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Abstract 
 

A misclassified size-biased Log Series Distribution (MSBLSD) where some of the observations corresponding 

to  𝑥 = 𝑐 + 1 are wrongly reported as 𝑥 = 𝑐 with probability  𝛼, is defined. Various estimation methods like the 

method of maximum likelihood (ML), method of moments and the Bayes estimation for the parameters of 

MSBLS distribution are used and verified their efficiency through simulation study. Bayes estimators of the 

parameters are obtained. An example is presented for the size-biased log series distribution to illustrate the 

results and a goodness of fit test is also done using the method of maximum likelihood. 

Key words: Log Series Distribution, Misclassification, Size – Biased, Method of Moments, Maximum 

likelihood, Bayes estimation 

 

1. Introduction 

The logarithmic series distribution was introduced by Fisher, Corbett and Williams (1943) to investigate the 

distribution of butterflies in the Malayan Peninsula, and data by Williams (1947) on the number of moths of 

different species caught in a light-trap in a given period. Chatfield et al (1966) used the logarithmic series 

distribution (LSD) to represent the distribution of numbers of items of a product purchased by a buyer in a 

specified time period. In probability and statistics, the logarithmic distribution (also known as logarithmic series 

distribution) is a discrete probability distribution derived from the Maclaurin series expansion for 0 < 𝜃 < 1. 

                                                     − ln(1 − 𝜃) = 𝜃 +
𝜃2

2
+

𝜃3

3
+ ⋯                                                                (1)                      

From this we obtain the identity 

  ∑
−1

ln(1−𝜃)

𝜃𝑥

𝑥
= 1∞

𝑥=1                                                                                  (2) 

Because of the identity above, the distribution is properly normalized.  

The logarithmic series distribution (LSD) characterized by a parameter 𝜃 is given by  

𝑃[𝑋 = 𝑥] = −
1

log(1−𝜃)
 
𝜃𝑥

𝑥
= 𝛽

𝜃𝑥

𝑥
; where 𝛽 = −

1

log(1−𝜃)
 & 𝑥 = 1, 2, 3 …                      (3) 

The equation (3) is a limiting form of zero-truncated negative binomial distribution. Sadinle (2008) linked the 

negative binomial distribution with the logarithmic series and Shanumugam and Singh (1984) studied the 

characterization of equation (3). A brief list of authors and their works can be seen in Johnson, Kotz and Kemp 

(2005). 

The mean and variance of LSD are given as  

𝜇1
′ = 𝛽

𝜃

1−𝜃
    ,     𝜇2 = 𝛽

𝜃

(1−𝜃)3
(1 − 2𝜃 + 𝜃2)                                                                 (4) 

When an investigator records an observation by nature according to certain stochastic model, the recorded 

observation will not have the original distribution unless every observation is given an equal chance of being 

recorded. For example, suppose that the original observation 𝑥0  comes from a distribution with p.m.f./p.d.f. 
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𝑓0(𝑥0) and that observation 𝑥 is recorded according to a probability re-weighted by a weight function 𝑤(𝑥)  >

 0, then 𝑥 comes from a distribution with p.m.f./p.d.f. 

𝑓(𝑥) =
𝑤(𝑥)

𝐸[𝑤(𝑋0)]
𝑓0(𝑥)                                                                              (5) 

The weighted distribution with 𝑤(𝑥) = 𝑥 is called size-biased/length-biased distribution.  

The size – biased logarithmic Series distribution (SBLSD) is obtained by taking the weight of the LSD (3) as 𝑥. 

We have from (3) and (4) 

 𝑓(𝑥) =
𝑤(𝑥)

𝐸[𝑤(𝑋0)]
𝑓0(𝑥) =

𝑥

𝛽
𝜃

1−𝜃

𝛽
𝜃𝑥

𝑥
= (1 − 𝜃)𝜃𝑥−1                                    (6) 

From (6) it is known that size-biased logarithmic distribution is a geometric distribution.  

2. Miscalsiified Size-biased Logarithmic Series Distribution 

Suppose the number of defectives actually present in a sample of size 𝑛 is a size-biased logarithmic series 

variable with parameter 𝜃 and let 𝛼 be the probability that a sample which actually contains (𝑐 + 1) defectives is 

misclassified by reporting it as containing only 𝑐 defectives, and in all other cases the observations and reporting 

of defectives are found correct. Let 𝑋 denote the number of defectives reported in a sample of 𝑘 units. Then the 

probability function of the random variable 𝑋  following a misclassified size-biased logarithmic series 

distribution 𝑃𝑀[𝑋 = 𝑥] will be given in the following way: 

    𝑃𝑀[𝑋 = 𝑐] = 𝑃𝑠[𝑋 = 𝑐] + 𝛼𝑃𝑠[𝑋 = 𝑐 + 1]                                                                                                  (7) 

𝑃𝑀[𝑋 = 𝑐 + 1] = 𝑃𝑠[𝑋 = 𝑐 + 1] − 𝛼𝑃𝑠[𝑋 = 𝑐 + 1]                                                                                    (8) 

from (6), (7) and (8) the p.d.f. of misclassified size-biased logarithmic series distribution is       

𝑃𝑀[𝑋 = 𝑥]  = {

(1 − 𝜃)𝜃𝑐 (
1

𝜃
+ 𝛼) ,           𝑓𝑜𝑟 𝑥 = 𝑐

(1 − 𝛼)(1 − 𝜃)𝜃𝑐 ,      𝑓𝑜𝑟 𝑥 = 𝑐 + 1

(1 − 𝜃)𝜃𝑥−1,                         𝑓𝑜𝑟 𝑥 ∈ 𝑆

                                                                               (9) 

0 < 𝜃 < 1,   0 ≤ 𝛼 ≤ 1,   𝑐 = 1, 2, 3, … 𝑘 − 1 

and 𝑆 is a subset of the set 𝐼 of non − negative integeres not containing 𝑐 and 𝑐 + 1.  

That is 𝑆 = 𝐼 − [𝑐, 𝑐 + 1], where 𝐼 is a set of non negative integers. 

Trivedi and Patel (2013) have considered estimation in misclassified size-biased generalized negative binomial 

distribution. In this paper we have discussed three methods of estimation to make the comparative analysis 

among the methods for the parameters of the Misclassified Size-Biased Logarithmic Series distribution through 

computer program.  

3. Maximum Likelihood Estimators 

To estimate the parameters 𝛼 and 𝜃 involved in (9), we employ the method of ML when the samples are subject 

to the type of misclassification described above. Let 𝑛𝑖 be the frequency corresponding to 𝑥 = 𝑖 in 𝑛 samples and 

so we have    

∑ 𝑛𝑖 = 𝑛

𝑘

𝑖=1

, the number of samples.  

Then the likelihood function of the sample of 𝑛 observations following (9) may be written as  
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𝐿 ∝ ∏ 𝑃𝑖
𝑛𝑖

𝑘

𝑖=1

                                                                                                                                                                   (10) 

Taking natural logarithm on both the sides, we have 

 ln 𝐿 = ∑ 𝑛𝑖 ln(1 − 𝜃) +𝑘
𝑖=1 ∑ 𝑛𝑖 (i − 1)ln 𝜃𝑘

𝑖=1 + 𝑛𝑐𝑙𝑛 (
1

𝜃
+ 𝛼) + 𝑛𝑐+1 ln(1 − 𝛼) + 𝑛𝑐 ln 𝜃                      (11) 

Differentiating with respect to 𝛼 and 𝜃  in turn and equating them to zero, we have  

   𝛼 =
𝑛𝑐𝜃−𝑛𝑐+1

𝜃(𝑛𝑐+1+𝑛𝑐)
      and                                                                                                                               (12) 

𝜃2𝑛𝑐(𝑛�̅� + 𝑛𝑐) + 𝜃𝑛𝑐(𝑛 − 𝑛𝑐 − 𝑛𝑐+1) + 𝑛𝑐[𝑛𝑐+1 − 𝑛(�̅� − 1)] = 0                                                         (13) 

The equation (13) is a quadratic equation, the roots are given by 

𝜃 =
−𝑛𝑐(𝑛−𝑛𝑐−𝑛𝑐+1)±√(𝑛𝑐(𝑛−𝑛𝑐−𝑛𝑐+1))

2
−4𝑛𝑐(𝑛�̅�+𝑛𝑐){𝑛𝑐[𝑛𝑐+1−𝑛(�̅�−1)]}

2𝑛𝑐(𝑛�̅�+𝑛𝑐)
                                                              (14) 

Here we consider only that value of 𝜃 ∈ (0, 1). 

The estimate of 𝛼 can be obtained from equation (12) using the value of 𝜃 obtain in (14).  

For 𝛼 = 0,  that is where no misclassification has occurred than from (14) we get maximum likelihood estimate 

of  𝜃 as  �̂� = 1 −
1

�̅�
                   

4. Method of Moments 

𝑟𝑡ℎ row moments of misclassified size-biased log series distribution denoted by 𝜇𝑟(𝑀)
′  is defined as   

𝜇𝑟(𝑀)
′ = ∑ 𝑥𝑟𝑃𝑀(𝑥)∞

𝑥=1                                                                                  (15) 

 Using the distribution in (9), we get 

𝜇𝑟(𝑀)
′ = 𝜇𝑟(𝑠)

′ + 𝛼𝑃𝑠(𝑐 + 1)[𝑐𝑟 − (𝑐 + 1)𝑟]               (16) 

Where 𝜇𝑟(𝑠)
′  =

1−𝜃

𝜃𝛽
𝜇𝑟+1(𝐿)

′ = 𝑟𝑡ℎ row moment of size biased log series distribution is given by          

When 𝜇𝑟+1(𝐿)
′  is the (𝑟 + 1)𝑡ℎ  row moment of log series distribution. 

Using the above relationships of row moments, first four moments of MSBLSD can be derived as  

𝜇1(𝑀)
′ =

1

1−𝜃
[1 − 𝛼(1 − 𝜃)2𝜃𝑐]                  (17) 

𝜇2(𝑀)
′ =

(1+𝜃)

(1−𝜃)2 − 𝛼(1 − 𝜃)𝜃𝑐[2𝑐 + 1]                (18) 

𝜇3(𝑀)
′ =

1

(1−𝜃)5
[(𝜃4 + 2𝜃3 − 6𝜃2 + 2𝜃 + 1) − 𝛼(1 − 𝜃)𝜃𝑐(3𝑐2 + 3𝑐 + 1)]            (19) 

𝜇4(𝑀)
′ = (1 − 𝜃)−4{(1 + 𝜃)(1 + 10𝜃 + 𝜃2) + 𝛽𝜃(1 + 4𝜃 + 𝜃2)} − 𝛼(1 − 𝜃)𝜃[4𝑐3 + 6𝑐2 + 4𝑐 + 1]  (20) 

From the first and second row moments (30) and (31) of MSBLSD, the variance of MSBLSD is  

𝜇2(𝑀) =
1

(1−𝜃)2
{[(1 + 𝜃) − 𝛼(1 − 𝜃)3𝜃𝑐(2𝑐 + 1)] − [1 − 𝛼(1 − 𝜃)2𝜃𝑐]2}            (21) 

solving (17) and (18) after some manipulation, we deduce 
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𝜃2[𝜇2(𝑀)
′ − 𝜇1(𝑀)

′ (2𝑐 + 1)] − 2𝜃{𝜇2(𝑀)
′ − 𝜇1(𝑀)

′ (2𝑐 + 1) − (𝑐 + 1)} + [𝜇2(𝑀)
′ − 𝜇1(𝑀)

′ (2𝑐 + 1) + 2𝑐] = 0 

(22) 

The solution of the above quadratic equation is given by   

      𝜃 =
−𝐵±√𝐷

2𝐴
                    (23) 

5. Bayes Estimation 

In Bayesian analysis, we treat the parameter 𝜃 as a random variable, with a given probability density function for 

𝜃 . Bayes theorem leads to posterior distribution of unknown parameters given by the data, all inferential 

problems concerning the parameters can be solved by means of posterior distributions. Based on these 

distributions we will estimate the unknown parameters where the expectation is taken over the joint distribution 

of 𝜃 and 𝑥.  

Here we have considered the informative prior for both the unknown parameters 𝛼 and 𝜃 as, 

𝜋1(𝛼)    = 𝑔1(𝛼) =
1

𝛽(𝑎,   𝑏)
𝛼𝑎−1(1 − 𝛼)𝑏−1                        𝑎, 𝑏 > 0, 0 < 𝛼 < 1                (24) 

𝜋2(𝜃)    = 𝑔2(𝜃) =
1

𝛽(𝑝,   𝑞)
𝜃𝑝−1(1 − 𝜃)𝑞−1                       𝑝, 𝑞 > 0,   0 < 𝜃 < 1              (25) 

The Bayes estimate of 𝜃 is given by 

�̂�𝐵                   = ∫ 𝜃𝜋( 𝜃|𝑥)𝑑𝜃
1

0
=

∑ (
𝑛𝑐
𝑖

)
𝑛𝑐
𝑖=0 𝛽(𝑎+𝑖,   𝑛𝑐+1+𝑏)   𝛽(𝑛(�̅�−1)+𝑝+𝑖+1,   𝑛+𝑞)

∑ (
𝑛𝑐
𝑖

)
𝑛𝑐
𝑖=0

𝛽(𝑛+𝑞,   𝑛(�̅�−1)+𝑝+𝑖) 𝛽(𝑎+𝑖,   𝑛𝑐+1+𝑏)

                             (26) 

And the Bayes estimate of 𝛼 is  

�̂�𝐵                   = ∫ 𝛼𝜋( 𝛼|𝑥)𝑑𝛼
1

0
=

∑ (
𝑛𝑐
𝑖

)
𝑛𝑐
𝑖=0  𝛽(𝑛+𝑞,   𝑛(�̅�−1)+𝑝+𝑖) 𝛽(𝑎+𝑖+1, 𝑛𝑐+1+𝑏)

∑ (
𝑛𝑐
𝑖

)
𝑛𝑐
𝑖=0

𝛽(𝑛+𝑞,   𝑛(�̅�−1)+𝑝+𝑖) 𝛽(𝑎+𝑖, 𝑛𝑐+1+𝑏)

                   (27) 

6. Real Life Application 

To illustrate the practical application of results obtained in this paper, data from Singh and Yadav’s (1971), 

classical example on the number of households (𝑓) having at least one migrant according to the number of 

migrants (𝑋) has been suitable altered. For the purpose of this illustration it has been assumed that ten of the 

records which should have shown two migrants each were in error by reporting on emigrant. Both the original 

and the altered data for this example are given in Table 6.1. For the altered data, we fit the misclassified size 

biased log series distribution. The maximum likelihood estimation is used for estimating the parameters.  
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Table 6.1: Number of households (𝑓) having at least one migrant according to the number of migrants (𝑋)    

                 (Singh and Yadav (1971) 

No. of Migrants 
𝑋 

Original Data 

Altered Data - Misclassified Size-Biased Log Series Distribution 

𝑂𝑖  𝐸𝑖  𝜒2 
Estimates of 
parameters 

1 375 385 385.7 0.00127 

𝜃 = 0.346927 
𝛼 = 0.003154 

2 143 133 133.3 0.000675 

3 49 49 46.4 0.14569 

4 17 17 16.1 0.050311 

5 2 2 5.6 0.735294 

6 2 2 2.0 

 

7 1 1 0.7 

8 1 1 0.2 

Total 590 590 590 0.93324  

d. f. 2  𝜒2 0.93324  
 

The results are given in Table 6.1, which shows that the altered data fits good with misclassified size biased log 

series distribution, since 𝜒2
𝑐𝑎𝑙

=  0.93324  < 𝜒2
(2,0.05)

= 5.991    

Original data fits good with size – biased log series distribution,  

since 𝜒2
𝑐𝑎𝑙 =  2.305162  < 𝜒2

(3,0.05) = 7.841    

 

7. Simulation: 

To study the behavior of the estimates of the parameters we consider a simulation study. Here, we have 

generated 1000 random samples of size 𝑛 by using the method of Monte Carlo simulation with different sample 

size (𝑛), 𝜃 𝑎𝑛𝑑  𝛼   and value of 𝑐 = 1 from the MSBLSD defined in equation (17) and obtained the simulated 

risk (SR) of estimators of 𝛼  and 𝜃 obtained by the Method of MLE, Method of Moments and Bayes estimation. 

The simulated results are shown in the following tables. In the Bayes estimation the hyper parameter 𝛽 is taken 

as 0.5. The simulated risk is defined as 

𝑆𝑅 = √∑ (�̂�𝑖 − 𝜃)
21000

𝑖=1

1000
 

Note:  

 The Simulated Risk and Bias of ML, Moment and Bayes estimators are shown in the following tables for 

different choice of parameters θ,  α and sample size  𝑛.  

 In each table, in each cell the first entry denote the simulated risk (SR) and the entry in the bracket denote 

Bias of the estimator. 
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Table 7.1:  Simulated Risk and Bias of ML, Moment and Bayes estimators for different values of 𝜶 and 𝜽 

for 𝒏 = 𝟏𝟎, 20 & 30 

 ML Moments Bayes 

𝑛 = 10 
𝜃 𝛼 (𝜃) (𝛼) (𝜃) (𝛼) (𝜃) (𝛼) 

0.3 

 

0.01 0.399004 
(0.0721172) 

0.59724 
(0.505499) 

0.1938821 
(0.0164887) 

1.445537 
(0.3572701) 

0.084188062 
(0.011052805) 

0.418903518 
(0.407770892) 

0.02 0.4016862 
(0.0733394) 

0.6149005 
(0.5296398) 

0.1932705 
(0.0195291) 

1.442425 
(0.3532178) 

0.085808701 
(0.010932404) 

0.418002172 
(0.405953239) 

0.05 0.3756781 
(0.0733394) 

0.5930687 
(0.4996398) 

0.1953939 
(0.0090503) 

1.453089 
(0.3380325) 

0.086273056 
(0.014165747) 

0.384037316 
(0.373251748) 

0.1 0.3658907 
(0.0729163) 

0.5641046 
(0.4497586) 

0.1936655 
(0.0176213) 

1.439605 
(0.2910491) 

0.085937961 
(0.020990539) 

0.341060892 
(0.328482234) 

0.5 

 

0.01 0.4955966 
(0.0209823) 

0.5046846 
(0.4146149) 

0.1631581 
(0.0359248) 

1.818949 
(0.3756844) 

0.109537693 
(0.057554603) 

0.391354281 
(0.379243603) 

0.02 0.5039659 
(0.0099472) 

0.503231 
(0.4061625) 

0.1621508 
(0.0318394) 

1.792378 
(0.3604621) 

0.116620568 
(0.067815989) 

0.381769218 
(0.370226305) 

0.05 0.4727896 
(0.0143286) 

0.4763728 
(0.3715718) 

0.1597018 
(0.0211269) 

1.828251 
(0.3555594) 

0.114399639 
0.066639364 

0.359815949 
(0.346913379) 

0.1 0.4675834 
(0.0103450 

0.4656599 
(0.3509191) 

0.1611629 
(0.0271445) 

1.833101 
(0.2906393) 

0.115896887 
(0.065641195) 

0.316176307 
(0.301413858) 

0.7 

 

0.01 0.7502842 
(0.0104145) 

0.5221298 
(0.4236429) 

0.11615 
(0.046483) 

3.386369 
(0.4734417) 

0.117128902 
(0.081138921) 

0.403164628 
(0.392388006) 

0.02 0.6466744 
(0.0085639) 

0.5606665 
(0.450756) 

0.1109011 
(0.0288766) 

3.511884 
(0.4115277) 

0.116049538 
(0.083357882) 

0.394239658 
(0.382547181) 

0.05 0.6600482 
(0.0089921) 

0.5417621 
(0.4233661) 

0.1136934 
(0.0387534) 

3.339942 
(0.3521471) 

0.11984195 
(0.083811951) 

0.370519575 
(0.357491744) 

0.1 0.6218842 
(0.0149871) 

0.496126 
(0.3702069) 

0.1112477 
(0.0295937) 

3.631248 
(0.3462837) 

0.123250056 
(0.087420714) 

0.33363785 
(0.318916643) 

𝑛 = 20 

0.3 
 

0.01 
0.3017328 

(0.038132) 
0.4027729 
(0.332237) 

0.1371913 
(0.0171345) 

1.023906 
(0.3851617) 

0.066369176 
(0.004659367) 

0.363098283 
(0.351466408) 

0.02 
0.3059354 

(0.0282135) 
0.3984518 

(0.3222679) 
0.1380428 

(0.0111014) 
1.01873 

(0.3994549) 
0.068034692 

(0.002308321) 
0.356981642 

(0.344837199) 

0.05 
0.3141293 

(0.0239377) 
0.3839981 

(0.2936172) 
0.1384097 

(0.0085895) 
1.028735 

(0.327202) 
0.067387491 

(0.002976757) 
0.337793579 

(0.323183906) 

0.1 
0.2915172 

(0.0286663) 
0.3576095 

(0.2626598) 
0.1391457 

(0.0038261) 
1.019742 

(0.3125257) 
0.068466726 

(0.000451487) 
0.304253024 

(0.376933059) 

0.5 
 

0.01 
0.5543573 

(0.0109824) 
0.3533887 

(0.2849317) 
0.1083589 

(0.0056666) 
1.292296 

(0.3906668) 
0.078920319 

(0.033207834) 
0.333135586 

(0.320584019) 

0.02 
0.5206028 

(0.0006753) 
0.3547063 

(0.2872428) 
0.1076437 

(0.0101457) 
1.320054 

(0.3582872) 
0.076335115 

(0.027420372) 
0.326307976 

(0.312724303) 

0.05 
0.4944243 

(0.0079398) 
0.3457509 

(0.2719096) 
0.1089601 
(0.002216) 

1.289081 
(0.363291) 

0.077827582 
(0.030955732) 

0.303428347 
(0.288467687) 

0.1 
0.446305 

(0.0074838) 
0.3282745 

(0.2319045) 
0.1087706 

(0.0032778) 
1.289637 

(0.3219843) 
0.077202708 

(0.368965322) 
0.26805287 

(0.248273247) 

0.7 
 

0.01 
0.6925815 
(0.006641) 

0.3760264 
(0.3038586) 

0.07338303 
(0.0058169) 

2.609863 
(0.4597519) 

0.068739925 
(0.041136575) 

0.348968152 
(0.335700383) 

0.02 
0.6969855 

(0.0039239) 
0.3709635 

(0.2877676) 
0.07586689 
(0.0176246) 

2.469913 
(0.4307284) 

0.068556664 
(0.040268433) 

0.34130748 
(0.326854746) 

0.05 
0.6681908 

(0.0040931) 
0.3754791 

(0.2741693) 
0.07448379 
(0.011184) 

2.532471 
(0.424473) 

0.072951682 
(0.044918847) 

0.313116883 
(0.297559452) 

0.1 
0.6081768 

(0.0067052) 
0.3356357 

(0.2245442) 
0.07464357 
(0.0117768) 

2.533962 
(0.3518326) 

0.073152042 
(0.043507707) 

0.289063711 
(0.270658219) 

𝑛 = 30 
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0.3 
 

0.01 
0.3327296 
(0.0188216) 

0.3289334 
(0.2629785) 

0.1110675 
(0.0171345) 

0.8264615 
(0.3382358) 

0.05863135 
(0.011734557) 

0.335270119 
(0.321160843) 

0.02 
0.3091901 
(0.0212382) 

0.3379346 
(0.2720422) 

0.1111489 
(0.0111014) 

0.8257576 
(0.3489639) 

0.061403364 
(0.009607297) 

0.32815521 
(0.313652735) 

0.05 
0.3047626 
(0.0226437) 

0.3285323 
(0.2541733) 

0.1110496 
(0.0085895) 

0.8320083 
(0.2882102) 

0.060002821 
(0.009506297) 

0.301729145 
(0.286743802) 

0.1 
0.2803672 
(0.0217409) 

0.3084224 
(0.2121447) 

0.1121346 
(0.0038261) 

0.8248268 
(0.2810123) 

0.060999484 
(0.008661163) 

0.271686863 
(0.253896767) 

0.5 
 

0.01 
0.4931183 
(0.0058786) 

0.3037076 
(0.2422074) 

0.08757983 
(0.0119872) 

1.055981 
(0.3635401) 

0.06310101 
(0.017106295) 

0.297403756 
(0.283533027) 

0.02 
0.468285 
(0.0073714) 

0.2808079 
(0.2179854) 

0.08795311 
(0.0091758) 

1.042197 
(0.3322786) 

0.063315374 
(0.018589616) 

0.293166348 
(0.279538016) 

0.05 
0.462062 
(0.004135) 

0.2755829 
(0.2015636) 

0.08887982 
(0.0024347) 

1.032292 
(0.320333) 

0.061225508 
(0.017098337) 

0.273475658 
(0.25763486) 

0.1 
0.38625 
(0.0028078) 

0.2558371 
(0.166174) 

0.0889461 
(0.0020503) 

1.038967 
(0.2525797) 

0.060723208 
(0.014270931) 

0.241177089 
(0.220600659) 

0.7 
 

0.01 
0.7083158 
(0.0004318) 

0.3125612 
(0.2442503) 

0.06052437 
(0.0099964) 

2.019973 
(0.4055967) 

0.053872896 
(0.029786658) 

0.300551562 
(0.28703036) 

0.02 
0.674432 
(0.0075) 

0.3013778 
(0.2326161) 

0.0602727 
(0.0083755) 

2.050203 
(0.3804104) 

0.055185621 
(0.028565419) 

0.300022394 
(0.285417776) 

0.05 
0.6183718 
(0.0020838) 

0.2719811 
(0.2048467) 

0.06006786 
(0.0074012) 

2.043279 
(0.3581949) 

0.052551783 
(0.02831192) 

0.28127253 
(0.265294117) 

0.1 
0.5386516 
(0.0061761) 

0.276865 
(0.1769128 

0.06093138 
(0.0122031) 

2.017987 
(0.3405125) 

0.054291198 
(0.028807652) 

0.254014667 
(0.233518356) 

 

Conclusions:  

In this paper we have discussed the problem of misclassification in a Size Biased Log Series distribution. We 

have also applied MSBLSD in real life example and showed that MSBLSD has a good fitting for the altered 

data. It is clear from Table 7.1 to 7.3 that for any sample size, for given value of 𝜃 and 𝛼, Bayes estimate 

performs better than Maximum Likelihood estimation and Method of Moments estimators since simulated risk 

of the estimates are smaller than that of ML and MOM estimates. Also as 𝑛 increases simulated risk of Bayes 

and MOM estimates decreases, but in MLE the pattern do not follow in certain cases. 
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