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ABSTRACT 
Time series is a measured observation recorded with time. The process of collecting data sometimes faces a lot 

of challenges that may arise due to defective working tools, misplaced or lost records and errors that are prone 

to occur. The most commonly used approaches to estimate missing values include the use of 

autoregressive-moving average models developed by Box Jenkins, use of extrapolation or interpolation under 

regression analysis and use of state space models where data is considered as a combination of level, trend and 

seasonal components. This paper intends to use the most appropriate method of estimating missing values by 

using the direct method of imputation. Incomplete secondary data obtained from the Ministry of fisheries 

development, together with the Kenya Marine and Fisheries Research Institute are to be used to estimate the gap 

left just before, during and immediately after the post election violence of the year 2007/2008, a time when data 

could not be obtained and/or recorded. The original time series data when analyzed produced a SARIMA model 

(0, 1, 1) (2, 0, 0)12 as the best candidate for the lower segment. SARIMA (0, 1, 2) (0, 0, 1)12 was produced for 

the upper segment using autoarima function in R package. The missing data were estimated using forecast from 

the lower segment which was extended to the in sample forecast in the upper segment. The regression test 

between predicted and the original values in upper segment proves the strong positive relationship indicating 

high level of accuracy on predictability of the model used.  

Keywords: Stationary and Stochastic process, Auto-covariance and Autocorrelation Function, Partial 

Autocorrelation Function, correlogram, Moving Average process, Autoregressive process.  

   

1  Introduction 

 

Fishing industry is one of the major economic activities for the people living around Lake Victoria. They 

harvest fish on daily basis and sell the catch to traders to export and to the local consumers when fish is still 

fresh. Different fish species are harvested in the lake with fishing of Nile perch (Lates Niloticus) leading in 

priority due to its market value and nutrition standards.  Data about the catch are usually recorded by the 

Government of Kenya through the Ministry of Livestock and Fisheries Development at various beaches around 

the lake shore together with the Kenya Marine and Fisheries Research Institute (KMFRI). In the year 2007, just 

before 2007 general election there was noted general laxity on fishing activity and data collection. This was 

followed by the post election violence where no data could be collected and even in some areas the records were 

lost to fire. This left a seasonal gap of missing observations for a period of three months problem that forms the 

basis of this project work,” Analysis of time series with missing observations ”. The problem of missing values 

in time series is common in data collection. One of the main objectives of time series analysis is to fill the 

missing observations so as to enable analysis and forecasting be done. This can be possible if a suitable model 

that fits the data available is used appropriately such that it can be extended to cover the missing gaps. A lot of 

research work has been done in this area with the stochastic models developed by Box and Jenkins widely 

applied in adjusting the estimates both directly and indirectly and eventual forecasting. This is because it 

provides a common frame work for time series forecasting that can cope with non stationary series by use of 

differencing technique. The technique derives forecast of time series on the basis of historical behavior of the 

series itself hence can use the statistical concepts and principles that can model a wide range of time series 

behavior. This project therefore intends to identify the model that can fit the collected data prior and after the 

gap and then apply the most appropriate method of adjusting the estimates and eventually forecast.  

 

1.1 Basic Concepts and Notation 

 

1.1.1 Stationary process 
A time series is said to be strictly stationary if the joint distribution of Xt1, Xt2, ...Xtn is the same as the joint 

distribution ofXt1+h, Xt2+h, .., Xtn+h for all (ti ∈ℜ).Hence the mean and variance if they exist do not change over 

time. A time series is said to be covariance stationary in weak sense if its mean is constant and autocovariance is 

independent of distance between the variables,E(Xt) = µ < ∞ for all t ∈ ℜ 
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E (Xt − µ) (Xt+h − µ) = Cov (Xt, Xt+h) = δ(h)        (1.1) 

 

Where µ is a real number and δ (h) is the autocovariance function for lag of h.The transformation involves 

differencing the data with the given series Xt to create the new series 

  ∆Xt = Xt − Xt−1          (1.2) 

 

1.1.2  Autocovariance and Autocorrelation Function 
 

Autocorrelation function are values that fall between -1 and +1 calculated from time series at different lags to 

measure the significance of correlations between present and past observations and to determine how far back in 

time they are correlated. For a stationary process Xt we have the: Mean 

  E (Xt) = µ          (1.3) 

  and variance 

  δ (0) = E (Xt − µ)
2
 = δ

2
         (1.4) 

 

is called the autocovariance function which is the function of the time difference (t; t + h). The function 

   

ρ(h) = Cov (Xt, Xt + h)/√V ar(Xt)Var(Xt + h)  = δ(h)/δ(o)      (1.5) 

 

is referred to as Autocorrelation function (ACF) in time series analysis as they represent the covariance and 

correlation between Xt and Xt+h from the same process separated by the time lag h. Note that for stationary time 

series the autocovariance and autocorrelation functions have the following properties;  

   

(i) Uncorrelated data the autocorrelation function is equal to zero i.e. ρ (h) = 0 for all h ≠ 0 

(ii) δ (h) = δ(−h);ρ(h) = ρ(−h) hence positive half of the autocovariance is commonly plotted in  

correlogram.  

(iii) −1 ≤ ρ (h) ≤ 1 

 

1.1.3  Partial Autocorrelation Function 
 

Partial autocorrelation function values are the coefficients of linear regression of the time series using its lagged 

values as independent variables. It is equally useful in making time series models especially where there are 

large portions of correlations between Xt and Xt+h in which autocorrelation patterns are difficult to establish. The 

lag h for autocorrelation is the partial regression coefficient Φhh in the r
th

 order autoregression.  

  Xt+h = Φh1, Xt+h−1 + Φh2Xt+h−2 + ... + ΦhhX t + et+h      (1.6) 

Where et+h is normal error term. Multiplying the equation above by X t+h−j and taking the expectation the result 

is;  

  δ (j) = Φh1δ(j − 1) + Φh2δ(j − 2) + ... + Φhh δ j − h       (1.7) 

   

By deviding both sides by δ (0) we get 

  ρ (j) = Φh1δ(j − 1) + Φh2ρ (j − 2) +… + Φhh ρ (j − h)      (1.8) 

  

where j ≥ 1. These correlation functions can be applicable mostly in modeling of statistical dependencies about 

evolution of time series Xt and therefore can form the basis of rules for interpolating values at points that are 

lacking data.  

 

1.1.4  Correlogram 
 

Is an important tool in time series analysis that can be used to describe the nature of time series and also to 

identify an appropriate model for a given time series.  

 

The autocorrelation r h = δ (h) / δ (0)  

  

Where δ (h) =∑
(𝑋𝑡−�̂�)(𝑋𝑡+1−�̂�)

𝑁

𝑁−ℎ
𝑡=1  

for h = 0, 1, 2......and δ (0) = δ
2
 can be used to determine the correlograms. When a graph of rh against h is 

plotted a correlogram is produced which can assess the behavior and properties of the time series.  
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1.1.5  Moving Average process 
 

Suppose e(t) is a white noise with mean zero and variance δ
2
 then the process Xt is said to be a moving average 

process of order q if 

  Xt = β0et + β1e t−1 +....+βqe t−q        (1.9) 

Where β0, β1, βq are moving average parameters. The subscripts on the β’s are called the orders of Moving 

average parameters. The highest order q is referred to as the order of the model, hence can be abbreviated M A 

(q) which means Moving Average of order q. Basic model for the moving average is 

  Xt = et + θ e t−1          (1.10) 

Which indicates that any given current observation is directly proportional to the random error- 

e t−1 from preceding period together with the current one et. The θs refer to the order of the Moving Average 

parameters. For MA (q) process 

  δ (h) = Cov (Xt, Xt+h)         (1.11) 

  

1.1.6  Autoregressive Process 
 

Let (et) be a purely random process with mean zero and variance σ
2
, then the process Xt is said to be an 

autoregressive process of order p if 

  Xt = Φ1Xt−1 + Φ2Xt−2 +....+ ΦpXt−p + et       (1.12) 

Where Φ1; Φ2; Φp are parameters of autoregressive and the subscripts 1, 2,...are the orders of the autoregressive 

parameters which increase with increase in Xt. 

 

The basic model of AR is Xt = ΦXt−1 + et        (1.13) 

Where ets is a sequence of independent identically distributed normal random variables with mean zero and 

variance σ
2
. It indicates that the value Xt depends directly on previous value of Xt−1 plus random error et. And as 

the number of AR parameters increase, Xt becomes directly related to increased past values leading to an 

expression in equation 1.13 above and the model looks like a regression model, hence the term autoregression. 

The values of Φ which would make the process to be stationary are such that the roots of Φ (B) = 0 lie outside 

the unit circle in the complex plane. B is the backward shift operator such that BjXt = X t−j and ΦB = 1 − 

ΦB.....ΦpBp.  

   

1.1.7 Autoregressive Moving Average 
 

This is a combination of Autoregressive and Moving average models to build a stochastic model that can 

represent a stationary time series. The order of ARMA are expressed as p and q respectively and they relate to 

what happen in period t to the past values and random errors that occurred in the past periods. The model is 

  Xt = ∑ Φ𝑃
𝑇=1 tXt−1 + et − ∑ θ𝑃

𝑇=1 je t−j        (1.14) 

   

 Thus 

  Xt = Φ1 + Φ2Xt−2 +.... + ΦpXt−p − θ1e t−1 + θ2e t−2 + ...θqe t−q     (1.15) 

When simplified using backward shift operator BjXt = X t−j We get 

  Φ (B) Xt = θ (B) et         (1.16) 

 

where θ (B) = 1 − θ1B....θqBq and Φ (B) = 1 − Φ1B...ΦpBp are polynomials of degree p and q in B and the 

process is ARMA (p, q) To attain stationary for this model the equation Φ(B) has its roots lying outside the unit 

circle and θ(B) = 0 must lie outside the unit circle for the process to be invertible.  

 

1.1.8  Autoregressive Integrated Moving Average 
 

If the observed series is non stationary in the trend then we can difference the series to obtain stationarity. In 

ARIMA models the term integrated, which is acronym for summed is used because the differencing process can 

be reversed to obtain the original time series values by summing the successive values of the differenced series. 

Consider the Autoregressive Moving Average of order (p, q) given by:- 

  Xt = Φ1Xt−1 +.... + ΦpXt−p et + β1e1 + ... + βqet−q      (1.17) 

 Suppose Xt is non-stationary but ∇Xt is stationary.  

 Let ωt = ∇d Xt, ωt is stationary while Xt is non-stationary.  

Where ωt = Φ1ω1 + ... + Φpωt−p + et + β1e1 + ... + βqet−q. 

We can write using backward shift operator 

  Φ (B) ωt = Θ (B) et        (1.18) 
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This implies 

Φ (B)∇d Xt = Θ (B) et note ∇ = 1 − B, ∇Xt = Xt − Xt−1, (1 − B) Xt = Xt − (B) Xt.  

  Thus 

  ΦB(1 − B)d Xt = Θ (B) et        (1.19) 

which is autoregressive integrated moving average of order (p,d, q).  

 

1.1.9  Seasonal Autoregressive Integrated Moving Average 
Most of the economic time series do show seasonal fluctuations with some characteristics of homogeneity 

within given periods of the year. The pattern developed can be at intervals of monthly (s=1), quarterly (s=4) or 

yearly(s=12). When these data are arranged in tabulated form then some relationships can be noted between 

observations among the same months and also among the successive months of the year. This scenario can be 

expressed by a model 

  φp (B)ΦP (Bs)∇d∇D 

  s Xt = θq (B)ΘQ(Bs) et         (1.20) 

where the subscripts θpΦP θqΘQ are polynomials of the corresponding order p, P, q, Q respectively. And ∇d is 

the simple differencing operator of order p and ∇D is the seasonal differencing operator of order D. ∇1∇ = Xt − 

Xt1 = (1 − B) Xt. Thus the final differenced stationary time series is not only from simple differencing to 

remove the trend but also seasonal ∇s to remove seasonality.  

 

2  Literature Review 
In order to remove non-stationary sources of variation and fit stationary models Box and Jenkins in 1976 

3
 

recommended the extension to Autoregressive Moving Average process which deals with stationary process 

through differencing. Richard H. Jones in 1980 came up with a method that involved calculating exact 

likelihood function of stationary Autoregressive Moving Average based on Akaike’s Markovian 
1
 representation 

combined with Kalman recursive estimation. This approach involved use of matrices and vectors with 

dimensions equal to max (p, q) where p is the order of autoregressive and q is the order of moving average. His 

article also mentions some more discussions on observational error in the model and the extension to missing 

observations.  

 

In the same year A.C.Harvey 
5
and G.D.A Phillips

4
came up with an algorithm that enables the exact likelihood 

function of a stationary autoregressive moving average process to be calculated by use of Kalman filter. This 

involved two procedures; The first one translates autoregressive moving average process model into ”state 

space” form which is necessary for Kalman filtering and the second computes the covariance matrix related with 

initial values of the state vector. Priestly in 1981 discussed stationary process as a sum of deterministic and 

non-deterministic processes. Where deterministic refers to a situation in which the forecast is done by linear 

regression on past values without necessarily involving recent values. And if the future values are considered to 

be a realisation from probability distribution which is conditioned by knowledge of past values then the process 

is non-deterministic(stochastic). 

 

In 1984, A.C.Harvey and R.G. Pierce 
5
 discussed related problems about time series with missing data. The 

problems were about use of maximum likelihood estimation of missing observations.  They suggested setting 

up of the model in the state space form and applying Kalman filter. F.C Ansley and Robert Kohn in the year 

1986
 2
 showed how to define and compute efficiently the marginal likelihood of autoregressive moving average 

model with missing data using modified Kalman filtering process they developed earlier. They also showed how 

to predict and interpolate missing observations and to obtain mean squared error of the estimate. In 1989 Greta 

M.Lyung
7
 came up with the expression for the likelihood function of parameters in Autoregressive integrated 

Moving Average model when there are missing values within time series data.  

 

In 1991 Daniel Rena and George C Tiao demonstrated that missing values in the time series can be treated as 

unknown parameters and estimated by maximum likelihood or as random variables and predicted by the 

expectation of the unknown values given the data in 1996 Fabio H. Nieto and J. Martinez demonstrated a linear 

recursive technique that could be used to estimate missing observations in a univariate time series without use of 

Kalman filter. It focuses on forecasting approach and the recursive linear estimators obtained when the 

minimum mean square error are optimal. In 1997 Albert Luceno extended Lyung’s 
7
 method of estimating the 

corresponding likelihood function in scalar time series to the vector cases. Here the series assume no particular 

pattern of missing data existed. It does not require the series to be differenced hence avoiding the complications 

that could arise by over differencing. The estimators of the missing data are provided by the normal equations of 

an appropriate regression technique.  
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In the year 2003 Chris Chatfield6 in his article entitled “Analysis of time series an introduction” gave various 

approaches for linear time series most of which involved curve fittings. From the deals with stationary process 

through differencing. Richard H. Jones in 1980 came up with a method that involved calculating exact 

likelihood function of stationary Autoregressive Moving Average based on Akaike’s Markovian 
1
 representation 

combined with Kalman recursive estimation. This approach involved use of matrices and vectors with 

dimensions equal to max (p, q) where p is the order of autoregressive and q is the order of moving average. His 

article also mentions some more discussions on observational error in the model and the extension to missing 

observations. In the same year A.C.Harvey 
5
and G.D. A Phillips

4
came up with an al-gorithm that enables the 

exact likelihood function of a stationary autoregressive moving average process to be calculated by use of 

Kalman filter. This involved two procedures; The first one translates autoregressive moving average process 

model into ”state space” form which is necessary for Kalman filtering and the second computes the covariance 

matrix related with initial values of the state vector. Priestly in 1981 discussed stationary process as a sum of 

deterministic and non-deterministic processes. Where deterministic refers to a situation in which the forecast is 

done by linear regression on past values without necessarily involving recent values.  

 

And if the future values are considered to be a realisation from probability distribution which is conditioned by 

knowledge of past values then the process is on-deterministic(stochastic). In 1984, A.C.Harvey and R.G. Pierce
5
 

discussed related problems about time series with missing data. The problems were about use of maximum 

likelihood estimation of missing observations.  

They suggested setting up of the model in the state space form and applying Kalman filter. F.C  Ansley and 

Robert Kohn in the year 1986
 2
 showed how to define and compute efficiently the marginal likelihood of 

autoregressive moving average model with missing data using modified Kalman filtering process they 

developed earlier. They also showed how to predict and interpolate missing observations and to obtain mean 

squared error of the estimate. In 1989 Greta M. Lyung
7 
came up with the expression for the likelihood function 

of parameters in Autoregressive integrated Moving Average model when there are missing values within time 

series data.  

 

In 1991 Daniel Rena and George C Tiao demonstrated that missing values in the time series can be treated as 

unknown parameters and estimated by maximum likelihood or as random variables and predicted by the 

expectation of the unknown values given the data in 1996 Fabio H. Nieto and J. Martinez demonstrated a linear 

recursive technique that could be used to estimate missing observations in a univariate time series without use of 

Kalman filter. It focuses on forecasting approach and the recursive linear estimators obtained when the 

minimum mean square error are optimal. In 1997 Albert Luceno extended Lyung’s 
7 

method of estimating the 

corresponding likelihood function in scalar time series to the vector cases. Here the series assume no particular 

pattern of missing data existed. It does not require the series to be differenced hence avoiding the complications 

that could arise by over differencing. The estimators of the missing data are provided by the normal equations of 

an appropriate regression technique.  In the year 2003 Chris Chatfield
6
 in his article entitled “Analysis of time 

series an introduction” gave various approaches for linear time series most of which involved curve fittings. 

From the above literature it is noted that a lot of methods have been developed that could be applied to address 

the problem of estimating missing values in a time series. However our problem would require use of the most 

relevant approach could be used to convert non-stationary time series to stationary model by use of seasonal 

autoregressive moving average.  

   

3  Methodology 
 

The preliminary stages of this study focused on the use of Box-Jenkins Autoregressive Integrated Moving 

Average model to identify the most suitable model for the data obtained, because Box-Jenkin’s models are able 

to handle varieties of non-stationary time series by differencing to attain stationarity. It can effectively deal with 

time series that have historical behaviour, which is common with economic time series such as fish harvesting. 

It develops the model in a systematic form that is easy to follow and the model so developed can be 

systematically tested.  

 

4  Model building 

 

4.1  Identification of the model (p, d, q) 

 

The use of correlogram of the data indicates whether the series is stationary or non-stationary; as non-stationary 

data has the correlogram that fails to decay to zero.A correlogram of a time series(Xt : t = 1, 2, ..., n) is a graph 

of the sample autocorrelation coefficient τ against the corresponding lags h. Each τ is defined as: 
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 𝜏 =
𝑔ℎ

𝑔𝑜
=

∑ (𝑥𝑡−𝑥)(𝑥𝑡−ℎ−𝑥)𝑛
𝑡=ℎ+1

∑ (𝑥𝑡−𝑥)(𝑥𝑡−𝑥)𝑛
𝑡=𝑡

         (4.1) 

   

The level of individual departure of τh is checked within the limits of ±√ 2. Also the pattern n formed by τh can 

be used to determine the nature of time series by examining the points at which the τh” cuts off” the point zero 

within the limits. For all τh where h > q = 0 indicates that M A (q) is a suitable model and for AR process the 

autocorrelations decaying exponentially is observed by partial autocorrelation function which has a cut of for an 

underlying process at φhh = 0 ∀ h > p According to Chartfield 
6
 the seasonal time series should be differenced (d 

times to remove trend and D times to remove seasonality) so as to reduce it to stationarity. The general 

SARIMA model is of the form  

 

φp(B)ΘP (B
s
)wt = θq(B)Θ(B

s
)et          (4.2) 

 

wt is the result of differencing Xt till when its autocorrelation function dies out quickly. d usually takes values 

0,1, 2. The values (p,P,q,Q) are determined from the patterns from SACF and SPACF of the differenced series. 

P and Q are examined from τh = s, 2s where s is the periods.  

 

This identified model can then be compared with theoretical patterns of known models. In summary the data is 

AR (p) if its ACF will decline steadily, or follow a damped cycle and P ACF will cut suddenly after p lags. It is 

a MA (q) if its ACF will cut of suddenly after q lags and PACF will decline steadily or follow a damped cycle. 

It should be noted that model identification by Box-Jenkins method is considered subjective due to the fact that 

it primarily relies on graphical interpretation of ACF/P ACF estimates from a single sample. The minimum 

sample size generally recommended for the SARIM A model fitting is 50 observations
6
. And as the sample size 

become larger ACF/P ACF estimates tend to lower variability hence better approximation of the underlying 

process. However when the sample size is small then the interpretation of ACF/P ACF patterns will acquire 

larger variances leading to subjectivity of the model identification. To reduce this subjectivity, a model selection 

criteria referred to as Akaike Information Criterion (AIC) 1 and the small sample bias corrected equivalent AICc 

is used. Bayesian Information Criterion (BIC) can as well be used. AIC/AICc selection of the model involves 

estimation by maximum likelihood methods of a set of model candidates. The model candidates will then have 

their AIC/AICc values determined and the model candidates with minimum AIC/AICc is then selected as the 

model that is closest to the statistical process generating the data. AIC is calculated as 

 AIC = −2ln (L) + 2r where ln (L) is the log likelihood of the model and r = p + q + P + Q + 1 

 AICc = 2ln (L) + 2r + 2r(r + 1)/ (n − r − 1)  

where n = N − D − d is the number of observations used to fit the model. And 

  

BIC = −2ln (L) + r + rlnN both AIC and BIC involves objective approach with adequate penalty terms to 

models with excessive model parameters. It thus encourages a model with fewer parameters. 

 

4.2  Model Estimation 
 

To estimate the model parameters for ARMA model we shall consider an AR process of order 1 given as: 

  (Xt − µ) = α (Xt−1 − µ) + εt         (4.3) 

We wish to estimate µ and α from the observed series. We can give maximum likelihood approach so as to 

estimate the above parameters. We note that from the above equation: 

µ = the mean value of each Xt hence we estimate µ̂ = �̂� the sample mean of the data.  

α = the first autocorrelation of (Xt). So we estimate it by α ̂ = τ1, the first sample autocorrelation coefficient. 

Given µ and α we can construct residuals εt = (Xt − µ) – α (Xt−1 − µ); t = 2, 3, ..., n and n ε
2
 the estimate σ

2
 = var 

(εt) by the residual mean square 

  S (µ, α) + n (X n−1  t=2  t − µ) − α(Xt−1 − µ)2; to obtain least µ and α squares we differentiate 

S (µ; α)  δS = 2  n (X  (X  δα  t=2   t − µ) − α(Xt−1 − µ)(α − 1) = 2(α − 1)[   n  t=2  t − 

αXt−1) + (α − 1)(n − 1)µ]  δS = −2  n  (X  δα t =2  t − µ) − α(Xt1 − µ)(Xt−1 − µ) 

  summary the data is AR(p) if its ACF will decline steadily, or follow a damped cycle and P ACF will 

cut suddenly after p lags. It is a M A(q) if its ACF will cut of suddenly after q lags and P ACF will decline 

steadily or follow a damped cycle. It should be noted that model identification by Box-Jenkins method is 

considered subjective due to the fact that it primarily relies on graphical interpretation of ACF/P ACF estimates 

from a single sample. The minimum sample size generally recommended for the SARIM A model fitting is 50 

observations6. And as the sample size become larger ACF/P ACF estimates tend to lower variability hence 

better approximation of the underlying process. However when the sample size is small then the interpretation 

of ACF/P ACF patterns will acquire larger variances leading to subjectivity of the model identification.To 
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reduce this subjectivity, a model selection criteria referred to as Akaike Information Criterion(AIC) 1 and the 

small sample bias corrected equivalent AICc is used. Bayesian Information Criterion (BIC)can as well be used. 

AIC/AICc selection of the model involves estimation by maximum likelihood methods of a set of model 

candidates. The model candidates will then have their AIC/AICc values determined and the model candidates 

with minimum AIC/AICc is then selected as the model that is closest to the statistical process generating the 

data. AIC is calculated as 

  AIC = −2ln(L) + 2r where ln(L)is the loglikelihood of the model and r = p + q + P + Q + 1 

  AICc = 2ln(L) + 2r + 2r(r + 1)/(n − r − 1) where n = N − D − d is the number of observations used to fit 

the model. And BIC = −2ln(L) + r + rlnN Both AIC and BIC involves objective approach with adequate penalty 

terms to models with excessive model parameters. It thus encourages a model with fewer parameters.  

   

5  Discussion of Results 
 

5.1  Data analysis on segment1 
 

We examine the plots of the entire data from January 2001 to December 2012 including the missing values. We 

also examine their ACF and P ACF which is useful in determining stationarity/ non-stationarity.The results 

provide good base to convert it to stationarity for the lower segment with a view to obtain the appropriate 

model.  

  Figure 1: Monthly Lake Victoria Landing in tonnes 2001-2012 
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Figure 2: Time plot of the data between January 2001 and November 2007 (with ACF and 

  PACF) 

 

     
   

The above time plot is for the original data from January 2001 to December 2012 with entries for four months 

and for data to be analysed well it is advisable to divide it into segment1 (from Jan 2001 to Nov2007)and 

segment 2(from Apr2008 to Dec2012).  

  

5.1.1  Stationarity 
 

The above time plot for the data for the period January 2001 to November 2007 which is a subset of the entire 

data set for January 2001 to December 2012. The window function in statistical package R was used to get this 

subset of the data. There seems to be an increasing trend and seasonal variations in the time series data as shown 

by the above time plot,plotted along with an ACF and P ACF .From these plots, we see that the fish landing data 

are seasonal and trending upwards. This means that the mean of the data will change over time.The ACF 

decreases slowly and they are large and positive. Therefore this series is not stationary and should be 

differenced. 

  

 Figure 3: Decomposed series of data for (Jan2001-Nov2007) 

   

     
 

The aim of decomposition is to separate(estimate) the time series into its three components: seasonal 

component,trend and irregular(random)component.  
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Figure 4: Differencing the Series to achieve stationarity 

  

     
Figure 5: First Differencing the Series 

 

 

     
    

5.1.2  SARIMA Model 
 

The first difference has achieved stationarity in the series. The ACF shows that the differenced series is 

stationary. This means that the order of non-seasonal differencing shall be 1(d=1).  

Consequently, we shall have that d=1 in the model to be proposed. This means that the seasonal ARIM A model 

shall be of the form ARIMA (p, 1, q) *(P, D, Q) s. Where S is the number of observations per period. In this 

case it is 12 since we have 12 observations per year. Thus we have zero order autoregressive component of the 

model, AR (0). Therefore so far we have a model of the form SARIMA (0, 1, 1)*(P, D, Q) 12 

 

5.1.3 Seasonal Differencing 

 

A useful R function ndiffs () is used to determine whether seasonal differencing is required. Results from R: 

ndiffs (fishdata1ts) [1] 0. This result means that no seasonal differencing is required. This is also seen in the 

time plot of the differenced series, which is already stationary. Consequently D shall be equal to zero (0) in the 

model that shall be proposed. The model shall then be of the form SARIM A (0, 1, 1) ∗ (P, 0, Q) 12. Next, we 

determine the values of P and Q so as to have a complete SARIMA model. The characteristics of the ACF and 

PACF of the differenced series tend to show a strong peak at h = 1s; 2s in the ACF, with smaller peaks 

appearing at h = 2s; Upon the inspection of the ACF and P ACF of the differenced series, we find that either: 

  1. The PACF tail of in the seasonal lags. This suggests an SM A of order Q = 1 

  2. The PACF has two spikes. This suggests an SAR of order 2 i.e. p=2 

 

We therefore have two candidate models: 

  • SARIMA (0, 1, 1) ∗ (0, 0, 1)12 

  • SARIMA (0, 1, 1) ∗ (2, 0, 0)12 

  

1. Model [1]: SARIMA (0, 1, 1) ∗ (0, 0, 1)12 
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Fishdata1ts-sarima1 Series: fishdata1ts 

ARIMA (0, 1, 1) ∗ (0, 0, 1)12 

ma1 coefficient= -0.4602 and s.e = 0.1410 

sma1 coefficient= 0.4584 and s.e = 0.0966 

σ estimated as 31.87 Log likelihood= -259.81 

AIC=525.63 BIC = 532.85 

 

2. Model [2]: SARIMA (0, 1, 1) ∗ (2, 0, 0)12 

  fishdata1ts-sarima2 Series:fishdata1ts 

  ARIMA (0, 1, 1) ∗ (2, 0, 0)12 

  ma1 coefficient= -0.5620 and s.e= 0.1076 

  sar1 coefficient= 0.4914 and s.e = 0.1098 

  sar2 coefficient= 0.2388 and s.e= 0.1233 

  σ estimated as 25.08 log likelihood= -252:58 

  AIC= 513.16 BIC = 522.79 

We have zero order autoregressive component of the model, AR (0). Therefore so far we have a model of the 

form SARIMA (0, 1, 1)*(P, D, Q) 12 

  

5.1.4 Decision 
 

Based on the results shown above, we entertain the second model; SARIM A(0, 1, 1)∗(2, 0, 0)12 since it has 

smaller AIC and BIC values compared to the first SARIM A(0,1,1)* (0,0,1)12.  

 

5.2  Data analysis on Segment2 
 

5.2.1  SARIMA Model 
 

The suitable model identified by the automatic procedure was ARIM A(0, 1, 2) ∗ (1, 0, 0)12. The results from R 

are as follows: auto.arima (fishdata2ts) 

Series: fishshdata2ts 

ARIMA (0, 1, 2) ∗ (1, 0, 0)12 ma1 coefficients=-0.3314 s.e= 0:1360 ma2 coefficients=-0.4915 s.e= 0:1203 sa1 

coefficients= 0.4978 s.e= 0:1324 σ estimated 48.65 log likelihood= -190.37 AIC= 388.74 and BIC= 397.12 

 

5.3 Forecast 

 

5.3.1  Forecasted values 
 

Values forecasted from the lower segment of the time series data include:54.1;53.7;52.8 and 49.9. The lower 

segment was used to forecast since it had a lot of observed data hence had a longer history of the time series 

which is a prerequisite for good forecast.  

 

  Figure 6: Forecast for ARIMA (0,1,1)(0,2,2)12 
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Figure 7: Forecasted Values 

 

    
   

    Figure 8: Plot of forecasted values only 

     

  

    

 

 

 

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                          www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.14, 2014 

 

142 

Figure 9: Plot of actual versus forecasted values for the period Apr 2008 to Nov 2009 

 
   

The above forecasted values were superimposed on the actual values on the upper segment with a view to 

compare and determine the level of accuracy between the actual and predicted values obtained from the model.  

    

6  Conclusion and Recommendation 

 

6.1  Conclusion 
 

The purpose of this research was to estimate the missing values of the seasonal time series using a suitable 

model; we have identified the model, estimated its parameters and used it to fill the gap through forecast of the 

lower segment of the data. We graphed the raw data indicating the missing gaps. The autocorrelation function 

and the partial autocorrelation functions when plotted for the lower and upper segments indicated the SARIMA 

models: SARIMA (0, 1, 1) (2, 0, 0)12 

and(0,1,2)(0,0,1)12 respectively were most suitable for the data. Forecast done from the lower segment 

estimated the values for: 

  • Dec-2007- 54.1 

  • Jan-2008 -53.7 

  • Feb-2008 -52.8 

  • Mar-2008 -49.9 

Further forecast values were obtained beyond the gap upto November-2009 which were used to test the level of 

accuracy between the actual and predicted values. Regression analysis between the actual and the forecasted 

values done indicates that the predicted values are closer to the actual values signifying that the missing values 

estimated are better estimates. Our research has therefore indicated that SARIMA interpolation which was 

developed by Box-Jenkins has provided the most suitable methods for estimating missing data. When the 

missing values are quantified it is noted that about 210.4 tonnes worth of the Nile perch were not harvested due 

to the chaos that lasted for about four months. This had a negative impact on the economy of the region in which 

fishing is a major economic activity.  

 

6.2  Recommendation 
 

We suggest that non-consecutive cases are also prone to occur and should be investigated. Our model obtained 

was restricted to relatively fewer observations this could have contributed to greater variability leading to a 

subjective model. We recommend that larger amount of data be used to enhance accuracy in modeling time 

series and hence use the model to make better estimates. The project discussed the data obtained by the 

fishermen and recorded by the authority but did not account for unrecorded harvests i.e. the quantities that were 

locally consumed. We therefore recommend that better mechanisms to be examined so as to take care of this 

significant error of omission.  
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