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Abstract 

The cycle index of dihedral group acting on the set  of the vertices of a regular -gon was studied (See 

[1]). In this paper we study the cycle index formulas of  acting on unordered pairs from the set 

. In each case the actions of the cyclic part and the reflection part are studied separately for both 

an even value of  and an odd value of . 

  

1. Introduction 

The concept of the cycle index was discovered by Polya (See [2]) and he gave it its present name. He used the 

cycle index to count graphs and chemical compounds via the Polya’s Enumeration Theorem. More current cycle 

index formulas include the cycle index of the reduced ordered triples groups  (See [3]) which was further 

extended by Kamuti and Njuguna to cycle index of the reduced ordered r-group  (See [4]). The Cycle Index 

of Internal Direct Product Groups was done in 2012 (See [5]). 

2. Definitions and Preliminaries 

Definition 1. 

A cycle index is a polynomial in several variables which is structured in such a way that information about how a 

group of permutations acts on a set can be simply read off from the coefficients and exponents. 

Definition 2. 

A cycle type of a permutation is the data of how many cycles of each length are present in the cycle 

decomposition of the permutation. 

Definition 3. 

A monomial is a product of powers of variables with nonnegative integer exponents possibly with repetitions. 

 

Preliminary result 1  

Let  be a finite permutation group and let  denote the set of all 2-element subsets of . If g is a 

permutation in  we want to know the disjoint cycle structure of the permutation  induced by g on 

. 

We shall briefly sketch the technique (we call it the pair group action) for obtaining the disjoint cycle structure of 

; for a detailed explanation and examples (See [6]). 

Let , our aim is to find . To do this there are two separate contributions 

from  to the corresponding term of  which we need to consider: 

(i)  from pairs of points both lying in a common cycle of . 

(ii) from pairs of points each from a different cycle of . 

It is convenient to divide the first contribution into: 

 (a) Those pairs from odd cycles, 

 (b) Those pairs from even cycles. 
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(i) (a)  If we let  be an odd cycle in  and we let the elements in a pair come from 

a common cycle, then the permutation  in  induced by  is as follows:  

{1,2}→{2,3}→{3,4}→ . . .→{2m+1,1} 

            {1,3}→{2,4}→{3,5}→. . .→{2m,1}→{2m+1,2} 

            {1,4}→{2,5}→{3,6}→ . . . →{2m-1,1}→{2m,2}→{2m+1,3} 

{123...2m+1}→    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  .   

                  {1,m}→{2,m+1}→{3,m+2}→ . . . →{m+3,1}→ . . .→{2m+1,m-1} 

              {1,m+1}→{2,m+2,}→. . . →{m+2,1}→ . . . →{2m+1,m} 

Hence   . 

So if we have  cycles of length  in , the pairs of points lying in the common cycles contribute; 

      (2.1)  for odd cycles. 

(i) (b) If we let  be an even cycle in  and we let the elements in a pair come from a 

common cycle, then the permutation  in  induced by  is as follows: 

{1,2}→{2,3}→{3,4}→ . . .→{2m,1} 

            {1,3}→{2,4}→{3,5}→. . .→{2m-1,1}→{2m,2} 

{123...2m}→        .   .   .   .   .   .   .   .   .   .   .  .   . 

     {1,m-1}→{2,m}→{3,m+1}→ . . . →{m+3,1}→ . . . →{2m,m-2} 

     {1,m}→{2,m+1}→{3,m+2}→ . . . →{m+2,1}→ . . . →{2m,m-1} 

     {1,m+1}→{2,m+2}→. . . →{2,m+2}→ . . . →{m,2m}  

Hence      . 

So if α2m is the number of cycles of length  in , the pairs of points lying in common cycle contribute: 

      (2.2)  for even cycles. 

(ii) Consider two distinct cycles of length  and  in  If  belongs to an -cycle  of  and  

belongs to a -cycle  of , then the least positive integer  for which  and  

is , (the lcm of  and ).So the element  belongs to an -cycle of . 

The number of such -cycles contributed by  on   to  is the total number of pairs in   

divided by , the length of each cycle. 

This number is therefore  = , the gcd of  and . 

In particular if , the contribution by  on   to  is l cycles of length l. 

Thus when  we have; 

    (2.3) 

and when  

                  (2.4) 
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Preliminary result 2 

The cycle index formulas of dihedral group  acting on the set  of the vertices of a regular -gon are given 

by: 

 =       2.5(a) 

if n is even and  

 =             2.5(b)     if n is odd.  

Where  is the Euler’s phi formula. 

For the proof to these important results (See [7],[8]). 

 

3.  Cycle index of  acting on unordered pairs 

With the help of the above important results we now study the cycle index of  acting on unordered pairs of 

the set . 

 

3.1 Case 1: if  is even 

We first consider the cyclic part from 2.5(a)        

Since  is even, then the divisors of  can either be even or odd.  

If  is even and 

(i)  the pair come from a common cycle then from 2.2 we have;      

          (3.1.1) 

(ii)  each of the elements in the pair comes from a different cycle then from 2.4 we have;  

       (3.1.2)    

Combining (3.1.1) and (3.1.2) we have for an even divisor 

 =           (3.1.3) 

If d is odd and; 

(i)   the pair come from a common cycle then from 2.1 we have:  

         (3.1.4a) 

(ii)  each of the elements in the pair comes from a different cycle then from 2.4 we have;  

                         (3.1.4b) 

Combining (3.1.4a) and (3.1.4b) we have for an even divisor; 
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  =          (3.1.5)  

Therefore the cycle index formula for  acting on  when  is even is given by: 

  (3.1.6) 

From 2.5(a) we note that the two different kinds of reflections (a reflection through two vertices and a reflection 

through the edges) induce different monomials when acting on the vertices of a regular -gon for n even. 

We now investigate the induced monomials when the reflections act on  

(i) We first consider the part   

If each of the elements in the pair come from a different cycle of a different length then from 2.3 we have;

           (3.1.7) 

If both come from different cycles of same length, then there are two cases: 

Either both come from cycles of length one in which from 2.4 we have; 

                   (3.1.8a). 

Or each come from a different cycle of length two then from 2.4 we have;  

                    (3.1.8b) 

If both come from a common cycle of length two, then from 2.2 we have: 

        (3.1.9)  

Combining (3.1.7) (3.1.8a) (3.1.8b) and (3.1.9), we get; 

  =      .   

But from 2.5(a) we have  monomials of the form  and hence a total of  

                             (3.1.10)  

monomials will be induced. 

(ii) Next we consider the part  

If the pair comes from a common cycle then from 2.2 we have;  
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     =           (3.1.11) 

If the pair comes from different cycles then the cycles are of length 2 and from 2.4 we have; 

                     (3.1.12) 

Combining (3.1.11) and (3.1.12) we have;   but from 2.5(a) we have   monomials of the form  

and hence a total of     (3.1.13) 

monomials will be induced. 

Adding (3.1.10) and (3.1.13) we have;         (3.1.14) 

Now adding (3.1.6) and (3.1.14) we have the cycle index formula; 

 =  +   (3.1.15) 

3.2 Case 2: if n is odd 

We first consider the cyclic part       =  

In this case  must be odd since  is odd and an odd number is not divisible by even number. 

If a pair comes from a common cycle, then from 2.1 we have;  

              (3.2.1). 

If the pair come from different cycles, of the same length then from 2.4 we have;  

                   (3.2.2). 

Combining (3.2.1) and (3.2.2) we have  =                (3.2.3). 

Therefore the cycle index formula of  acting on when n is odd is given by; 

   (3.2.4) 

For us to study the induced monomials by the reflection symmetries, it is important to note that all the reflection 

symmetries of a regular -gon with  odd have their line of symmetry passing through a vertex and an edge.  

http://www.iiste.org/
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We now consider the monomials induced by the reflection part  ; 

If both of the elements come from a common cycle then the cycle has to be of length two and hence from 2.2 we 

have;  

        =      (3.2.5). 

If the elements in the pair come from different cycles with one from a cycle of length 

one and the other from a cycle of length two then from 2.3 we have; 

            (3.2.6). 

If a pair comes from different cycles of length two, then from 2.4 we have; 

              (3.2.7) 

Combining (3.2.5), (3.2.6) and (3.2.7) we have; 

=     

We note that from 2.5(b) there are  monomials of the form  and hence  monomials will be induced 

and hence we have; 

=           (3.2.8) 

Adding (3.2.4) and (3.2.8) we have the cycle index formula as; 

 =     (3.2.9) 

Example 1 

Let  then the dihedral group   of degree 7 acting on the unordered pairs of the  

set  . Then; 

, ,   and  

Hence from 3.2.9 we have;  

 = [  6 ] . 

Example 2 

Let , then the dihedral group  of degree 6 acting on the unordered pairs of the set . 

Then; 

, , ,   and  
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Hence from 3.1.15 we have; 

 = . 

 

4. Conclusion 

The cycle index formulas of  acting on unordered pairs are given as; 

 =  for an odd value of n and 

 =  +  for an even value of n.  
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