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1. ABSTRACT: The purpose of this paper is to prove existence of common random fixed point in the setting of 

partial cone metric space over the non-normal cones. 

Key wards: common fixed point,cone metric space, random variable 

2. INTRODUCTION AND PRELIMINARIES  
Random nonlinear analysis is an important mathematical discipline which is mainly concerned with the study of 

random nonlinear operators and their properties and is needed for the study of various classes of random 

equations. The study of random fixed point theory was initiated by the Prague school of Probabilities in the 

1950s [4, 13, and 14]. Common random fixed point theorems are stochastic generalization of classical common 

fixed point theorems. The machinery of random fixed point theory provides a convenient way of modeling many 

problems arising from economic theory  and references mentioned therein. Random methods have revolutionized 

the financial markets. The survey article by Bharucha-Reid [1] attracted the attention of several mathematicians 

and gave wings to the theory. Itoh [18] extended Spacek's and Hans's theorem to multivalued contraction 

mappings. Now this theory has become the full edged research area and various ideas associated with random 

fixed point theory are used to obtain the solution of nonlinear random system (see [2,3,7,8,9 ]). Papageorgiou 

[11, 12], Beg [5,6] studied common random fixed points and random coincidence points of a pair of compatible 

random  and proved fixed point   theorems for contractive random operators in Polish spaces.   

In 2007, Huang and Zhang [9] introduced the concept of cone metric space and establish some     fixed point 

theorems for contractive mappings in normal cone metric spaces. Subsequently, several other authors [10, 17, ] 

studied the existence of fixed points and common fixed points of pings satisfying contractive type condition on a 

normal cone metric space. In 2008, Rezapour and Hamlbarani [17] omitted the assumption of normality in cone 

metric space, which is a milestone in developing fixed point theory in cone metric space. In this paper we prove 

existence of common random fixed point in the setting of cone random metric spaces under weak contractive 

condition.  Recently, Dhagat et al. [19] introduced the concept of cone random metric space and proved an 

existence of random fixed point under weak contraction condition in the setting of cone random metric spaces. 

The purpose of this paper to find common random fixed point theorems of contractions in partial cone metric 

spaces over non normal cones. 

Definition 2.1.   Let X  be a nonempty set and let 𝑃 be a cone of a topological vector space E . A partial cone 

metric on X  is a mapping PXX:p   such that, for each Xthtgtf )(),(),( , t , 
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                      The pair ),( pX   is called a partial cone metric space over 𝑃. 

Definition 2.2.   A function f: Ω → C is said to be measurable if
1( )f B C    for every Borel subset B of 

H. 

Definition 2.3. A function :F C C  is said to be a random operator if (., ) :F x C is measurable 

for every x C  

Definition 2.4. A measurable :g C is said to be a random fixed point of the random operator 

:F C C   if  ( , ( )) ( )F t g t g t  for all t  

Definition 2.5. A random operator F: Ω×C → C is said to be continuous if for fixed   t , ( ,.) :F t C C  

is continuous. 

Lemma:2.6 Let P be solid cone of a topological vector space E and     .)(,)(,)( Ethtgtf nnn  if

ntgthtf nnn  )()()( , and there exists some Et )( Such that

)()()()()()( tththenttgandttf nnn     

Lemma:2.7 Let P be solid cone of a normed vector space  .,E then for each sequence   .)( Etfn   

)()()()(
.

ttfimpliesttf nn   moreover if P is normal, then )()( ttfn 

implies )()(
.

ttfn   

Lemma:2.8 Let P be solid cone of a normed vector space     andKE n ,.,    .)( Ptfn   

   )(,sup)( tfKthenKandtf nnnnn . 

Theorem 2.9   Let ),( pX  be partial cone metric space. The mapping :,ST XX  are called 

contractions restricted with variable positive linear bounded mappings if there exist 

)4,3,2,1(:  iXXLi  such that
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In particular if   (*) is holds with  

                  

                  
 then T and S are called contractions restricted with positive linear bounded mappings

 
 

3. Main Result: 

)4,3,2,1())(),((  iAandAtgtfL iii 
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Theorem 3.1. Let ( , )X p  be a 𝜃-complete partial cone metric space over a solid cone 𝑃 of a    normed vector 

space ( , . )E   and let , :T S X X be contractions restricted with variable positive linear bounded 

random mappings. If 

3 4( ( ( ), ( )) ( ( ), ( ))) 1p L f t g t L f t g t     and  2 4( ( ( ), ( )) ( ( ), ( ))) 1p L f t g t L f t g t   

 ( ), ( ) (1)f t g t X    

1 2 1l l   and 3l   , where (.)p  denotes the spectral radius of linear bounded mappings, 

1 1
(t),g(t) X

2 2
(t),g(t) X

3 3
(t),g(t) X

l sup ( ( ), ( ))

l sup ( ( ), ( ))

l sup ( ( ), ( )) , (2)

f

f

f

K f t g t

K f t g t

K f t g t
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f

  

  

  

 ( ), ( ) (3)t g t X 

 

 where
1( ( ), ( ))L f t g t and 

2 ( ( ), ( ))L f t g t denote the inverse of 

3 4I ( ( ), ( )) ( ( ), ( ))L f t g t L f t g t  and 2 4I ( ( ), ( )) ( ( ), ( ))L f t g t L f t g t  respectively, then andT S  

have common random fixed point in X Moreover if  

1 2 3 4( ( ( ), ( )) ( ( ), ( )) ( ( ), ( )) 2 ( ( ), ( ))) 1 ( ), ( )

(4)

p L f t g t L f t g t L f t g t L f t g t f t g t X     


 

  then andT S  have unique common random fixed point (t)h X such that, for each  

(t)nh X , (t) (t)p

nh h


 where (t)nh  is   defined by     

1

( (t), t) ;n is even number
(t) (5)

S( (t), t) ;n is odd number

n

n

n

T h
h

h



 
  

 

 

Proof.  For each Xyx , by (1), the inverse of ))(),(())(),((1 43 tgtfLtgtfL  and 

))(),(())(),((1 42 tgtfLtgtfL   exist. then, it is clear that 1L and 2L are meaningful  

and  321 ,, KKK are well defined. 
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Xyx , , which is together with )4,3,2(:  iXXLi  implies that )2,1(:  iXXLi 
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Act the above inequality with ))(),(( 1221 tftfL kk  ; then,
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Act the above inequality with ))(),(( 12222 tftfL kk  ; then, by: ,:2  XXL  
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In the following, we will prove that
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For m>n, we have four cases 
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 Where p and q are two non negative integers such that qp  . We only show that (14) holds for 
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                 Which implies that  
.

))(),(( tftfp mn ,and hence  ))(),(( tftfp mn by 

lemma(2.7)  Thus by (15) and lemma (2.6) ))(),(( tftfp mn ;that is (14)  holds. It is prove that 

 )(tfn is a Cauchy sequence in  pX , ,and so by the  completeness of  pX , , there exits  Xth )(

such that )()( thtf p

n 


and  ))(),(( ththp ; that is, 
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 For all ,Nk by (*)  and (p4),   
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Act the above inequality with ))(),(( 122 tfthL k ;then,
 

 XXL :1 ,
         

)20())(),((,)(),((,))(,),((( 212312122   NkthtfpKtfthpKthtthTp kkkk      

 

Where ))(),(( 12212,2 tfthpKK kk    and ))(),(( 12212,3 tfthpKK kk   .  

It is clear that { 12,2 kK },{ 12,3 kK } subsets of   and   12,312,2 sup,sup kkkk KK by 21ll

<1and 3l .then its follows from the lemma (3) and (17)that  

 

)21(,)(),(()(),(( 1212,31212,2   tfthpKtfthpK kkkk  

 

 

Which together with lemma (2.6)and (20) implies that   )),((),( tthTthp  

Therefore )()),(( thtthT  by (p1) and( p3).similarly we can show that )()),(( thtthS  . 

Hence  )(th  is common random fixed point of T and      
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Now we show the uniqueness of fixed point. Let  )(tf  and )(th be two common random fixed point of T 

and S then by (*) and (p3) )3,2(:  iXXLi    
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It follow from (3) that the inverse of 

 ))(),((2))(),(())(),(())(),(( 4321 tfthLtfthLtfthLtfthLI 
 
exists(denoted by) 
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4321 ))(),((2))(),(())(),(())(),((


 tfthLtfthLtfthLtfthLI and

  
1

4321 ))(),((2))(),(())(),(())(),(( tfthLtfthLtfthLtfthLI by Neumann’s formula 

with   1

4321 ))(),((2))(),(())(),(())(),((


 tfthLtfthLtfthLtfthLI ;then ))(),(( tfthp

and hence )()( tfth  by  (p1) and (p3)the proof is completed. 
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