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Abstract 

 In this paper, solve several important equations such as korteweg-devries (kdv) problem, Boussinesq equation of 

non-homogeneous problem and non-homogeneous system  Hirota-Satsuma problem of partial differential 

equation by Homotopy analysis method (HAM). Studied comparison exact solution with numerical results , this 

method have shown that is very effective and convenient and gives numerical solutions in the form of convergent 

series with easily computable components for solving non-linear various problem of partial differential equation .  

Keywords: Homotopy analysis method , Approximate solution , non-linear problems of partial differential 

equation , analytical solutions .  

  1. Introduction 

Analytical methods have made a comeback in research methodology after taking a backseat to the numerical 

techniques for the latter half of the preceding century. The advantage of analytical methods are manifolds, the 

main being that they give a much better insight than the numbers crunched by a computer using a purely 

numerical algorithm. Most new nonlinear equations do-not have a precise analytic solution; so numerical 

methods have largely been used to handle these equation[8]. Nonlinear differential equations are usually arising 

from mathematical modeling of many physical systems. Some of them are solved using numerical methods and 

some are solved using the analytic methods such as perturbation [1, 4]. The numerical methods such as Rung-

Kutta method are based on discretization techniques, and they only permit us to calculate the approximate 

solutions for some values of time and space variables, which cause us to overlook some important phenomena, in 

addition to the intensive computer time required to solve the problem[3]. It is well known that nonlinear 

dynamical systems arise in various fields. A wealth of methods have been developed to find these exact 

physically significant solutions of a partial equation though it is rather difficult. Some of the most important 

methods are Backlund transformation [5]. In 1992, Liao [6, 9] proposed a new analytical technique; namely the 

HAM based on homotopy of  topology. However, in Liao’s PhD dissertation [6], he did not introduce the 

auxiliary parameter h , but simply followed the traditional concept of homotopy to construct the following one-

parameter family of equations. The HAM [6] , is a powerful method to solve non-linear problems. Based on 

homotopy of  topology, the validity of   the HAM is independent of whether or not there exist small parameters 

in the considered equation. 

 

2.Basic idea of HAM 

consider the following differential equation  

[ ( )] 0N u t                                         ........(1) 

where N is a nonlinear operator, τ denotes independent variable, u(τ) is an unknown function, respectively. For 

simplicity, we ignore all boundary or initial conditions, which can be treated in the similar way. By means of 

generalizing the traditional homotopy method, Liao [6] construct the so-called zero-order deformation equation 

0
(1 ) [ ( ; ) ( )] ( ) [ ( ; )]q L t q u t qhH t N t q                                            .........(2)  

where L is an auxiliary linear operator, N is a nonlinear operator related to the original nonlinear problem 

[ ( ; )]N t q  and q is the embedding parameter. An improved two parameters family of equations was proposed 

to avoid divergence of solution by introducing an auxiliary parameter h [11,10] and the auxiliary function H(t) , 

Liao [12] constructs, using [0,1]q  . where ( ; )t q is the solution which depends on h , H(t), L, u0(t) and q 

,when q=0 and q=1 , it holds: 

 

0
( ;0) ( )t u t 

                                                                                                                                      ..........(3) 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Science, Technology and Education (IISTE): E-Journals

https://core.ac.uk/display/234679939?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.iiste.org/
http://mrd.mail.yahoo.com/compose?To=lionwight_2009%40yahoo.com


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.14, 2014 

 

114 

( ;1) ( )t u t   

Thus, as q increases from 0 to 1, the solution ( ; )t q  varies from the initial guess 0
( )u t  to the solution ( )u t . 

Expanding ( ; )t q  by Taylor series with respect to q, we get 

 

 
...........(4)                          

 

...........(5) 

 

If the auxiliary linear operator, the initial guess, the auxiliary parameter . and the auxiliary function are so 

properly chosen, the series (5) converges at q = 1, then we have 

                                                                                                           ...........(6) 

which must be one of the solutions of the original nonlinear equation, as proven by Liao [2]. As  h = −1 and H(t) 

= 1, equation (3) become 

0
(1 ) [ ( ; ) ( )] [ ( ; )] 0q L t q u t qN t q                                                                         ..........(7) 

The governing equation can be deduced from the zero-order deformation equation (3). Define the vector 

 1 2
( ) ( ), ( ),....., ( )

n n
u t u t u t u t                                                                                        ...........(8) 

Differentiating equation (3) m-times with respect to the embedding parameter q, then setting q= 0 and finally 

dividing them by m!, we obtain the mth-order deformation equation. 

.........(9) .                   

                                                                                                                                                 Where                          

                                                                                                               

..........(10) 

 

............(11)       

it should be emphasized that um(t) for m≥1 is governed by the linear boundary conditions that come from 

original problem, which can be easily solved by symbolic computation software such as Maple, Mathematica and 

Matlab. If equation (2) admits unique solution, then this method will produce the unique solution. If equation (2) 

does not posses a unique solution, the HAM will give a solution among many other possible solutions.                 

                                                                                                                                                     

3. Numerical experiments    

 In this section we give some computational results of numerical experiments with methods for solving important 

problems such as  korteweg-devries (kdv) problem ,  Boussinesq equation of non-homogeneous problem and 

non-homogeneous system  Hirota-Satsuma of partial differential equation .   By solving the above issues we get 

accurate and good results as shown in the tables and figures below:                                                                                                                                               

:(1)Example 

Conseder the korteweg-devries (kdv) problem of partial differential equation: 

6 5(1 ) 0t

t xxx x
u u uu x e     

12)............) 

0
1

( ; ) ( ) ( ) m

m
m

t q u t u t q




 

0

1 ( ; )
( )

!

m

m m

q

t q
u t

m q










0
1

( , ) ( , ) ( , )
m

m

u r t u r t u r t




 

1 1
[ ( ) ( )] ( ) ( )

m m m m m
L u t x u t hH t R u

 
 

1

1 1

0

1 [ ( ; )
( )

( 1)!

m

m m m

q

N t q
R u

m q



 






 

0, 1

1, 1
m

m
x
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With initial condition 

(13)............ 

To solve the equation (12) by means of  homotopy analysis method, according to the initial conditions (13). 

(14)............  

 

where c1 is the constant coefficients and   is the real function, where L is linear operator. 

Now define the nonlinear operator as: 

3

3

( , ; ) ( , ; ) ( , ; )
[ ( , ; )] 6 ( , ; )

(1 ) t

x t q x t q x t q
N x t q x t q

t x x

x e

  
 

  
  

  

 

     

                        ............(15)  

Using above definition, with assumption we construct the zero order deformation equation. 

..........(16)  ...   0
(1 ) [ ( , ; ) ( , )] ( , ) [ ( , ; )]q L r t q u r t qhH r t N r t q    

with assumption H(r , t)=1 .It is important, that one has great freedom to choose auxiliary things in HAM. 

Obviously, when p = 0 and p = 1, it holds  

 .............(17)   

1 0

2

( , ;0) ( , )

( , ;1) ( , )

x t u x t

x t u x t







 

Thus, we obtain the m
th

-order deformation equation. 

                                                 ...........(18)           1 1
[ ] ( , ) ( , )

m m m m m
L u x u hH r t R u t

 
 

 

where 

0, 1

1,
m

m
x

otherwise


 
                                                                                                                             ….........(19)  

and 

 ..........(20)  ..   

 

Applying L
-1 

both sides of (18) and uesd (HAM) to Eq. (12) and (13), as follows: 

 ((21...... ......                                                                 
1

1 1
( , ) ( , ) [ ( , )]

m m m m m
u x u x t hH r t L R u t

 
 

 

Now,apply HAM of equation (12),(13) and since m≥1 , 1
m

x   ,h=-1, H(r , t)=1 

In equation (21) then give: 

0
( ,0) ( ) (1 )u x u x x  

1

( , ; )
[ ( , ; ) , [ ] 0

x t q
L x t q L c

t





 



3

1 1 1

1 13
( , , ) 6 (1 ) tm m m

m m m

u u u
R u x t u x e

t x x
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22).....)......                                                      
1

1 1
( , ) ( ,0) ( ( , , ))

m m m m
u x t u x L R u x t

 
  

And 

 

1

0

(.)
t

L dt  
 

 .......(23) ....                                                                                                    
0

1

( , ) ( , ) ( , )
m

m

u x t u x t u x t




 
    

                                                                      :by using iteration formula of  HAM give then  

                                                                                            

0

1

2

2

2 3

3

( , ) (1 )

( , ) (1 )(1 )

( , ) (1 )[1 ]
2!

( , ) (1 )[1 ]
2! 3!

u x t x

u x t x t

t
u x t x t

t t
u x t x t

 

  

   

    

              

(24)............                                     .................... 

                                   Table 1. approximate values and exact solutions for equation (24)                                                             

                

                

           

 

 

 

 

 

Now, compare the numerical results with exact solution  obtained by the HAM gives much better numerical 

results  shows that by above table and below figures(1),(2). 

 

Error u exact solution u approximate solution x t 

0 1 1 0 

0.01 

0.0000451 0.9090451 0.9090000 0.1 

0.0000001 0.8080401 0.8080400 0.2 

0.0000002 0.7070351 0.7070331 0.3 

0.0000003 0.6060303 0.6060300 0.4 

0.0000011 0.5050261 0.5050250 0.5 

0.0000021 0.4040221 0.4040200 0.6 

0.0000002 0.3030171 0.3030151 0.7 

0.000003 0.2020130 0.2020100 0.8 

0.000004 0.1010091 0.1010051 0.9 

0 1.0100502 1.0100502 1 
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Figure 2. Approximate solution of (kdv)                          Figure 1. Exact solution of (kdv) 

 

The approximate solution of (1) is give: 

0 1 2
( , ) ( , ) ( , ) ( , ) ......u x t u x t u x t u x t     

and so on 

( , ) (1 ) tu x t x e   

which is an exact solution and is same as obtained by HAM , and shown the comparison  numerical results exact 

solution in figure (1) and(2).  

 

Example(2):  

Consider the tow-dimensional weave equation:   

                                                                                      .......... (25)  
( ) 0,

tt xx yy
u u u  

    

together with the initial conditions 

 

(26..........) 

to solve the problem by using the HAM , substitute (25), (26) into following equation 

............(27)           
1

1 1
( , , ) ( , ,0) [ ( , , , )]

m m m
u x y t u x y L R u x y t

 
  

 28)..............)                                                                 

2 2 2

1 1 1

1 2 2 2

1
( , , , ) ( )

2

m m m

m

u u u
R u x y t

t x y
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and 

1

0 0

(.)
t t

L dtdt   
 

Now, obtain the following recurrence relation: 

0

2 3

1

4 5

2

3

( , , ) sin( )cos( )(1 )

( ) ( )
( , , ) sin( )cos( )( )

2! 3!

( ) ( )
( , , ) sin( )cos( )( )

4! 5!

( )6 ( )7
( , , ) sin( )cos( )( )

6! 7!

u x y t x y t

t t
u x y t x y

t t
u x y t x y

t t
u x y t x y

  

 
 

 
 

 
 

 

 

 

 
 

29)...............) .................................... 

                                                   Table 2. approximate values and exact solutions for equation (29) 

 

 

 

 

 

 

 

 

In above table (2) computed absolute  error for example (2)  obtained by the HAM and  It also illustrates the 

figure below that the error rate obtained accurate and excellent shown below: 

 

 

Error u exact solution u approximate 

solution 

x y t 

0 0 0 0 0 

0.01 

0.0001917 0.0056579 0.0054662 0.1 0.1 

0.0001111 0.0113153 0.0112042 0.2 0.2 

0.0001779 0.0169712 0.0167933 0.3 0.3 

0.0001385 0.0203638 0.0202253 0.4 0.4 

0.0003265 0.0254511 0.0251246 0.5 0.5 

0.0004009 0.0305359 0.0301350 0.6 0.6 

0.0009366 0.0356177 0.0346811 0.7 0.7 

0.0012447 0.0406960 0.0394513 0.8 0.8 

0.0010911 0.0457704 0.0446793 0.9 0.9 

0 0.0508403 0.0508403 1 1 
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Figure 3. Exact solution of wave equation                  Figure 4. Approximate solution of wave 

                                                                                          equation                         
Hence 

2 3 4 5( ) ( ) ( ) ( )
( , , ) sin( )cos( )(1 ....)

2! 3! 4! 5!

t t t t
u x y t x y t

   
        

 

30)................) 

The result shows that the method provides an excellent approximation. 

Example(3):   

Consider the Boussinesq equation of non-homogeneous problem: 

2 4 2 2 2

2

3( ) cos( )cos( ) 6 cos ( )[cos ( )

sin ( )]

tt xx xxxx xx
u u u u x t t x

x

     



     

 

................(31) 

together with the initial conditions 

 

(32)............... 

Now,  to solve problem (31), (32) by HAM writing equation (33) in form yields: 

1

1 1
( , ) ( ,0) ( ( , , ))

m m m m
u x t u x L R u x t

 
  

33)           ...............) 

Where 

0

0.2

0.4

0.6

0.8

1 0
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0.4

0.6
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1-10
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2 2 4 2 2

41 1 1 1

1 2 2 4 2

2 2 2 2

( , , ) 3 cos( )cos( )

6 cos ( )[cos ( ) sin ( )]

m m m m

m

u u u u
R u x t x t

t t x x

t x x

  

   

   



   
    

   

  

and 

 

1

0 0

(.)
t t

L dtdt   
 

this equation (31)can be easily solved by using this method to find the approximate solution beginning with

( ,0) cos( ),u x x
  

can obtain: 

   

0

2 4

1

6 8

2

10 12

3

( , ) cos( )

( ) ( )
( , ) cos( )( )

2! 4!

( ) ( )
( , ) cos( )( )

6! 8!

( ) ( )
( , ) cos( )( )

10! 12!

u x t x

t t
u x t x

t t
u x t x

t t
u x t x



 


 


 




  

  

   
 

(34).................. .................................... 

Table 3. approximate values and exact solutions for equation (34) 

 

 

 

 

 

 

 

Also in table (3), compare the numerical results with exact solution  obtained by the HAM gives accurate 

numerical results  shows that by above table and below. 

 

 

 

Error u exact solution u approximate solution x t 

0 0.9999991 0.9999991 0 

0.01 

0.0004304 0.9999877 0.9995687 0.1 

0.0001980 0.9999511 0.9997531 0.2 

0.0003570 0.9998902 0.9995332 0.3 

0.0004519 0.9998051 0.9993532 0.4 

0.0004712 0.9996955 0.9992243 0.5 

0.0004358 0.9995616 0.9991258 0.6 

0.0003845 0.9994033 0.9990188 0.7 

0.0001964 0.9992207 0.9990243 0.8 

0.0000117 0.9990138 0.9990021 0.9 

0 0.9987251 0.9987251 1 
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               Figure 5.Exact solution of example (3)                  Figure 6.Approximate solution of example(3)         

Which implies that: 

2 4 6 8 10( ) ( ) ( ) ( ) ( )
( , ) cos( )(1 ....)

2! 4! 6! 8! 10!

t t t t t
u x t x

    
      

 

which converges to the exact solution 

Example(4):   

Consider the non-homogeneous system  Hirota-Satsuma of partial differential equation: 

21 1
3 6 sinh( ) 3 sinh( )cosh( )

2 2

t t

t xxx x x
u u uu ww e x e x x     

((35.................... 

2 23 cosh( ) sinh( ) 3 sinh ( )t t t

t xxx x
w w uw e x e x e x     

((36.................... together with initial condition:                                                                                        

                                                                                                                                   

 

37)....................) 

Now, application of homotopy analysis method: 

....................(38) 

 

with the property 
1 2

[ ], [ ]
u w

L c L c  where 
1

c and 
2

c  are constant 

coefficients,   and    are real functions. Furthermore , define the nonlinear 

operators 

( ,0) sinh( ),

( ,0) cosh( ),

u x x

w x x





1 2

1 2

( , ; ) ( , ; )
[ ( , ; ) , [ ( , ; ) ,

u w

x t q x t q
L x t q L x t q

t t

 
 

 
 

 

0
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 39).................)        

 

.                                                                                                                                      

 
3

2 2 2

1 2 13
[ ( , ; ), ( , ; ) 3

w
N x t q x t q

t x x

  
  

  
  
  

 

....................(40) 

1 2
[0,1], ( , ; ) ( , ; )q x t q and x t q  are real functions of x , t and q . Let hu hw denote the non-zero 

auxiliary parameters. Using the above definition, with assumption, Hu(x, t), Hw(x, t) construct the zero-order 

deformation equations as follows: 

1 0 1 2
(1 ) [ ( , ; ) ( , )] ( ) [ ( , ; ), ( , ; )]

u u u u
q L x t q u x t qh H t N x t q x t q      

...................(41) 

 

2 0 1 2
(1 ) [ ( , ; ) ( , )] ( ) [ ( , ; ), ( , ; )]

w w w w
q L x t q w x t qh H t N x t q x t q     

42)....................) 

when q = 0 and q = 1 , it is clear that : 

1 0 2 0 1 2
( , ,0) ( , ), ( , ,0) ( , ), ( , ,1) ( , ), ( , ,1) ( , )x t u x t x t w x t x t u x t x t w x t       

(43).................... 

Both of hu and hw are properly chosen so that the terms 

1 2

0 0

1 ( , ; ) 1 ( , ; )
( , ) | ( , ) |

! !

n n

n q n qn n

x t q x t q
u x t and w x t

n q n q

 
 

 
 

 

 

((44..................... 

exist for  n ≥ 1 and the power series of q in the following forms 

1 0 2 0
1 1

( , ; ) ( , ) ( , ) , ( , ; ) ( , ) ( , )n n

n n
n n

x t q u x t u x t q x t q w x t w x t q 
 

 

     

45)...................) 

are convergent at q = 1 . So using (44), we obtain 

1 0 2 0
1 1

( , ; ) ( , ) ( , ), ( , ; ) ( , ) ( , )
n n

n n

x t q u x t u x t x t q w x t w x t 
 

 

    
 

46)...................) 

According to the fundamental theorem of HAM, we have the n
th

-order deformation equation 

1, 1 1, 11 1
[ ( , ) ( , )] ( ), [ ( , ) ( , )] ( )u w

n n n nu n n n u n w n n n w n
L u x t x u x t h R u w L w x t x w x t h R u w    

    

(47)................. 

3

1 1 1 2

1 2 1 23

1[ ( , ; ), ( , ; ) 3 6
2u

N x t q x t q
t x x x
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3

1 1 1 1
1 1 13

2

11( , ) [ 3 6 sinh( )
2 2

3 sinh( )cosh( )

u tn n n n
n nn u n

t

u u u w
R u w h u w e x

t x x x

e x x

   
  

   
    

   



 

48).................) 

3

1 1 1
1 1 13

2 2

( , ) [ 3 cosh( ) sinh( )

3 sinh ( )

w t tn n n
n nn w n

t

w w w
R u w h u e x e x

t x x

e x

  
  

  
    

  



 

...................(49) 

Now, the solution of the n
 th

-order deformation equation (47) for n ≥ 1, becomes 

 

1
1 11

( , ) ( , ) [ ( , )]u
n nn n n u n

u x t x u x t h L R u w
 

  

50)................) 

1
1 11

( , ) ( , ) [ ( , )]w
n nn n n w n

w x t x w x t h L R u w
 

  

51)...............) 

Where hu = hw= h=-1 and xn defined by (19). Now, write the differential equations need to calculate u1,u2,u3,...,un 

and w1,w2,w3,....,wn  as follows: 

 

0

0

1

1

2

2

2

2

3

3

3

3

( , ) sinh( )

( , ) cosh( )

( , ) sinh( )

( , ) cosh( )

( , ) sinh( )
2!

( , ) cosh( )
2!

( , ) sinh( )
3!

( , ) cosh( )
3!

u x t x

w x t x

u x t t x

w x t t x

t
u x t x

t
w x t x

t
u x t x

t
w x t x















 






 


 

.................................. 
..................(52) 
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Table 4. approximate values and exact solutions of u for equation (52) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. approximate values and exact solutions of w for equation (52) 

 

 

 

 

 

 

 

 

 

 

 

 

 

In above tables  (4),(5) gives approximate values and exact solutions of non-homogeneous system  Hirota-

Satsuma of partial differential equation obtained by HAM gives much accurate numerical rustles shown 

that in below figures:  

    

Error u exact solution u approximate solution x t 

0 0 0 0 

0.01 

0.0001223 0.0015865 0.0014642 0.1 

0.0001301 0.0031732 0.0030431 0.2 

0.0002372 0.0047597 0.0045225 0.3 

0.0001775 0.0063462 0.0061687 0.4 

0.0002075 0.0079328 0.0077253 0.5 

0.0001671 0.0095193 0.0093522 0.6 

0.0008908 0.0111059 0.0102151 0.7 

0.0013501 0.0126923 0.0113422 0.8 

0.0019162 0.0142787 0.0123625 0.9 

0 0.0158652 0.0158652 1 

Error u exact solution u approximate solution x t 

0 1 1 0 

0.01 

0.0000164 1.0100489 1.0100325 0.1 

0.0000228 1.0100452 1.0100224 0.2 

0.0000188 1.0100389 1.0100201 0.3 

0.0000148 1.0100302 1.0100154 0.4 

0.0000073 1.0100190 1.0100117 0.5 

0.0000009 1.0100053 1.0100044 0.6 

0.0014769 1.0099891 1.0085122 0.7 

0.0026283 1.0099704 1.0073421 0.8 

0.0036530 1.0099492 1.0062962 0.9 

0 1.0099256 1.0099256 1 
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            Figure 7.Exact solution for u of example (4)           Figure 8.Approximate solution for u of example(4) 

 

 

 
      Figure 9.Exact solution for w of example (4)              Figure10.Approximate solution for w of example(4) 

 
Consequently, give: 

u(x, t)=e
t
 sinh(x) 

w(x, t)=e
t 
cosh(x) 

which give best approximation result. 

 

4.Discussion 

In this paper, the HAM  is employed to obtain the analytical and approximate solutions of PDE and  it's 

successfully applied to solve many nonlinear problems of PDE's and many other equation such as (kdv)equation, 

non-homogeneous Boussinesq equation ,wave equation and non-homogeneous  Hirota-Satsuma system. This 

method is very powerful and efficient technique in finding analytical solutions for wider class of problems. 

Moreover gives us a simple way to adjust and control the convergence of the series solution by choosing proper 
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values of auxiliary  and homotopy parameters. In conclusion, it provides accurate exact solution for  various 

problems.                                                                                                                                           

References 

[1]. A.H. Nayfeh, (1979), Introduction to Perturbation Techniques, Wiley. 

 [2]. Khan, Y. and N. Faraz,( 2010), A new approach to differential-difference equations. Journal of 

       Advanced Research in Differential Equations,2: 1-12. 

 [3]. M.M. Rashidi , S.A. Mohimanian Pour, (2010), Nonlinear Analysis: Modelling and 

       Control, Vol. 15, No. 1, pp (83–95). 

 [4]. R.H. Rand, D. Armbruster, (1987), Perturbation Methods, Bifurcation Theory and     

       Computer Algebraic, Springer. 

[5]. S.P. Qian, L.X. Tian, (2007),  Nonlocal Lie–Bäcklund symmetries of the coupled KdV 

        system, Physics Letter A. 364, 235-238. 

 [6]. S.J. Liao ,( 1992 ), The proposed homotopy analysis techniques for the solution of  

       nonlinear problems, Ph.D. dissertation, Shanghai Jiao Tong University, Shanghai, 

       [in English]. 

 [7]. S. J. LIAO, (2003) , Beyond Perturbation: Introduction to the Homotopy Analysis  

       Method, CRC Press, Boca Raton: Chapman & Hall. 

 [8]. V.G. Gupta and Sumit Gupta, (2012) , Applications of Homotopy Analysis Transform  

       Method for Solving Various Nonlinear Equations, World Applied Sciences Journal 

       Vol. 18, No. 12, pp (1839-1846). 

 [9]. Liao S.J, (1992),  A kind of linear invariance under homotopy and some simple applications 

       of it in mechanics, Bericht Nr. 520. Institute fuer Sciffbau der Universitaet Hamburg. 

[10]. Liao S.J, (1997) ,A kind of approximate solution technique which does not depend  upon small  

         parameters (II): an application in fluid mechanics,  International Journal of Non-  linear   

         Mechanic, 32, 815-822. 

 [11]. Liao S.J, (1997) , Numerically solving nonlinear problems by the homotopy analysis 

         method, Computational Mechanics, 20, 530-540.  

 [12]. Liao S.J, (2005) ,  Comparison between the Homotopy analysis method and Homotopy  

         perturbation  method,  Appl. Math . Comput . 169, 118-164. 

 

 

http://www.iiste.org/


The IISTE is a pioneer in the Open-Access hosting service and academic event management.  

The aim of the firm is Accelerating Global Knowledge Sharing. 

 

More information about the firm can be found on the homepage:  

http://www.iiste.org 

 

CALL FOR JOURNAL PAPERS 

There are more than 30 peer-reviewed academic journals hosted under the hosting platform.   

Prospective authors of journals can find the submission instruction on the following 

page: http://www.iiste.org/journals/  All the journals articles are available online to the 

readers all over the world without financial, legal, or technical barriers other than those 

inseparable from gaining access to the internet itself.  Paper version of the journals is also 

available upon request of readers and authors.  

 

MORE RESOURCES 

Book publication information: http://www.iiste.org/book/ 

Academic conference: http://www.iiste.org/conference/upcoming-conferences-call-for-paper/  

 

IISTE Knowledge Sharing Partners 

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open 

Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek 

EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library , NewJour, Google Scholar 

 

 

http://www.iiste.org/
http://www.iiste.org/journals/
http://www.iiste.org/book/
http://www.iiste.org/conference/upcoming-conferences-call-for-paper/

