5) 1 (221.6,92.9,28.8) (0.078,0.213,0.079) (0.031,0.061,0.07) 

14 (275,133.8,38.3) 1 (293.7,146.3,37) 1 (276.6,127.9,37.8) (0.062,0.144,0.021) (0.006,0.046,0.012) 

15 (285.5,131,42.3) 1 (316.5,166.3,38) 1 (291,134.2,40.7) (0.088,0.239,0.066) (0.019,0.024,0.039) 

16 (322,149,44.5) 1 (382.2,219.6,39.4) 2 (325.2,152.2,42.5) (0.175,0.443,0.072) (0.01,0.021,0.048) 

17 (425.3,292.7,57) 1 (444,311.5,57.5) 1 (424.8,290.2,55.7) (0.045,0.073,0.033) (0.001,0.008,0.024) 

18 (444.3,234.5,55) 2 (490,278.3,54.7) 1 (447.6,232.1,54.8) (0.095,0.199,0.001) (0.007,0.01,0.005) 

19 (727.6,543.8,91.8) 2 (811.3,628.2,89.7) 2 (734,552.3,86.6) (0.105,0.137,0.036) (0.009,0.016,0.06) 

20 (916.8,682.6,99.6) 1  (942.5,706.5,97.5) 2 (908.4,664.2,95.8) (0.038,0.064,0.018) (0.009,0.028,0.04) 

21 (1008.5,756.8,105) 2 (1105.3,851.5,102.3) 2 (998.8,740.3,102.5) (0.107,0.15,0.002) (0.01,0.022,0.024) 

22 (1116.8,854.4,112.2) 2 (1223.8,952.5,110.5) 2 (1112.8,842.3,109.5) (0.1,0.131,0.009) (0.004,0.014,0.025) 

23 (1153.8,879.8,115) 2 (1235,959.5,113) 2 (1163.5,880.6,111.5) (0.061,0.09,0.013) (0.008,0.001,0.031) 

24 (842,569.3,86.3) 2 (1004.8,724.6,86) 2 (848.2,570.8,83.5) (0.185,0.269,0.03) (0.007,0.003,0.033) 

25 (941,651.7,92.3) 2 (1077.7,800.7,90) 2 (942.7,651.3,89.5) (0.142,0.229,0.006) (0.002,0.0005,0.032) 
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Table (9) Applying GA & PSO compared with BAB for(P2) for n=11,…,25. 

 

 

Figure (1): MAE behavior for PSO and GA applied for (P1) with n=11,…,25. 

n 
GA PSO BAB MAE 

MBV T/s MBV T/s MEV PSO GA 

11 (166,58,9.5) 2 (173.7,61,9.5) 1 (177.3,67.4,7.4) (0.021,0.095,0.277) (0.063,0.139,0.277) 

12 (203.8,86.6,9.5) 1 (218,98.6,9.5) 2 (219.3,96.4,7.4) (0.006,0.023,0.277) (0.071,0.101,0.277) 

13 (219.3,90.7,9.5) 2 (231.8,108.5,9.5) 2 (177.3,67.4,7.4) (0.307,0.61,0.277) (0.237,0.346,0.277) 

14 (271.1,130.1,9.5) 1 (292.5,143.5,9.5) 1 (271.3,120.1,9) (0.078,0.194,0.056) (0.0006,0.083,0.056) 

15 (283,132,9.5) 1 (318,173.8,9.5) 1 (285,129.3,9) (0.116,0.343,0.056) (0.007,0.021,0.056) 

16 (324,149.17,9.5) 1 (378.6,211.2,9.5) 2 (322.3,148.3,9) (0.175,0.424,0.056) (0.005,0.006,0.056) 

17 (426.8,295.4,9.5) 2 (458.5,325.5,9.5) 2 (423.6,288.2,9) (0.082,0.129,0.056) (0.008,0.025,0.056) 

18 (445,233,9.5) 1 (493.3,289,9.5) 1 (462.7,243.5,9.5) (0.066,0.187,0) (0.038,0.043,0) 

19 (742,560.1,9.5) 1 (796.2,609.8,9.5) 1 (711,527,10) (0.12,0.157,0.05) (0.044,0.063,0.05) 

20 (911.2,659.8,9.5) 2 (953,722.7,9.5) 2 (902,657.9,10) (0.057,0.098,0.05) (0.01,0.003,0.05) 

21 (1020.8,762,9.5) 1 (1075.8,817,9.5) 2 (999,739.9,10) (0.077, 0.104,0.05) (0.022,0.03,0.05) 

22 (1117.8,855.4,9.5) 1 (1216.3,940.3,9.5) 2 (1113,841.9,10) (0.092,0.117,0.05) (0.004,0.016,0.05) 

23 (1153,883.7,9.5) 2 (1257.3,978.3,9.5) 2 (1159.3,876,10) (0.085,0.117,0.05) (0.005,0.009,0.05) 

24 (842.5,568,9.5) 2 (999.8,729,9.5) 2 (865.6,588.8,9.6) (0.155,0.238,0.006) (0.027,0.035,0.006) 

25 (935.7,648.3,9.5) 2 (1028,749.5,9.5) 2 (961.3,670.6,9.6) (0.069,0.118,0.006) (0.027,0.033,0.006) 
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Figure (2): MAE behavior for PSO and GA applied for (P2) with n=11,…,25. 

 

 

Table (10) Applying GA & PSO for(P1) for n=(30,(10),90) and (100,(100),1000). 

 

 

 

 

n 
GA PSO 

MBV MAE T/s MBV AAE T/s 

30 (1457.3,1130.5,126.5) (0.0058,0.0094,0.0417) 2 (1658.5,1334.3,125.5) (0.1446,0.1914,0.0492) 2 

40 (3545.5,3114,208.5) (0.0016,0.0013,0.0024) 2 (3540,3110,209) (0.0000,0.0000,0.0000) 2 

50 (4287.6,3746.2,239.3) (0.0086,0.0100,0.0191) 2 (5124,4578.3,235) (0.2054,0.2344,0.0369) 3 

60 (6907.8,6242.5,305.8) (0.0048,0.0052,0.0105) 3 (7974.5,7297.5,304.8) (0.1599,0.1751,0.0138) 4 

70 (9391.6,8628.8,365.4) (0.0134,0.0149,0.0124) 4 (10983.3,10222,363) (0.1852,0.2023,0.0189) 4 

80 (10978.8,10031.7,387.8) (0.0309,0.0349,0.0206) 4 (12704.7,11746.3,389.7) (0.1929,0.2118,0.0160) 4 

90 (17210.8,16158.6,519.4) (0.0061,0.0064,0.0088) 4 (19846,18785.33,519.67) (0.1602,0.1700,0.0083) 6 

100 (18681.8,17557.3,521.3) (0.0160,0.0172,0.0126) 4 (22697,21580.4,515.6) (0.2344,0.2503,0.0235) 5 

200 (74651.7,72358.2,1059.8) (0.0066,0.0069,0.0067) 11 (90736,88447,1059.7) (0.2235,0.2307,0.0069) 9 

300 (182738.5,179175.8,1673.2) (0.0102,0.0105,0.0041) 17 (223546.8,219991.8,1670) (0.2358,0.2407,0.0060) 14 

400 (314330.3,309387.8,2199.3) (0.0160,0.0163,0.0031) 27 (394853.8,389919.3,2191.3) 0.2763,0.2808,0.0067) 17 

500 (477428.6,471285.8,2743.4) (0.0043,0.0043,0.0024) 40 (605573,599435.3,2739.5) (0.2738,0.2774,0.0038) 21 

600 (733344.8,726320.8,3264.4) (0.0590,0.0596,0.0038) 55 (808538,801508.5,3266.5) (0.1676,0.1693,0.0032) 25 

700 (972606.7,964164.4,3830.6) (0.0422,0.0426,0.0022) 88 (1108341.5,1099892.5,3829.5) (0.1877,0.1894,0.0025) 36 

800 (1276770.8,1266766.2,4505.1) (0.0093,0.0094,0.0013) 111 (1578415,1568419.3,4496.7) (0.2478,0.2498,0.0032) 42 

900 (1592743.5,1581596.3,4934.3) (0.0164,0.0165,0.0014) 121 (2032643.8,2021508.6,4926.6) (0.2971,0.2992,0.0029) 49 

1000 (1980003.8,1968100.2,5489) (0.0252,0.0254,0.0015) 164 (2288728.5,2276824,5488) (0.1850,0.1862,0.0016) 52 
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Table (11) Applying GA & PSO for(P2) for n=(30,(10),90) and (100,(100),1000). 

 

 
Figure (3): AAE behavior for PSO & GA applied for (P1) with n=30,…,100,…,1000. 

 

n 
GA PSO 

MBV MAE T/s MBV AAE T/s 

30 (1452.4,1124.2,9.5) (0.0023,0.0038,0.0610) 2 (1613.3,1287.3,9.5) (0.1134,0.1494,0.0063) 2 

40 (3540,3110,9.5) (0.0000,0.0000,0.0442) 2 (3540,3110,9.5) (0.0000,0.0000,0.0152) 2 

50 (4348,3806.8,9.5) (0.0228,0.0264,0.0721) 2 (4716,4176.5,9.5) (0.1094,0.1260,0.0816) 3 

60 (6908.6,6240,9.5) (0.0049,0.0048,0.0691) 4 (8050.4,7380,9.5) (0.1710,0.1884,0.0302) 4 

70 (9337,8579,9.5) (0.0076,0.0091,0.0231) 3 (11219.8,10461.6,9.5) (0.2107,0.2305,0.0656) 4 

80 (10728,977,9.5) (0.0073,0.0085,0.0984) 5 (12096.5,11149,9.5) (0.1358,0.1502,0.0759) 5 

90 (17129.8,16075,9.5) (0.0014,0.0012,0.0695) 4 (20805.5,19738.7,9.5) (0.2163,0.2294,0.0765) 6 

100 (18685.1,17561.6,9.5) (0.0162,0.0175,0.0693) 5 (22091.3,20972.7,9.5) (0.2015,0.2151,0.0553) 5 

200 (74554.3,72264.3,9.5) (0.0053,0.0056,0.0712) 11 (93489,91201.7,9.5) (0.2606,0.2691,0.0813) 5 

300 (181574.8,178007.8,9.5) (0.0038,0.0039,0.0587) 17 (218534.3,214969.7,9.5) (0.2081,0.2123,0.0355) 16 

400 (310531.6,305588.6,9.5) (0.0037,0.0038,0.0003) 26 (382810,377869.7,9.5) (0.2374,0.2412,0.0472) 20 

500 (481734.7,475591.9,9.5) (0.0133,0.0135,0.0894) 36 (606223.3,600089.5,9.5) (0.2752,0.2788,0.0779) 26 

600 (710843.8,703815.9,9.5) (0.0265,0.0268,0.0315) 50 (860058.3,853033,9.5) (0.2420,0.2445,0.0545) 32 

700 (974262.3,965820.2,9.5) (0.0440,0.0444,0.0824) 78 (1167998.7,1159566.7,9.5) (0.2516,0.2539,0.0493) 35 

800 (1389754.7,1379764.2,9.5) (0.0987,0.0995,0.0153) 92 (1577220,1567215.3,9.5) (0.2469,0.2488,0.0884) 37 

900 (1620158.3,1609012.3,9.5) (0.0339,0.0341,0.0050) 116 (1952230.3,1941094,9.5) (0.2458,0.2476,0.0204) 43 

1000 (1932368.5,1920464.3,9.5) (0.0005,0.0005,0.0887) 146 (2518362.8,2506468.6,9.5) (0.3039,0.3058,0.0651) 50 
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Figure (4): AAE behavior for PSO & GA applied for (P2) with n=30,…,100,…,1000. 

 

 
Figure (5): Time comparison for GA & PSO for (P1) and (P2) with n=30,…,100,…,1000 
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Table (12) Applying GA & PSO compared with CEM for(SP1) for n=3,…,10. 

n 
GA PSO CEM 

OV 

AE 

BV NI T/s BV NI T/s GA PSO 

3 17+0+0=17 2 1 17+0+0 =17 1  17+0+0=17 0 0 

4 33+12+8=53 12 1 33+12+8 =53 2  33+12+8=53 0 0 

5 39+6+5=50 27 1 39+6+5 =50 23  39+6+5=50 0 0 

6 61+20+15=96 23 1 61+20+15 =96 57  61+20+15=96 0 0 

7 83+35+19=137 36 1 83+35+19 =137 40 1 83+35+19=137 0 0 

8 117+61+26=204 40 1 117+61+26 =204 378 1 117+61+26=204 0 0 

9 135+71+28=234 57 1 136+71+28 =235 373 1 135+71+28=234 0 0.004 

10 171+99+33=303 89 1 173+100+33 =306 79  171+99+33=303 0 0.01 

 

Table (13) Applying GA & PSO compared with CEM for(SP2) for n=3,…,10. 

n 
GA PSO CEM 

OV 

AE 

BV NI T/s. BV NI T/s. GA PSO 

3 17+0+0=17 2  17+0+0=17 1  17+0+0=17 0 0 

4 32+13+5=50 5 1 32+13+5=50 1  33+12+5=50 0 0 

5 39+6+4=49 88 1 39+6+4=49 7  39+6+4=49 0 0 

6 61+20+9=90 116 2 61+20+9=90 104  61+20+9=90 0 0 

7 83+35+ 9=127 379 1 83+35+9=127 5 1 83+35+9=127 0 0 

8 119+62+9=190 300 1 117+61+9=187 256  117+61+9=187 0.02 0 

9 142+74+9=225 29 1 136+71+9=216 205  135+71+9=215 0.05 0.005 

10 186+116+9=311 226 1 171+102+9=282 472  171+99+9=279 0.1 0.01 

 

Table (14) Applying GA & PSO compared with BAB for(SP1) for n=11,…,30. 

n 
GA PSO BAB 

OV 

AE 

BV NI T/s BV NI T/s GA PSO 

11 163+51+24=238 101 2 173+51+22=246 796 1 163+51+24=238 0 0.03 

12 202+77+29=308 128 2 205+88+33=326 465 1 202+77+29=308 0 0.06 

13 215+84+32=331 133 2 219+94+37=350 225 1 215+84+32=331 0 0.06 

14 268+121+41=430 206 2 274+134+38=446 580 1 270+119+41=430 0 0.04 

15 281+135+39=455 134 2 298+150+40=488 280 1 281+133+41=455 0 0.07 

16 319+153+39=511 205 2 341+174+43=558 115 1 319+153+39=511 0 0.09 

17 423+288+56=767 181 2 461+320+59=840 107 1 423+288+56=767 0 0.1 

18 440+233+51=724 231 3 484+276+62=822 525 1 440+233+51=724 0 0.1 

19 715+524+92=1331 365 2 777+580+93=1450 352 0 711+527+93=1331 0 0.09 

20 905+652+93=1650 345 3 957+693+105=1755 446 0 895+664+95=1654 0.002 0.06 

21 1002+734+99=1835 654 3 1041+771+108=1920 1072 1 992+746+101=1839 0.002 0.04 

22 1106+848+108=2062 372 3 1153+878+122=2153 1957 1 1106+848+108=2062 0 0.04 

23 1155+881+108=2142 448 3 1219+924+117=2260 1577 2 1151+880+112=2143 0.0005 0.05 

24 843+564+82=1489 626 3 951+680+89=1720 407 2 843+564+82=1489 0 0.2 

25 937+644+88=1669 943 3 1067+794+100=1961 1188 2 937+644+88=1669 0 0.2 
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26 1313+998+119=2430 556 3 1403+1109+128=2640 1961 2 1312+1002+117=2431 0.0004 0.09 

27 1357+1030+121=2508 740 4 1488+1135+124=2747 1195 2 1358+1031+118=2507 0.0004 0.1 

28 1489+1148+125=2762 1141 4 1678+1347+136=3161 1647 2 1489+1148+125=2762 0 0.1 

29 1711+1359+143=3213 466 4 1835+1482+155=3472 1687 2 1713+1361+139=3213 0 0.8 

30 1884+1506+149=3539 1088 4 2075+1666+158=3899 1629 3 1881+1511+148=3540 0.0003 0.9 

 

Table (15) Applying GA & PSO compared with BAB for(SP2) for n=11,…,30. 

n 
GA PSO BAB 

OV 

AE 

BV NI T/s BV NI T/s GA PSO 

11 168+58+9=235 603 2 165+52+9=226 498 1 163+51+9=223 0.05 0.01 

12 207+91+9=307 419 2 208+76+9=293 974 1 202+77+9=288 0.07 0.02 

13 224+96+9=329 576 2 221+95+9=325 357 1 215+84+9=308 0.07 0.06 

14 281+135+9=425 422 2 285+131+9=425 688 1 270+119+9=398 0.07 0.07 

15 294+149+9=452 40 2 301+148+9=458 807 1 285+128+9=422 0.07 0.09 

16 349+198+9=556 628 2 340+171+9=520 460 1 323+146+9=478 0.2 0.09 

17 463+333+9=805 458 2 464+332+9=805 399 0 422+289+9=720 0.12 0.12 

18 508+283+10=801 148 1 489+274+10=773 502 1 444+226+10=680 0.2 0.14 

19 769+576+10=1355 309 3 791+607+10=1408 580 1 711+527+10=1248 0.09 0.13 

20 977+742+10=1729 1465 3 951+702+10=1663 537 1 895+664+10=1569 0.1 0.06 

21 1066+788+10=1864 319 4 1062+805+10=1877 1378 1 992+746+10=1748 0.07 0.07 

22 1225+955+10=2190 629 4 1168+899+10=2077 1058 1 1106+848+10=1964 0.12 0.06 

23 1265+991+10=2266 351 4 1235+952+10=2197 150 2 1151+880+10=2041 0.1 0.08 

24 1012+733+10=1755 88 4 963+693+10=1666 1022 2 842+565+10=1417 0.2 0.2 

25 1090+794+10=1894 2310 4 1081+784+10=1875 1165 3 936+645+10=1591 0.2 0.2 

26 1495+1184+10=2689 652 5 1452+1118+10=2580 1652 3 1310+1000+10=2320 0.2 0.1 

27 1579+1273+10=2862 1930 5 1507+1177+10=2694 322 2 1353+1034+10=2397 0.2 0.1 

28 1619+1274+10=2903 887 5 1662+1324+10=2996 1604 2 1484+1151+10=2645 0.09 0.1 

29 2024+1632+10=3666 2496 5 1894+1502+10=3406 505 2 1711+1359+10=3080 0.2 0.1 

30 2133+1742+10=3885 2410 5 2042+1659+10=3711 2239 3 1879+1509+10=3398 0.14 0.09 

 

Table (16) Applying GA & PSO for(SP1) for n=(40,(10),90), (100,(100),1000), 2000. 

n 
GA PSO 

BV AES T/s BV AES T/s 

40 3540+3110+209=6859  2071 6 3980+3517+219=7716 1627 3 

50 4251+3709+238=8198  1590 6 4964+4430+236=9630 2510 4 

60 6882+6201+301=13384  2769 7 8251+7561+314=16126 528 3 

70 9267+8504+368=18139  2024 6 11335+10579+366=22280 160 4 

80 10657+9697+384=20738  2899 8 13179+12223+392=25794 2398 5 

90 17121+16055+516=33692  2760 8 20372+19299+522=40193 150 5 

100 18390+17263+520=36173  2834 9 23132+22008+515=45655   108 5 

200 74488+72209+1060=147757  2471 13 97732+95459+1055=194246 1051 9 

300 182256+178701+1672=362629  2982 24 235682+232142+1669=469493 296 16 
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Table (17) Applying GA & PSO for(SP2) for n=(40,(10),90), (100,(100),1000), 2000. 

 

400 313547+308626+2201=624374  2992 36   416959+412014+2195=831168 1894 18 

500 483281+477141+2746=963168  2993 47 650002+643859+2739=1296600   816 10 

600 711064+704060+3273=1418397  2992 66 935656+928634+3269=1867559 687 30 

700 965873+957440+3832=1927145  2994 87 1265625+1257182+3828=2526635 294 41 

800 1313764+1303764+4500=2622028  2998 108 1723742+1713749+4502=3441993 769 50 

900 1633756+1622623+4931=3261310  2999 136 2141634+2130518+4932=4277084 1251 59 

1000 2015722+2003836+5491=4025049  3498 186 2627840+2615950+5481=5249271 639 52 

2000 8382378+8358222+10910=16751510 3500 665 10626466+10602271+10911=21239648 2449 275 

n 
GA PSO 

BV AES T/s BV AES T/s 

40 3995+3538+10=7543 124 6   3960+3502+10=7472 1679 3 

50 5449+4911+10=10370 166 5 5132+4600+10=9742 455 4 

60 8651+7954+10=16615 1148 7 8070+7392+10=15472 687 4 

70 11806+11050+10=22866 1069 7   11334+10577+10=21921 1654 4 

80 14296+13364+10=27670 2324 7 13200+12247+10=25457 1372 5 

90 22275+21188+10=43473 2633 7 20887+19823+10=40720 1649 5 

100 24528+23416+10=47954 609 8 23436+22333+10=45779 615 5 

200 100530+98251+10=198791 845 13 97903+95620+10=193533 1546 11 

300 247036+243483+10=490529 1030 19 235775+232224+10=468009 1283 16 

400   427003+422073+10=849086 2715 32 415911+410984+10=826905 289 21 

500 674549+668424+10=1342983 1308 40 650181+644055+10=1294246 561 33 

600 969093+962072+10=1931175 2615 65 935320+928297+10=1863627 2307 33 

700 1317690+1309243+10=2626943 1440 76 1278391+1269956+10=2548357 755 50 

800 1782192+1772207+10=3554409 2420 105 1725979+1715980+10=3441969 1102 60 

900 2195113+2183998+10=4379121 2316 128   2130866+2119740+10=4250616 2374 74 

1000   2714532+2702626+10=5417168 2156 134 2632796+2620899+10=5253705 1047 87 

2000 10742308+10718122+10=21460440 1875 540 10641846+10617650+10=21259506 685 252 
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Figure (6): AES behavior for PSO & GA applied for (SP1) with n=40,…,100,…,1000. 

 

 

Figure (7): AES behavior for PSO & GA applied for (SP2) with n=40,…,100,…,1000. 
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Figure (8): Time comparison for GA & PSO for (SP1) and (SP2) with n=40,…,100,…,1000 
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