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Abstract.
In the present paper, the new iterative method proposed by Daftardar-Gejji and Jafari (NIM or DJM) [V. Daftardar-Gejji,H. Jafari,

An iterative method for solving non linear functional equations, J. Math. Anal. Appl. 316 (2006) 753-763] is used to solve the Cauchy
problems. In this iterative method the solution is obtainedin the series form that converge to the exact solution with easily computed
components. The results demonstrate that the method has many merits such as being derivative-free, overcome the difficulty arising
in calculating calculating Adomian polynomials to handle the nonlinear terms in Adomian Decomposition Method (ADM). It does
not require to calculate Lagrange multiplier in Variational Iteration Method (VIM) and no needs to construct a homotopyand solve
the corresponding algebraic equations in Homotopy Perturbation Method (HPM) and can be easily comprehended with only abasic
knowledge of Calculus. The results show that the present method is very effective, simple and provide the analytic solutions. The
software used for the calculations in this study was MATHEMATICA r 8.0.
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1 Introduction
A variety of problems in physics, chemistry and biology havetheir mathematical setting as linear and nonlinear ordinary or partial
differential equations. Many methods have been developed to solve differential equations, especially nonlinear, which are receiving
increasing attention.

Many of the phenomena that arise in mathematical physics andengineering fields can be described by partial differentialequations
(PDEs). Moreover, most physical phenomena of fluid dynamics, quantum mechanics, electricity, plasma physics, propagation of
shallow water waves, and many other models are formulated bypartial differential equations [1].

Due to these huge applications, there is a demand on the development of accurate and efficient analytic or approximate methods
able to deal with the PDEs.

Many attempts have been made to develop analytic and approximate methods to solve the Cauchy problems, see [4–6]. Although
such methods have been successfully applied but some difficulties have appeared, for examples, in calculating Adomian polynomials to
handle the nonlinear terms in Adomian Decomposition Method(ADM) [2] and Modified Adomian Decomposition Method (MADM)
[3], evaluating Lagrange multiplier in VIM [4] and in Reconstruction of the variational iteration (RVIM) [5] with some knowledge of
the variational theory, construct a homotopy and solve the corresponding algebraic equations in HPM [6] with some knowledge in the
deformation from Topology.

Recently, Daftardar-Gejji and Jafari [7] have proposed a new technique for solving linear/nonlinear functional equations namely
new iterative method (NIM) or (DJM). The DJM has been extensively used by many researchers for the treatment of linear andnonlinear
ordinary and partial differential equations of integer andfractional order, see [8–11]. The method converges to the exact solution if it
exists through successive approximations. However, for concrete problems, a few approximations can be used for numerical purposes
with high degree of accuracy. The DJM is simple to understandand easy to implement using computer packages and yields better
results and does not require any restrictive assumptions for nonlinear terms as required by some existing techniques.

In this paper, the applications of the DJM for Cauchy problems will be presented. Moreover, the results obtained are compared
with those obtained by other iterative methods such as VIM [4], RVIM [5] and HPM [6]. Comparisons show that the DJM is effective
and convenient to use and overcomes the difficulties arisingin others existing techniques.

The present paper has been organized as follows. In section 2is devoted to the description the basic idea of DJM and its conver-
gence. In section 3 the Cauchy problem is solved by DJM. In section 4 some test examples are solved by DJM to assess the efficiency
of the method and finally in section 5 the conclusion is presented.

2 The new iterative method (NIM or DJM)

Consider the following general functional equation:

u = N(u) + f, (1)

whereN is a nonlinear operator from a Banach spaceB → B andf is a known function [7–11]. We are looking for a solutionu of
Eq.(1) having the series form:
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u =
∞
∑

i=0

ui. (2)

The nonlinear operatorN can be decomposed as

N(

∞
∑

i=0

ui) = N(u0) +

∞
∑

i=1

{N(

i
∑

j=0

uj)−N(

i−1
∑

j=0

uj)}. (3)

From Eqs.(2) and (3), Eq.(1) is equivalent to

∞
∑

i=0

ui = f +N(u0) +
∞
∑

i=1

{N(
i

∑

j=0

uj)−N(

i−1
∑

j=0

uj)}. (4)

We define the recurrence relation:

G0 = u0 = f,

G1 = u1 = N(u0),
Gm = um+1 = N(u0 + · · ·+ um)−N(u0 + · · ·+ um−1), m = 1, 2, ...

(5)

Then

(u1 + ...+ um+1) = N(u1 + ...+ um), m = 1, 2, ..., (6)

and

u(x) = f +
∞
∑

i=1

ui. (7)

Them-term approximate solution of Eq.(2) is given byu =
m−1
∑

i=0

ui.

2.1 Convergence of the DJM
We present below the condition for convergence of the series

∑

ui. For more details we refer the reader to [12].

Theorem 2.1.1 : [12]

If N is C(∞) in a neighbourhood ofu0 and‖ N (n)(u0) ‖≤ L, for anyn and for some realL > 0 and‖ ui ‖≤ M < 1
e
, i = 1, 2, ...,

then the series
∞
∑

n=0

Gn is absolutely convergent and moreover,‖ Gn ‖≤ LMnen−1(e− 1), n = 1, 2, ...

Theorem 2.1.2 : [12]

If N isC(∞) and‖N (n)(u0)‖ ≤M ≤ e−1, ∀n, then the series
∞
∑

n=0

Gn is absolutely convergent.

3 Solution of Cauchy problem by using DJM

The Cauchy problem of the first-order partial differential equation is given in the form [4–6,13]

ut(x, t) + a(x, t)ux(x, t) = φ(x), x ∈ R, t > 0 (8)

with initial condition:

u(x, 0) = ψ(x), x ∈ R. (9)

Whena(x, t) = a is a constant andφ(x) = 0, Eq. (8) is a linear equation called the transport equation which can describe many
interesting phenomena such as the spread of AIDS, the movingof wind. Whena(x, t) = u(x, t), Eq. (8) is a nonlinear equation called
the inviscid Burgers’ equation arising in one-dimensionalstream of particles or fluid having zero viscosity.
Eq. (8) can be written in an operator form as

Ltu = φ(x)− a(x, t)ux(x, t), (10)
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whereLt =
∂
∂t

. Let us assume the the inverse operatorL−1
t exists and it can be take with respectt from 0 to t, i.e.

L
−1
t (.) =

t
∫

0

(.)dt (11)

Then, by taking the inverse operatorL−1
t to both sides of the Eq.(10) and using the initial condition,leads to

u(x, t) = ψ(x) + ϕ(x, t)− L
−1
t (a(x, t)ux(x, t)). (12)

where the functionϕ(x, t) results from integrating the source termφ(x) with respect tot from 0 to t. By applying the DJM for Eq.(12)
the following recurrence relation for the determination ofthe componentsun+1(x, t) are obtained:

u0(x, , t) = ψ(x) + ϕ(x, t), (13)

u1(x, t) = N(u0) = −L−1
t (a(x, t)ux(x, t)), (14)

u2(x, , t) = N(u1 + u0)−N(u0) = −L−1
t (a(x, t)(u1 + u0)x)− u1, (15)

u3(x, t) = N(u2 + u1 + u0)−N(u1 + u0) = −L−1
t (a(x, t)(u2 + u1 + u0)x) + L

−1
t (a(x, t)(u1 + u0)x), (16)

and so on.
Continuing in this manner, the(n+ 1)th approximation of the exact solutions for the unknown functionsu(x, t) can be achieved as:

un+1(x, t) = N(u0 + · · ·+ un)−N(u0 + · · ·+ un−1) = −L−1
t (a(x, t)(u0 + · · ·+ un)x)−

+L−1
t (a(x, t)(u0 + · · ·+ un−1)x), n = 1, 2, ... (17)

Based on the DJM, we constructed the solutionu(x, t) as:

u(x, t) =
n
∑

k=0

uk(x, t) n ≥ 0. (18)

4 Test examples
In this section, some test examples will be examined to assess the performance of the DJM for Cauchy problem. To verify theconver-
gence of the method, we applied the method to some test problems for which an analytical solution are available.

Example 1: Consider the transport equation [4–6]

ut(x, t) + aux(x, t) = 0, x ∈ R, t > 0, (19)

with initial condition:

u(x, 0) = x
2
, x ∈ R.

According to the iteration formula in Eq.(17), we have

u0(x, t) = x
2
, (20)

un+1(x, t) = N(u0 + · · ·+ un)−N(u0 + · · ·+ un−1) = L
−1
t (a(u0 + · · ·+ un)x)−

−L−1
t (a(u0 + · · ·+ un−1)x), n = 1, 2, ... (21)

According to the DJM, we achieve the following components:

u1(x, t) = N(u0) = −L−1
t (a(u0)x(x, t)) = −2atx, (22)
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u2(x, t) = N(u1 + u0)−N(u0) = −L−1
t (a(u1 + u0)x)− u1 = a

2
t
2
, (23)

u3(x, t) = N(u2 + u1 + u0)−N(u1 + u0) = −L−1
t (a(u2 + u1 + u0)x) + L

−1
t (a(u1 + u0)x) = 0, (24)

In fact, we have.

uj = 0, forj ≥ 3

Therefore, according to Eq.(18), we get:

u(x, t) = x
2 − 2atx+ a

2
t
2
. (25)

which is the exact solution of the problem and it is the same results obtained by VIM [4], RVIM [5] and HPM [6].

Example 2: Consider the Cauchy problem [4–6]

ut(x, t) + xux(x, t) = 0, x ∈ R, t > 0, (26)

with initial condition:

u(x, 0) = x
2
,

Proceeding as before, the recurrence relation

u0(x, t) = x
2
, (27)

un+1(x, t) = N(u0 + · · ·+ un)−N(u0 + · · ·+ un−1) = −L−1
t (x(u0 + · · ·+ un)x)−

+L−1
t (x(u0 + · · ·+ un−1)x), n = 1, 2, ... (28)

According to the DJM we achieve the following components:

u1(x, t) = N(u0) = −L−1
t (x(u0)x(x, t)) = −2tx2

, (29)

u2(x, t) = N(u1 + u0)−N(u0) = −L−1
t (x(u1 + u0)x)− u1 = 2t2x2

, (30)

u3(x, t) = N(u2 + u1 + u0)−N(u1 + u0) = −L−1
t (x(u2 + u1 + u0)x) + L

−1
t (x(u1 + u0)x) = −

4

3
t
3
x
2
, (31)

and so on.
Therefore, according to Eq.(18) we have:

u(x, t) = x
2
(

1− 2t+
(2t2)2

2!
−

(2t3)2

3!
+

(2t4)2

4!
− ...

)

. (32)

This has the closed form

u(x, t) = x
2
e
−2t

. (33)

which is the exact solution of the problem and it is the same results obtained by VIM [4], RVIM [5] and HPM [6].

Example 3: Consider the following non-homogeneous Cauchy problem [4–6]

ut(x, t) + ux(x, t) = x, x ∈ R, t > 0, (34)

with initial condition:

u(x, 0) = e
x
,

In this example there is non-homogeneous termx which after integrating it with respectt from 0 to t, leads toxt.
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Therefore, proceeding as before, the recurrence relation

u0(x, y, z, t) = e
x + xt, (35)

un+1(x, t) = N(u0 + · · ·+ un)−N(u0 + · · ·+ un−1) = −L−1
t ((u0 + · · ·+ un)x) +

+L−1
t ((u0 + · · ·+ un−1)x), n = 1, 2, ... (36)

This gives the following components:

u1(x, t) = N(u0) = −L−1
t ((u0)x(x, t)) = −ext−

t2

2
, (37)

u2(x, t) = N(u1 + u0)−N(u0) = −L−1
t ((u1 + u0)x)− u1 =

ext2

2
, (38)

u3(x, t) = N(u2 + u1 + u0)−N(u1 + u0) = −L−1
t ((u2 + u1 + u0)x) + L

−1
t ((u1 + u0)x) =

−1

6
e
x
t
3
, (39)

and so on.
Therefore, according to Eq.(18) we have:

u(x, t) = e
x + xt− e

x
t−

t2

2
+
ext2

2
= t

(

x−
t

2

)

+ e
x
(

1− t+
t2

2!
−
t3

3!
+
t4

4!
− ...

)

. (40)

This has the closed form

u(x, t) = t
(

x−
t

2

)

+ e
x · e−t = t

(

x−
t

2

)

+ e
x−t

. (41)

which is the exact solution of the problem and it is the same results obtained by VIM [4], RVIM [5] and HPM [6].

Example 4: Consider the following the non-homogeneous nonlinear Cauchy problem [4–6]

ut(x, t) + u(x, t)ux(x, t) = x, x ∈ R, t > 0, (42)

with initial condition:

u(x, 0) = x,

According to the iteration formula in Eq.(17), we have

u0(x, y, z, t) = x, (43)

un+1(x, t) = N(u0 + · · ·+ un)−N(u0 + · · ·+ un−1) = −L−1
t ((u0 + · · ·+ un)(u0 + · · ·+ un)x) +

+L−1
t ((u0 + · · ·+ un−1)(u0 + · · ·+ un−1)x), n = 1, 2, ... (44)

This gives the following components:

u1(x, t) = N(u0) = −L−1
t ((u0)(u0)x(x, t)) = −tx, (45)

u2(x, t) = N(u1 + u0)−N(u0) = −L−1
t ((u1 + u0)(u1 + u0)x)− u1 = t

2
x−

t3x

3
, (46)

u3(x, t) = N(u2 + u1 + u0)−N(u1 + u0) = −L−1
t ((u2 + u1 + u0)(u2 + u1 + u0)x) +

+L−1
t ((u1 + u0)(u1 + u0)x) = −

2t3x

3
+

2t4x

3
−
t5x

3
+
t6x

9
−
t7x

63
, (47)

Therefore, according to Eq.(18) we have:
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u(x, t) =
(

x− tx+ t
2
x− t

3
x+ t

4
x− t

5
x+ · · ·+ (−1)ntnx+ · · ·

)

. (48)

This has the closed form

u(x, t) =
x

1− t
· (49)

which is the exact solution of the problem and it is the same results obtained by VIM [4], RVIM [5] and HPM [6].

5 Conclusion

In this paper, the reliable iterative method namely (NIM or DJM) is implemented to obtain the exact solution for solving Cauchy
problems using the initial condition only. The DJM is simpleto understand and easy to implement and does not require any restrictive
assumptions as required by some existing techniques. The obtained exact solution for the homogeneous or non-homogeneous linear
and nonlinear equations of applying the DJM is in full agreement with the results obtained with those methods available in the literature
such as variational iteration method [4], Reconstruction of the variational iteration (RVIM) [5] and homotopy perturbation method [6].
The method gives rapid convergent and can be easily comprehended with only a basic knowledge of Calculus. It is economical in terms
of computer power/memory and does not involve tedious calculations. Moreover, by solving some examples, it is seems that the DJM
appears to be very accurate to employ with reliable results.
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